
APPLIED DYNAMICAL SYSTEMS

BASIC DYNAMICAL SYSTEMS:
intermittency and autocorrelation

Lecture Notes for Classes 1–5

David Arrowsmith

Dynamical systems theory of deterministic
transport(Lectures 5–10)

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

March 16, 2009



2



Chapter 1

Basic dynamical systems and
intermittency

1.1 Maps of the interval

We consider in this course some basic connections between iteration of maps as dynamical systems

which exhibit intermittency, binary sequences and their autocorrelation properties. The study of

interactions are required to develop various models with physical characteristics. For example, the

study of packet traffic on communication networks requires the production of streams of binary

data with so-called long range dependence (LRD), i.e. correlation over long ranges of sequences in

the data. To take the example further - the basic requirement of a packet traffic model is to produce

sequences or strings of binary digits which represent the two types of packets, those which contain

information which we represent by the symbol ‘1’ and those that are empty which are represented

by ‘0’.

The mechanism for producing the binary strings has to be flexible and satisfy two key require-

ments.

• all possible data strings of a given finite length need to be realized and,

• the required statistical nature of the binary data strings should be reflected in the output for

a “typical orbit” of the dynamical system.

This application driven problem allows us to address ceratin aspects of a phenomenon called

intermittency. in this chapter by showing how iterating certain types of interval map can satisfy

the statistical requirements of LRD behaviour.

An interval map is simply a function f : I → I, where I = [0, 1] = {x|0 ≤ x ≤ 1}, is the closed

interval of real numbers. Thus repeated iteration of the map given an initial point x0 ∈ I provides

a sequence of real numbers {xn} in the interval I where xn+1 = f(xn), for n = 0, 1, 2, . . .. The real
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sequence can easily be turned into a binary sequence with the use of an output map s : I→ {0, 1}
defined by

s(x) =

{
0 0 ≤ x < d̄
1 d̄ ≤ x ≤ 1

where the discriminator d̄ ∈ (0, 1). Thus, given an initial x0 ∈ I, we obtain the real sequence {xn}
in I and deduce the output binary sequence {yn} ⊆ {0, 1}∞, where yn = s(xn). Some examples of

maps f : I→ I are illustrated in Fig. 1.1.

Remark The monotonic functions (a), (b) in Fig. 1.1, have orbits with predictable asymptotics and

so the possible corresponding binary output from such a map is severely restricted.

A geometrical interpretation of the iteration of a map can be obtained by using the orbit web.

The sequence of points (xn, xn+1) gives the dynamical iteration of the orbit x0. It is obtained

geometrically using the symmetry line L : y = x to transfer the value y = xn+1 = f(xn), on gr(f),

from the y-axis to the x-axis. This facilitates the next iteration of f to give the point xn+2 = f(xn+1)

and so on. Thus the “web” in I×I is obtained by alternately filling in vertical segments from (xn, xn)

on L to (xn, xn+1) on gr(f) followed by horizontal segments from (xn, xn+1) to (xn+1, xn+1). This

procedure alternates between points on L and points on the graph of f and gradually unfolds the

nature of an orbit as in Fig. 1.2

1.2 Behaviour of orbits

A natural question to ask is what types of orbit can arise from functions such as those illustrated

in Fig. 1.1.

If the graphs y = x and y = f(x) intersect at a point x = x∗, then we have a fixed point of

the iteration, i.e. x∗ = f(x∗) - there is no change in the iterated value. One can then ask about

the behaviour of orbits which arise in the neighbourhood of the fixed point. Such orbits can move

towards or away from the fixed point becoming an attractor, or repellor, respectively. Neutral fixed

points can also arise where orbits from one side of x∗ move towards the fixed point while they move

away on the side. Various configurations of fixed points can be seen in Fig. 1.3. They depend on

the nature of the graph y = f(x) in the neighbourhood of its intersection with the ‘fixed point’ line.

If the map is differentiable then the behaviour at a fixed point can be categorized in terms of the

derivative of f at the fixed point x = x∗. A Taylor expansion of the map f in the neighbourhood

x = x∗ gives

f(x) ≈ f(x∗) + f ′(x∗)(x− x∗), (1.1)

and so

|xn+1 − x∗| ≈ |f ′(x∗)||(xn − x∗)|. (1.2)
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Figure 1.1: Examples of graphs of maps f : I→ I. Note that for (a), (b) orbits exhibit predictable
behaviour, whereas for (c) and (d), a typical orbital behaviour is not apparent.
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Figure 1.2: Orbit webs for the functions in Fig. 1.1 . Note the lack of any pattern in the orbit for (c)
and (d). By contrast, orbit webs for functions (a)and (b) have obvious regularity and would produce
a highly constrained binary sequence output. The maps for (a), (b) have orbits with predictable
behaviour, whereas for (c),(d) a typical orbital behaviour is not apparent.
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f(x)=2.9x(1-x)

g(x)=2.9x(1-x)

Figure 1.3: Various orbital behaviours in the neighbourhood of fixed point. One fixed is unstable,
the other is stable.

Thus we have asymptotic stability for the fixed point x∗ when |f ′(x∗)| < 1 and instability when

|f ′(x∗)| > 1.

