

MAS424/MTHM021

Exercise Sheet 2

Introduction to Dynamical Systems Rainer Klages

If not said otherwise, in the following we consider one-dimensional maps $F: \mathbb{R} \to \mathbb{R}$, $x_{n+1} = F(x_n)$, $n \in \mathbb{N}_0$.

- 1. Periodic points and stability
 - (a) For the map C(x) from 3.(a) of exercise sheet 1, classify analytically the stability of all fixed points and of all prime period two orbits.
 - (b) Consider the map defined by the function $D(x) := 2x^2 5x$. Calculate the set $Per_2(D)$ of all period 2 points for this map and classify analytically the stability of all fixed points and of all prime period two orbits.
 - (c) Suppose F is of class C^1 . State a criterion from which one can calculate the stability of a fixed point p for this map. Illustrate the following types of stability for p by drawing cobweb plots for three maps of your choice:
 - (i) F'(p) = 0, (ii) 0 < F'(p) < 1, (iii) -1 < F'(p) < 0.
- 2. The Bernoulli shift

Consider the map $B_2(x) := 2x \mod 1$, $x \in [0, 1)$.

- (a) Show that the number of periodic orbits of period n is $|Per_n(B_2)| = 2^n 1$, as follows: Draw $B_2(x)$ and at least its second iterate. Identify $Fix(B_2)$ and at least $Per_2(B_2)$ in your drawings and calculate the corresponding periodic points analytically. Along these lines, calculate the result for general n. A proof by induction is not required.
- (b) Is $B_2(x)$ (piecewise) expanding and/or (piecewise) hyperbolic?
- 3. Expanding, hyperbolicity and sensitivity
 - (a) Consider the map defined by the function

$$E(x) = \begin{cases} 2x+1 & , & -1 \le x < -1/2 \\ 2x & , & -1/2 \le x < 1/2 \\ 2x-1 & , & 1/2 \le x \le 1 \end{cases}$$

Draw the graph of this map. (i) Is E(x) expanding or piecewise expanding? (ii) Is it hyperbolic or piecewise hyperbolic? (iii) Is it sensitive? (iv) Has it a dense set of periodic orbits? (v) Is it topologically transitive or minimal? Justify your answers (for (iii) and (iv) you may argue with results shown in the lectures).

- (b) Consider the map defined by R(x) := |x|, $x \in \mathbb{R}$. Draw the graph of R(x). (i) Is R(x) expanding or piecewise expanding? (ii) Is it hyperbolic or piecewise hyperbolic? (iii) Has it a dense set of periodic orbits? (iv) Is it topologically transitive or minimal? Justify your answers.
- (c) Prove that R(x) is not sensitive (hint: proof by contradiction).
- (d) Consider the quadratic map defined by $Q(x)=1-\mu x^2$, $x\in[-1,1]$, where $\mu\in[0,2]$ is a parameter. Is this map expanding? For which values of μ is it contracting?
- (e) Suppose F is of class C^1 . Prove that if F is expanding or contracting it is hyperbolic.

Model solutions will be on the course webpage starting from Wednesday, November 15th, 2007.