Periodic recurrence is a generalization of the fixed point. A point x = x0 is a periodic point of f if

f q(x0) = x0 for some q > 0. The minimum such positive q is said to be the period of the orbit which

consists of the finite set x0, x1, . . . , xq−1 and which is then repeated infinitely since xq = x0, x2q = x0

etc. If q = 1 the periodic orbit is a fixed point, and if q > 1 the periodic orbit is non-trivial. The

fixed point stability result extends to a q-periodic point x∗ by considering its behaviour as a fixed

point of the map f q. Thus the q-period periodic orbit {x0, . . . , xq−1} of f is asymptotically stable

if |(f q)′(x0)| < 1 and unstable for |(f q)′(x0)| > 1. The apparent dependence of stability on just

x0 and no other points of the periodic orbit is illusory as the derivative at x = x0 that determines

stability is given by

(fn)′(x0) =

q−1∏
i=0

f ′(xi), (1.3)

and so (fn)′(xi) is the same for all points xi, i = 0, . . . q − 1 of the periodic orbit. It is possible for

a map f to become eventually periodic. An orbit with initial point x0 can satisfy f q(xk) = xk for

iterates k > k0 only, for some fixed positive integer k0. In this case, the orbit through x0 is said to

be forward periodic. Note that if the map f : I → I has an inverse map g : I → I, then a forward

periodic orbit of period q is immediately periodic, i.e. f q(x0) = x0. This follows from f q(xk) = xk
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by applying the map f−k to both sides.

The qualitative approach, which stems from a discussion of the properties described above has

led to the discovery of the key ingredients of dynamical chaos. When allied with the great power of

modern digital computers, these features can be easily displayed for systems and maps which have

a simple analytical form. First, we consider some simple maps for which the dynamical complexity

is relatively easy to uncover and describe.

1.3 Equivalence of maps

We can introduce an equivalence between maps which respects orbital behaviour. Let φ : I → I
be a homeomorphism, a map which is both bijective and bicontinuous. Suppose that we have two

maps of the interval f, g : I→ I such that the following conjugacy holds

gφ(x) = φf(x)

for all x ∈ I. We can deduce from the conjugacy that there is an equivalence of orbit structure for

the maps f and g. For any initial point x0 ∈ I, the f -orbit {fn(x0)} and the g-orbit {gn(y0)} with

y0 = φ(x0) are in 1 − 1 correspondence by the map φ where φ(fn(x0)) = gn(y0). Moreover, let x0

be a periodic point of f of minimum period q, i.e. f q(x0) = x0 and fk(x0) 6= x0 for k < q. Let xk =

fk(x0), k ∈ Z+, then {x0, x1, . . . xq−1} is the periodic orbit. Let yk = φ(xk). Then {y0, y1, . . . yq−1}
is a q-periodic orbit of the map g. Observe that the conjugacy gives gkφ(x) = φfk(x), k ∈ Z+.

Thus

gq(y0) = gq(φ(x0)) = φf q(x0) = φ(x0) = y0,

and

gk(y0) = gk(φ(x0)) = φfk(x0) 6= φ(x0) = y0

using φ is injective, and fk(x0) 6= x0. It follows that y0 is a period-q periodic point of g. Thus φ

maps periodic orbits of f to those of φ, and, in particular, fixed points of f to those of g. It can be

similarly shown that aperiodic (i.e. non-periodic) orbits of f are mapped to the aperiodic orbits of

g. Eventually periodic orbits of f and g are also in 1 − 1 correspondence. The bi-continuity of φ

allows limiting structures of orbits to be associated. For example, the limiting set of an orbit of f

Lf (x0) = limn→∞ f i(x0), satisfies φ(Lf (x0)) = Lg(y0), where y0 = f(x0). Limiting sets are sent to

limiting sets.

1.4 Piece-wise linear maps

We can see that a linear map f(x) = αx with α ∈ R has trivial dynamical behaviour. The map

has a fixed point at the origin and orbital points either move away from the origin, or towards it,
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depending on whether |α| > 1 or |α| < 1 respectively. Orbital diversity can be introduced with

nonlinearity, see Figs 1.1 and 1.2.

1.4.1 The doubling map

The simplest nonlinear map of the interval can be constructed by using two linear components. It

can be expressed in the form

D(x) =

{
2x, 0 ≤ x < 1/2
2x− 1, 1/2 ≤ x < 11

, (1.4)

or equivalently,

D(x) = 2x (mod 1). (1.5)

If we see the map D as an iteration on I ′ = [0, 1) defined by

xn = 2xn−1 (mod 1). (1.6)

It is not difficult to ‘solve’ this equation and deduce that the n-th iterate xn = Dn(x0) of x0 ∈ I ′ is

simply given by

xn = 2nx0 (mod 1). (1.7)

It is soon apparent that the solution is no more illuminating than the defining equation of D simply

because it is not at all clear how the exponential doubling interacts with the process of reducing

mod 1.

The temptation at this point is to resort to the computer for more help and intuition. Un-

fortunately, we have only a finite number, say m, of binary places stored in the machine for each

real number we wish to represent in [0, 1) and we loose information at the rate of 1-binary place

per iteration since, as we shall see, the map effectively shifts the binary expansion by one binary

place and deletes the integer part. Thus if the computer fills out the number to m places after each

iteration in a controlled way by adding 0 in the m-th place, we have zero after m-iterations. If the

m-th place is filled randomly, then after m iterations we have a random number generator for binary

m digit integers. Clearly, the computer is not particularly useful here because of the exponential

loss of information. A crucial feature of this map is the way in which orbits move apart. More

precisely, the map offers sensitive dependence on initial conditions (Guckenheimer (1979), Devaney

(1986)). Given any two distinct points of x, x′ of I ′, their orbits initially diverge exponentially in

the sense that dist(Dn(x), Dn(x′)) = 2ndist(x, x′) subject, of course, to the global constraint here

that no two points can ever be more than distance one apart on I ′. Thus, it is only locally that

orbits are diverging exponentially.
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Coding and symbolic dynamics

To understand the essential variety of the orbits available we return to the binary output map

which reveals the nature of the dynamics and why such maps are appropriate for modelling digital

sequence behaviour.

Any real number x0 ∈ I ′ can be written in the binary form

x0 =
∞∑

n=1

bn

2n
, (1.8)

where bn = 0 or 1. Thus formally, we can represent each point of I ′ as sequence σ = {bn}∞n=1. Let

S denote the set of all such binary sequences. Now we note that

D(x0) = D

( ∞∑
n=1

bn

2n

)

= 2
∞∑

n=1

bn

2n
(mod 1)

= b1 +
∞∑

n=2

2
bn

2n
(mod 1)

=
∞∑

n=1

bn+1

2n
(mod 1) (1.9)

since b1 is an integer. Thus formally we have a conjugacy

Dφ = φα, (1.10)

where

φ({bi}∞1 ) =
∞∑
1

bi

2i
. (1.11)

Relative to this new formal representation of points in I ′ as a binary sequence, the map D takes

the form of a shift α on binary sequences:

{b1, b2, . . . , bn, . . .} 7−→ {b2, b3, . . . , bn−1, . . .}. (1.12)

The map α is defined precisely by

α({bn}∞n=1) = {bn+1}∞n=1. (1.13)

This straightforward observation allows us to examine the periodic structure of the map D. We

note that the period-q periodic points of α in S are precisely those binary representations for x0 that

repeat after q-digits and no fewer. Thus a period-1 point of α is given by the repeating expansions

σ1 = {00000 . . .} = {0}.
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Period-2 points are given by

σ2 = {010101 . . .} = {01}, (1.14)

and

σ3 = {101010 . . .} = {10}. (1.15)

Clearly the sequence σ1 is the binary representation of x = 0 and D(0) = 0. The sequence σ2 gives

the point x = 1/4 + 1/16 + 1/64 + . . . = 1/3 and σ3 gives the point x = 2/3. Note either by using

α on the two symbols σ2 and σ3 or D on the corresponding real values 1/3, 2/3 we have period-2

orbits. Specifically,

α(σ2) = σ3, α(σ3) = σ2 (1.16)

and the corresponding

D(1/3) = 2/3, D(2/3) = 1/3, (1.17)

respectively. Note that the orbit web for a periodic orbit such as this closes up after 2 iterations.

Points which have orbits which are eventually period one or two can be obtained by delaying the

introduction of the recurrences given in the above symbolic sequences, e.g. the orbit σ = 1101010 is

eventually a fixed point since α6(σ) = 0 and remains at x = 0. We can see immediately that periodic

points of all orders can be constructed for α in this way and therefore there are corresponding

periodic orbits for the map D.

A key observation on the type of orbits available from such a map comes from noting that if

{bn}∞n=1 is the binary sequence arising from the binary representation of the point x then x ≤ 0.5

if b1 = 0 and x ≥ 0.5 if b1 = 1. Given that iteration of D corresponds to shifting the symbols of

the binary sequence, we see that it provides, at a glance, the movement of the itinerary of the orbit

through the regions ‘0’ representing the interval I0 = [0, 0.5) and ‘1’ representing I1 = [0.5, 1).

Remark This statement is only strictly true if we are careful about the ambiguity of binary repre-

sentation. Note that 0.5 = 0.10000 . . . = 0.011111 . . . . In fact, for every real number whose infinite

binary expansion finishes in consecutive zeroes can also be expressed using an infinite sequence of

ones. If we always choose zeroes for these ambiguous cases (the dyadic numbers) then the itinerary

described above is accurate. So we see that these piecewise linear maps can give rise to all possible

binary sequences and so this demonstrates the flexibility of the maps to create all experimental

cases of ON-OFF binary data.

By investigating the graph of the map D we can see that sub-intervals of I can be located which

give rise to the various sequences of binary data. For example, it is easy to check that for the

doubling map, we have the following correspondences for one and two symbols:

[0, 0.5)− ‘0′; [0.5, 1)− ‘1′;
[0, 0.25)− ‘00′; [0.25, 0.5)− ‘01′;

[0.5, 0.75)− ‘10′; [0.75, 1.0)− ‘11′;
(1.18)
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There are eight symbol sequences of length 3 and each sequence arises from a unique closed-open

interval of length 1/8 etc. . For example,“000” for any initial point x0 ∈ [0, 1/8). Obviously, an

infinite binary sequence arises from a unique real value as the defining interval lengths reduce to

zero. Carrying this through all the finite sequences gives the symbolic encoding of the map D.

1.4.2 Other piecewise linear maps

Variations on the doubling map D are the tent map T : I→ I:

T (x) =

{
2x, 0 ≤ x ≤ 1

2
,

2− 2x, 1/2 ≤ x ≤ 1.

and the m-fold sawtooth map Sm : I→ I:

Sm(x) = mx (mod1).

The map names reflect the appearance of their graphs. Note that the doubling map D is also

given by the special sawtooth map S2. The tent map has a symbolic coding on 2-symbols, and the

sawtooth requires m-symbols, one for each of the intervals [ k
m

, k+1
m

], k = 0, 1, . . . ,m− 1.

1.4.3 Chaos in maps

All of the above maps iterate to give chaotic behaviour:

1. initial states move apart exponentially and are said to have sensitive dependence on initial

conditions;

2. the map has dense orbits, [Devaney (1986)], that is, the orbit passes arbitrarily close to every

point of the interval;

3. the set of periodic points of the map are dense in the interval.

All of the maps with two (or more) continuous segments can be shown to exhibit the flexible

orbital behaviour of the chaotic doubling map. The doubling, tent and quadratic maps cannot be

distinguished topologically because symbolically, they are indistinguishable. An, apparently, similar

type of map g(x) = 3x (mod1) on I is, in fact, different, as it requires three, rather than two,

symbols to describe itineraries with ‘0′ = [0, 1/3), ‘1′ = [1/3, 2/3), ‘2′ = [2/3, 1). The map g differs

from the doubling map in its periodic point structure. For example, g has the following period-2

periodic orbits -

{{01}, {10}}, (1.19)

{{02}, {20}}, (1.20)
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{{12}, {21}}, (1.21)

whereas D has just one period-2 periodic orbit, namely {{01 . . .}, {10 . . .}}. This observation shows

that the maps S3 with D are not conjugate as there is a 1-1 correspondence of period-q orbits for

such maps. Similar considerations will show that Sm and Sn are not conjugate for m 6= n.

The symbolic coding allows us to check conditions (ii) and (iii). The sensitive dependence on

initial conditions shows up directly from the nature of the map D - the images of two points distance

d apart are 2d apart when d is sufficiently small.

The existence of dense orbits follows from the construction of a symbol sequence with all possible

symbolic words. This can be done by listing in sequence all possible symbol sequences of all possible

lengths.

The density of periodic orbits in I can be shown by observing that any point x with symbol

sequence {bi}∞i=1 can be approximated increasingly well by symbolic sequences which are periodic

with longer and longer periods.

1.5 Invariant densities and measures

Let us consider the output from two maps of the same type from the previous section. The graphs

of both maps (a) D(x) = 2x (mod1), and (b)

f(x) =

{
x + 2x2, 0 ≤ x < 0.5,
2x− 1, 0.5 ≤ x ≤ 1

, (1.22)

consist of two curves with a single discontinuity at x = 0.5.

How can the behaviour illustated in Fig. 1.4 be generated or predicted by changing the the

characteristics of the map? To answer this we have to consider how orbits distribute themselves

both temporally and spatially and whether this can be characterized for almost all orbits. For this

we need to develop the idea of invariant densities and the related concept of invariant measure for

a map.

1.5.1 Orbital densities

We consider the distributions of numbers generated by orbits of (a) the doubling map, D, and

(b), the quadratic map, Q. The map is iterated for M = 106 times for the doubling map, and

M = 105 for the quadratic map. The unit interval is divided into N small equal length intervals

where N = 50. We see an even distribution of visits to the intervals. There is a ‘smoothing’ of the

distribution as the number of iterations M is increased.
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Figure 1.4: Orbits for random initial conditions for maps (a) D, and (b) f in eqn (1.23). For each
map we have the real orbital data and the corresponding integer orbital data using the output map
s. There are clear differences: the digital crossover from ‘0’ to ‘1’ is much more regular for map (a)
and the lengths of spells of ‘0’s are much longer for map (b). This is caused by the tangency of the
gr(f) with the line y = x at the origin.

1.5.2 Perron-Frobenius Theorem

It can be shown theoretically that the apparent smoothing of the distribution in Fig. 1.5 (a) to a

constant function actually occurs. Consider a probability distribution ρ0 on the interval I which

describes the distribution of a large ensemble of initial conditions for the map D. Let the evolution

of the ensemble ρ0 after n iterations of f be given by the probability distribution ρn. The effect of

one iteration on ρn is

ρn+1(x) =

∫ 1

0

δ(x− f(z))ρn(z) dz. (1.23)

A justification for this result can best be seen by thinking of the distribution as arising from an

orbit count. Let us consider the orbit {xn}∞n=0. Then the probability of orbital values taking the

value y is

ρ0(y) = lim
N→∞

1

N

N∑
i=1

δ(y − xi), (1.24)

where the delta function δ satisfies

δ(x) =

{
1 x = 0,
0 otherwise,

(1.25)

and ∫ ∞

−∞
δ(x− x0)f(x)dx = f(x0) (1.26)

The integral
∫

δ(y − f(x))δ(x − xi)dx takes the value 1 when both y = f(x) and x = xi, and

zero otherwise. Thus ∫
δ(y − f(x))δ(x− xi)dx = δ(y − xi+1). (1.27)
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Figure 1.5: The distribution of orbital points for (a) the doubling map, D(x) and (b), the quadratic
map, Q(x) = 4x(1− x).
These are natural distributions that occur for almost all initial conditions. The natural distribution
approximated above is given by the function

ρ(x) =
1

π
√

(x− x2).
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x = g1(y) x = g2(y) etc.

Figure 1.6: The function f(x) = 6x2 mod1 splits into several components homeomorhisms
f1,f2,. . . ,f6 which are surjective onto the interval. Each component function x = fi(y) has an
inverse x = gi(y).

The distribution of points ρ0 evolves to the distribution ρ1 where (cf. 1.24)

ρ1(y) = lim
N→∞

1

N

N∑
i=1

δ(y − xi+1), (1.28)

since the set of points {xi}∞i=1 evolves to {xi+1}∞i=1, and using (1.27), we obtain

ρ1(y) = lim
N→∞

1

N

N∑
i=1

δ(y − xi+1)

= lim
N→∞

1

N

N∑
i=1

δ(y − f(x))δ(x− xi)

=

∫
δ(y − f(x)) lim

N→∞
1

N

N∑
i=1

δ(x− xi)dx

=

∫
δ(y − f(x))ρ0(x)dx (1.29)

If the functional relation ρ0 → ρ1 is written as ρ1 = P(ρ0) the functional operator P is known as the

Perron-Frobenius operator. Exploiting the definition of the δ function it can be written in different

forms.

Suppose that the graph f is composed from several continuous components

f1, f2, . . . , fn,

each of which has function inverses

g1, g2, . . . gn.

Then f−1(y) = {g1(y), . . . , gn(y)} and we have

ρ1(y) =

∫

x∈f−1(y)

ρ0(x)dx =
n∑

i=1

ρ0(gi(y))|g′i(y)|, (1.30)
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as when the functions gi are differentiable, dx = g′i(y)dy.

We can use the fact that f and gi are inverse functions to re-write the Perron-Frobenius equation.

The equivalence f(x)g(y) = 1 when differentiated gives f ′(x)g′i(y) ≡ 1, and so

ρ1(y) =
n∑

i=1

ρ0(xi)

|f ′(xi)| , (1.31)

if f−1(y) = {x1, x2, . . . , xn}, a finite set.

If the probability distribution ρ0 does not change with time under iteration, it is referred to as

an invariant density and it satisfies ρ0 = ρ1 = ρ, i.e.

ρ(y) =

∫ 1

0

δ(y − f(z))ρ(z) dz, (1.32)

is called an invariant density of the map, and Eq. (1.32) is known as the Perron-Frobenius equation.

There are many invariant densities. For example, let

{x0, x1, . . . , xq−1}

be a period-q periodic orbit. Then

ρ(x) =
{

1/q x = xi

0 otherwise
(1.33)

is an invariant probability density. However, the latter density is singular in the sense that it

is zero almost everywhere in the interval. For the doubling map, orbital calculations can result

in information on measures. The invariant measures for the doubling map split into three types.

The discrete measures arise for (a) periodic and eventually periodic points, (b) typical, or normal

irrational points,[Hardy(1979)], and finally (c), atypical irrational points. For the doubling map

the natural invariant measure arises from the orbital distributions associated with normal initial

points. The normal points form a set of measure one in I. It should be noted that periodic points

which form the singular measures are also dense in I but more importantly, they have zero measure.

Essentially, all finite patterns of digits are equally likely to occur in its binary expansion. Thus

normal numbers must be irrational as rational numbers have cyclic binary expansions and therefore

a restricted set of digital patterns. One would expect that the points of an orbit through such

a normal number would therefore spread evenly over the interval and that the natural invariant

measure ρ for the doubling map f is uniform, i.e. ρ(x) ≡ 1. We can check that it satisfies the

Perron-Frobenius equation. It is easy to construct initial irrational values, which therefore do not

give rise to periodic orbits, which will not give a uniform distribution on the interval I. For example,

the orbit of the point x0 represented symbolically by

x0 = 01001000100001000001, . . .
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clearly spends most of its time in the ‘0′ region when iterated by D. In fact, asymptotically, the

proportion of its time spent in the ‘0′ region tends to 1.

The invariant measure associated with this orbit is actually singular at x = 0, i.e a delta function

at zero, δ(x), so that
∫ 1

0
δ(x)dx = 1.

1.5.3 Invariant measures

Given an invariant density ρ for f : X → X, we can consider an associated invariant measure µ

where

µ(S) =

∫

S

dρ =

∫

S

ρ(x)dx

on subsets S of the space X.

The measure associated with the map f has invariance properties. Consider

µ(f−1(S)) =

∫

f−1(S)

ρ(x)dx.

The change of variable y = f(x) implies y ∈ S ⇐⇒ x ∈ f−1(S). The invariant density ρ implies

ρ(y)dy = ρ(x)dx and so we deduce

µ(f−1(S)) =

∫

f−1(S)

ρ(x)dx =

∫

S

ρ(y)dy

and the measure invariance for f can be written as

µ(f−1(S)) = µ(S).

Thus the measure is preserved for inverse images. This is true regardless of whether f has a map

inverse. For example with doubling map D or the tent map T , the inverse image of a interval of

length d is the union of two intervals each of length d/2. The property does not extend to forward

images, unless f is bijective in which case forward images of f are inverse images of f−1.

1.5.4 Invariant densities for simple maps

The doubling map

Let y ∈ I, then D−1(y) = {y/2, (1+y)/2} for the doubling map D and D′(y/2) = D′((1+y)/2) = 2.

Then

ρ(y) =
ρ(y/2)

2
+

ρ((1 + y)/2)

2
(1.34)

is satisfied by the constant map ρ = 1. The argument can be easily extended to the sawtooth map

Sm for m > 2.
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Figure 1.7: For the quadratic map Q(x) = 4x(1 − x), the initial density is (a) ρ0(y) = 0.5 +
0.1 sin(2πy) (Remark: an arbitrary choice); and various iterates of ρ0 by the Perron-Frobenius
operator PQ to (b) P1

Q(ρ0), (c) P8
Q(ρ0) which converge in (d) to the natural invariant density ρQ of

the map Q.

The tent map

The tent map T is closely associated with the doubling map and is also a piece-wise linear version

of the quadratic map defined by T (x) = 2x for 0 ≤ x < 0.5 and T (x) = 2 − 2x for 0.5 ≤ x < 1.

That ρ(x) ≡ 1 is also an invariant density for T is not difficult to show. Consider a measurable set

S ⊆ I. Then T−1(S) = S(1) ∪ S(2) where S(1) = {x/2|x ∈ S} and S(2) = {(2− x)/2|x ∈ S}. Given

µ(S(1)) = µ(S(2)) = µ(S)/2, for the density ρ, we have that it is invariant.

The quadratic map

We consider the quadratic map

Q(x) = 4x(1− x)

.

We show that

ρQ(y) =
1

π

1√
y(1− y)

is an invariant density for the map Q. The pre-images of the point y by the map Q are x =

(1±
√

(1− y))/2 and f ′(x) = 4− 8x|x = ∓4
√

(1− y). The function

ρQ(y) =
1

π

1√
y(1− y)

satisfies the identity

(1.35)
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ρQ(y) =
ρQ((1 +

√
(1− y))/2)

| − 4
√

(1− y)| (1.36)

+
ρQ((1−

√
(1− y))/2)

|4
√

(1− y)| , (1.37)

(1.38)

can be checked to confirm the Perron-Frobenius equation for the density ρQ.

Densities induced by conjugacy

An alternative approach to finding the invariant density for the map Q is to consider the conjugacy

which relates it to the tent map T and transfer the invariant density from T to Q via the conjugacy.

Consider the map φ : I→ I where

φ(x) = sin2(
πx

2
).

Observe that for x ∈ [0, 0.5]

Qφ(x) = 4 sin2(
πx

2
)(1− sin2(

πx

2
))

= sin2(2
πx

2
)

= φ(2x) = φ(T (x)). (1.39)

For the interval x ∈ [0.5, 1],

Qφ(x) = 4 sin2(
πx

2
)(1− sin2(

πx

2
))

= sin2(2
πx

2
)

= sin2(2
π(1− x)

2
)

= φ(2− 2x)

= φT (x). (1.40)

Thus φ provides a conjugacy between the maps T and Q with Qφ(x) ≡ φT (x). The conjugacy

y = sin2
(

πx
2

)
is a differentiable change of coordinates and the natural measure ρT (x) ≡ 1 is

transferred to the invariant measure ρQ via the map φ(x) = sin2(πx
2

). Observe

dφ(x)

dx
= 2 sin(

πx

2
) cos(

πx

2
)
π

2
= π

√
y
√

(1− y). (1.41)

Therefore
dy

π
√

y(1− y)
= 1.dx
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Figure 1.8: If a time series Xi, i = 1 . . . K is sampled with batch sizes of N , i.e Yj =
∑(j+1)N−1

i=jN+1 Xi,
then the variance of the sample Yj will decrease as N is increased. The rate of the decrease depends
on the nature of the time series Xi. Specifically, as batch size N is increased, the doubling map has
rapidly diminishing by comparison with a map that exhibits intermittency.

and so the density ρT (x) = 1 transfers to

ρQ(y) =
1

π
√

y(1− y)
.

1.6 Intermittency

The use of dynamical systems in the context of this exposition is to provide a method for giving

statistically appropriate digital output from an iterative scheme. One aspect of digital output

that is of interest if the nature of the auto-correlation decay of an output sequence or a family of

sequences. In particular power-law decay of the auto-correlation is seen to have memory or long-

range dependence, whereas exponential decay is seen to have no memory or short-range dependence.

A necessary ingredient of the output in this situation is a slow decrease in the variance as the size

of the batch averages are increased. We will return to this later. The method of achieving this is to

ensure that orbits spend long periods in the ‘ON’ and ‘OFF’ regimes thus ensuring that averages

of large batch size can still be either 0 or 1 and not the 0.5 arising form the doubling map. We

achieve this by introducing intermittency into the iterative map f .

Intermittency is achieved by having segments of gr(f) given by y = f(x) arbitrarily close to the

fixed point line y = x map. In Fig. 1.8 we see two levels of behaviour from this point of view. In

(a), the graph meets the line y = x in a fixed point x = x∗. Iteration from x0 then accumulates at x∗

and the iteration takes increasingly small steps. Note that such a scenario could produce an infinity

of either consecutive zeroes or ones depending on the location of the point x∗. By comparison,

a graph which is close to the line y = x provides a region of small iterative steps. If the graph
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Figure 1.9: Different types of orbital behaviour for different locations of the graph of f relative to
the fixed point line y = x. Note that in (a), there are three types of orbit for an initial point x0.
There is (i) a fixed point orbit at x0 = x∗, (ii) orbits that have fn(x0) → x∗ as n → ∞, and (iii)
orbits that have fn(x0) → x∗ as n → −∞
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Figure 1.10: A piecewise continuous map f : I→ I defined with intermittency at x = 0.
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is relatively remote from the line y = x, i.e case (c), then large iterative steps occur. Excluding

the extreme case (a), we say that (b) provides output with ‘long memory’ and (c) provides output

with ‘short memory’. To show more precisely how these geometrical cases provide differences in the

binary output, we will consider a case of intermittency at the point x = 0.

Let f : I→ I be defined by

f(x) =

{
x + (1− d)(x

d
)m 0 ≤ x < d

x−d
1−d

d ≤ x < 1.
(1.42)

and the output s : I→ {0, 1} with

s(x) =

{
0 0 ≤ x < d̄,
1 d̄ ≤ x ≤ 1.

Fig. 1.11 has d = 0.4 and m = 2.

Note that it is not necessary to have d̄ = d. We choose m > 1 to ensure an intermittency effect.

We are interested in the lengths of consecutive sequences of ‘0’s in the binary output. If we consider

the simpler piece-wise linear case of g : I→ I with

g(x) =

{ x
d

0 ≤ x < d
x−d
1−d

d ≤ x < 1.

The slope of the first branch of g is 1/d and we can calculate immediately that a “zero” sequence will

be of length k if the initial point x0 lies in the interval [d̄dk, d̄dk−1). Given that the natural invariant

density of the map g is ρ(x) = 1, we have that the probability of a string of consecutive zeroes

of length k, given that x0 is in [0, d̄), is P (k) = d−k and the probability of a string of consecutive

zeroes of at least length k is P≤(k) = d−(k+1). Therefore, the probability of obtaining increasingly

long strings of zeroes decays exponentially in the piece-wise linear case.

1.6.1 Closed form intermittency

We now return to the intermittent case. The simplest map exhibiting intermittency was given as

f : [0, d] → [0, 1] where f(x) = x + (1 − d)(x
d
)m. However, somewhat surprisingly it is much easier

to work with the map

f̂(x) =
x

(1− d̂xm−1)
1

m−1

.

First of all, the map f̂ belongs to the same family as f since an expansion in series gives

f̂(x) = x +
d̂

m− 1
xm + O(xm+1),

and therefore has the same leading degree of intermittency. However, the map f̂ has the striking

property of being algebraically closed under dynamical iteration. It can be shown

f̂k(x) =
x

(1− kd̂xm−1)
1

m−1

,
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for k = 0, 1, 2, . . . . This formula extends sensibly to real values of k given the monotonic nature of

the function.

RemarkForcing the coefficients of xm for f and f̂ to be the same is not the appropriate indentifi-

cation for the two maps as f̂ has infinite asymptotic behaviour when (1 − d̂xm−1) = 0. The best

approximation is obtained by requiring f̂(d) = 1, which implies d̂ = (1− dm−1)/dm−1.

Suppose that we are now interested in the behaviour of escape from the region [0, d̄] by iteration

of the map f̂ . The point x = x(k) which escapes to infinity in exactly k iterations, i.e. d̄ = fk(x(k)),

escapes. Solving for x(k) we have

x(k) =
d̄

(1 + kd̂d̄m−1)
1

m−1

.

As k →∞, we have

x(k) ∼ K(d̂, d̄)k
−1

m−1 .

By solving the above equation for k, we see that the number of iterations k to escape is

k(x) =
1

d̂

(
1

x(m−1)
− 1

d̄(m−1)

)
(1.43)

and so we obtain

k ∼ 1

d̂
x−(m−1).

Strictly, we should take k to obtain the integer solution for the number of iterates to escape since

k ∈ R. If f also has intermittency at x = 1, a similar integer function can be found which gives the

number of consecutive ones for an initial condition x0 > d. These equations are not available for

the simpler functional form f .

1.6.2 Intermittency for non-differentiable maps

It is possible to consider piecewise linear maps which can emulate the intermittency properties of

its smooth counterparts. We use the monotonic decreasing sequence z0 = 1 zi = 0.5i−a, a > 1 and

i ≥ 1 to create the sequence of nodal points {(zi+1, zi)}∞1 ⊆ R×R, see Fig. 1.11. When the points

are consecutively joined, we obtain a graph of a monotonic function p on the interval [0, 0.5] with

values in the range [0, 1].

Essentially, p(zi+1) = zi, i = 0, 1, . . . with linearity between these points. Contrasting with the

continuous case, we have

f(x) = x + axm + . . .

and so

lim
x→0

ln(f ′(x)− 1)

ln(x)
= m− 1. (1.44)
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(zn+1, zn)

(z2, z1)

(z3 z2)

,

,

Figure 1.11: Piecewise linear map segments constructed from a sequence zi with vertex points
(z2, z1), (z3, z2), (z4, z3),. . . (zn+1, zn),. . .

We now consider the corresponding calculation for the map p. We have zi = i−a and so ln zi =

−a ln i. The piecewise linear segment on the interval [zi+1, zi] has the slope

µi =
zi−1 − zi

zi − zi+1

.

Thus the corresponding calculation for f in eqn.(1.41) when applied to p yields

lim
i→∞

ln(µi − 1)

ln(zi)
= lim

i→∞

ln( (i−1)−a−2i−a+(i+1)−a

i−a−(i+1)−a )

ln(zi)

= lim
i→∞

ln( (a+1)
i

)

−a ln i

=
1

a
. (1.45)

Comparing the equations (1.44) and (1.45), we obtain

m =
1 + a

a
. (1.46)

The range m ∈ [3/2, 2] for the smooth case is shown to be of importance in the next section. Note

that it corresponds to the range a ∈ [1, 2] for p by equation (1.46).

Invariant density for the a double intermittency map

Let p be defined as above relative to the sequence of points zL
i = 0.5i−a for the interval [0.5],and

zR
i = 1− 0.5i−b for the interval [0.5, 1], with a, b > 1, see Fig. 1.10.
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Note that the tangency at x=0 gives a `slow' change  in 
the values of the sequence x  .  The binary output,
is given by the rule that if x   > d, then a "1" is produced,  
otherwise,  a "0" is produced.  

0 n

n

DIGITAL OUTPUT

n

0
0

dx0

The map f (x) = x+ax    ,         1    has a tangency with  y=x at 0.
It results in small iterative changes in the values x.    Also, 
the probability of escape to the region x   > d in more than n 
iterations of the map  f  is defined by 

0

INTERMITTENCY EFFECT

Pr (n) ~ n-(2-m)/(m-1)

d

m m  >  
"ZERO" "ONE"

Note the comparatively fast escape for a linear map

Figure 1.12: (a) The digital output from a map. (b) The effect of intermittency on the orbits near
x = 0.

We look for an invariant density for p which is piece-wise constant, and equal to ρL
i on each of

the intervals Li = [zL
i+1, z

L
i ] in [0, 0.5] and equal to ρR

i on each interval Ri = [zR
i , zR

i+1] in [0.5, 1].

In Fig. 1.11, we see that the pre-images of a point in x ∈ Li are in Li+1 and R1. Similarly, the

pre-images of a point x ∈ Ri are in Ri+1 and L1. Note points of Li+1, Ri+1 map exclusively to

Li, Ri respectively. By comparison L1 maps by p to the interval [0.5, 1] = ∪∞i=1Ri, and R1 maps

to the interval [0, 0.5] = ∪∞i=1Li. Let sL
i , sR

i be the slope of the graph of p on the intervals Li, Ri

respectively. Using this information in the Perron-Frobenius theorem, we have

ρL
i =

ρL
i+1

sL
i+1

+
ρR

1

sR
1

; ρR
i =

ρR
i+1

sR
i+1

+
ρL

1

sL
1

, (1.47)

for i = 1, 2, . . . .

We can use these equations to solve for ρL
i and ρR

i , in terms of ρL
1 and ρR

1 . Moreover, the invariant

density property for ρ implies the associated measure

µρ(L1) = µρ(R1),

i.e.

ρL
1 |L1| = ρR

1 |R1|.
Thus the single unknown is reduced to one, say ρL

1 . This of course can be found by using the fact

that the probability density has µρ([0, 1]) = 1, and so

∞∑
i=1

(ρL
i |Li|+ ρR

i |Ri|) = 1.
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1.6.3 Power-law escape

We can calculate the probability of ‘escape’ from an intermittency region. Specifically, we consider

the probability of a sequence of k-consecutive zeroes for the output s of an intermittency map f .

We will consider the map

f(x) =
x

(1− d̂xm−1)
1

m−1

,

for 0 ≤ x ≤ d and will assume a random injection to the region from x > d, [Pomeau & Manneville(1980)].

If the orbit re-enters the interval [0, d] at the point x̄, then that determines the sequence length

l of zeroes,namely, see section 1.6.1

k(x) =
1

d̂

(
1

x(m−1)
− 1

d̄(m−1)

)
. (1.48)

So if P (l) is the probability density for length l zero sequences,

P (l)dl = P (l)
dl

dx
dx,

and then

P̂ (x̄) = P (l(x̄))
dl

dx̄

is the probability density for re-entry at the point x̄.

If we are assuming the re-entry density P̂ (x̄) to be uniform, then

P (l) =

∣∣∣∣
dx̄

dl

∣∣∣∣ =
1

m− 1
l−

m
m−1 ,

a power law decay exponent m/(m− 1).

1.7 Auto-correlation

The average E(G) of the function G(x) with respect to an orbit {xi}∞i=1 is

E(G) = lim
N→∞

1

N

N∑
i=1

G(xi)

= lim
N→∞

1

N

N∑
i=1

∫
G(x)δ(x− xi) dx

=

∫
G(x) lim

N→∞
1

N

N∑
i−1

δ(x− xi) dx

=

∫
G(x)ρ(x)dx. (1.49)
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We have already seen in Fig. 1.4 that the movement between strings of the output values ‘0’ and

‘1’ is rapid in the one and much slower than the second trace. The intermittency in one of the maps

produces increased sojourn times for the two states. The longer sojourn times are said to introduce

memory into the output which is reflected in higher correlation between the output binary sequence

and the same sequence with a time-lag k. The auto-correlation vector of a sequence is the way in

which the memory is measured.

Let st be a scalar time series of the binary values {0, 1} for t = 0, 1, 2, . . . , and suppose the series

is stationary. We define the auto-correlation of time lag k by

γ(k) =
E(XtXt+k)− E(Xt)E(Xt+k)√

(V ar(Xt)V ar(Xt+k)).
(1.50)

Let µ = E(Xt). Note that because the Xt values are binary, E(X2
t ) = E(Xt) = µ and so V ar(Xt) =

E(X2
t )− E(Xt)

2 = µ(1− µ). Therefore, the auto-correlation can be re-written

γ(k) =
E(XtXt+k)− µ2

µ(1− µ)
. (1.51)

Given 0 ≤ XtXt+k ≤ Xt, it follows that γ(k) ≤ 1. Note also that if there were no correlation, i.e.

that the values Xt were independent of each other, then E(XtXt+k) = E(Xt)E(Xt+k) and γ(k) = 0.

Thus, in general, we expect that the correlation coefficient γ(k) decays to zero. Two special types

of decay are

(a) power-law, where γ(k) ∼ ck−β for some constants c and β > 0;

(b) exponential decay, where γ(k) ∼ cα−k, for some constants c and α > 0.

Let us consider the correlation behaviour of the Bernoulli, or doubling, map D. The probability

of the four transitions in one iteration

0 → 0, 0 → 1, 1 → 0, 1 → 1

by the map D are each 0.25. Thus E(XtXt+1) = 0.25(0 · 0 + 0 · 1 + 1 · 0 + 1 · 1) = 0.25.

You can show similarly that more generally E(XtXt+k) = 0.25 for all k > 0. The uniform

probability density in the interval I for the doubling map D gives E(X) = 0.5. The time series Xt is

binary and so X2
t = Xt, which implies E(X2) = E(X). It follows that Var(X) = E(X2)−E(X)2 =

E(X)− E(X)2 = 0.5− 0.52 = 0.25. Therefore

γ(k) =

{
1 for k = 0
(0.25− 0.52)/0.25 = 0 for k > 0.

(1.52)

1.7.1 Autocorrelation for intermittency maps

If we consider the piecewise linear maps constructed from two sequences zi = i−α1 at x = 0 and

wi = 1− i−α2 at x = 1, α1, α2 > 1, then the two intermittencies compete and it can be proven that

γ(k) ∼ Kk−c, (1.53)
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where

c = Min{α1, α2} − 1, (1.54)

K constant, [Barenco et al, 2004]. Thus the correlation for the composite map is determined by the

heaviest tail in the correlation decay arising from the two competing intermittencies.

A similar result is also available for the differentiable case [Mondragon]. In this case, the map is

f(x) =

{
x + (1− d)

(
x
d

)m1 0 ≤ x < d

1− (
1−x
1−d

)m2 d ≤ x < 1.
(1.55)

with the extra condition that whenever f iterates across the line x = d, the formula is replaced by

a random uniform injection.

Allowing for change from the piecewise linear to the differentiable case, we have essentially the

same result on the auto-correlation

γ(k) ∼ K ′k−c, (1.56)

where

c = (2−m)/(m− 1), (1.57)

m = Max{m1,m2}, K ′ constant. It can be checked that the continuous-discrete transition mi =

(1 + αi)/αi (cf. eqn 1.46) converts the exponent c in eqn 1.57 to the exponent for the discrete

version in eqn 1.54, after noting Max(m) corresponds to Min(αi).
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