Temporal disorder

Chaotic diffusion in randomly perturbed dynamical systems

or: A simple answer to a simple question

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Statistical Mechanics Study Group at QMUL London, 19 May 2011

Outline

Motivation:

random walk, deterministic diffusion and fractal diffusion coefficients

Deterministic diffusion and random perturbations: four different types of perturbations; computer simulations in comparison to simple analytical approximations

Theoretical details:

derivation and discussion of the approximate formulas

Spatial disorder

Temporal disorder

Summary

The drunken sailor at a lamppost

random walk in one dimension (K. Pearson, 1905):

• steps of length *s* with probability $p(\pm s) = 1/2$ to the left/right

• single steps *uncorrelated*: Markov process

define diffusion coefficient as

$$D:=\lim_{n\to\infty}\frac{1}{2n}<(x_n-x_0)^2>_{\varrho}$$

with discrete time step $n \in \mathbb{N}$ and average over the initial density $< \ldots >_{\varrho} := \int dx \ \varrho(x) \ldots$ of positions $x = x_0, \ x \in \mathbb{R}$

• for sailor: $D = s^2/2$

Spatial disorder

Temporal disorder

Summary

A deterministic random walk

study diffusion on the basis of dynamical systems theory

piecewise linear deterministic map

$$M_{a}(x) = \begin{cases} ax, 0 < x \le \frac{1}{2} \\ ax + 1 - a, \frac{1}{2} < x \le 1 \end{cases}$$
ifted onto the real line by
$$M_{a}(x + 1) = M_{a}(x) + 1$$
with control parameter $a \ge 2$
equation of motion:
$$x_{n+1} = M_{a}(x_{n})$$
Lyapunov exponent $\lambda = \ln a > 0$:
map is chaotic

Grossmann/Geisel/Kapral (1982)

____/

Introduction Spatial disorder Temporal disorder Summ cool cool

D(a) exists and is a fractal function of the control parameter

- exact results (R.K., Dorfman, 1995; Groeneveld, R.K., 2002)
- proof: *D*(*a*) is Lipschitz continuous up to quadratic logarithmic corrections (Keller, Howard, R.K., 2008)
- cp. random walk with exact results (R.K., Dorfman, 1997)

Spatial disorder

Temporal disorder

Summary 00

Deterministic diffusion and random perturbations

What happens to D(a) by imposing **random perturbations** onto the map? Four basic types:

$$M_a(\mathbf{x}) = (\mathbf{a} + \Delta \mathbf{a}(i, n)) \mathbf{x} + \Delta \mathbf{b}(i, n)$$

with random shifts or random slopes in discrete space $i \in \mathbb{Z}$ or discrete time $n \in \mathbb{N}$

(1) $\Delta b(i)$: quenched shifts (2) $\Delta a(i)$: quenched slopes (3) $\Delta a(n)$: noisy slopes (4) $\Delta b(n)$: noisy shifts

Spatial disorder

Temporal disorder

Summary 00

Quenched slopes: 'theory'

apply formula to **deterministic diffusion with quenched slopes**:

rewrite $d = < 1/\Gamma >_{\Gamma}^{-1} s^2 = < 1/d(s,\Gamma) >_{\Gamma}^{-1}$ with $d(s,\Gamma) = \Gamma s^2$

but for the map $M_a(x)$ we have $d(s, \Gamma) = d(s, \Gamma(s))$

approximation: identify $d(s, \Gamma(s))$ with $D(a + \Delta a)$, where $D(\cdot)$ is the unperturbed deterministic diffusion coefficient D(a) with random variable Δa sampled from pdf $\chi_{da}(\Delta a)$ at perturbation strength $da \ge 0$, $-da \le \Delta a \le da$

$$\Rightarrow D_{\rm app}(a, da) = \left[\int_{-da}^{da} d(\Delta a) \, \frac{\chi_{da}(\Delta a)}{D(a + \Delta a)} \right]^{-1}$$

Spatial disorder

Temporal disorder

Summary

Quenched slopes: simulations $D_{da}(a)$

$\Delta a(i)$ uniformly distributed on [-da, da]:

oscillatory structure persists under small perturbations

• dynamical phase transition for small parameters

Introduction Spatial disorder Temporal disorder Summ. COCO CONCERNING CONCERNING $D_a(da)$

- excellent match theory and simulations for small da
- multiple suppression and enhancement with da

Chaotic diffusion and random perturbations

Spatial disorder

Temporal disorder

Summary

Deterministic diffusion and noise

approximate the diffusion coefficient by the unperturbed D(a) (cp. to Geisel et al. (1982), Reimann (1994ff)): **basic idea** for slopes with iid dichotomous noise $\pm da$:

Spatial disorder

Temporal disorder

Summary

Noisy slopes: simulations $D_{da}(a)$

$\Delta a(n) \delta$ -distributed with $\pm da$:

shift of fractal structure under perturbations

Noisy slopes: simulations $D_a(da)$

Spatial disorder

Temporal disorder

• transitions from deterministic to stochastic diffusion by suppression and enhancement

Chaotic diffusion and random perturbations

Introduction Spatial disorder Temporal disorder Summary

Theoretical aspects: precise definition of D(a,da)

Let Δ_n be iid random variables with pdf $\chi_d(\Delta_n)$ of perturbation strength $d \ge 0$. Let $\varrho(x)$ be the initial pdf of points x. Then

$$D(a,d) = \lim_{n \to \infty} \frac{1}{2n} \left(\langle x_n^2 \rangle_{\varrho,\chi_d} - \langle x_n \rangle_{\varrho,\chi_d}^2 \right)$$

with

$$< \mathbf{x}_{n}^{k} >_{\varrho,\chi_{d}} = \int d\mathbf{x} \int d(\Delta_{0}) d(\Delta_{1}) \dots d(\Delta_{n-1})$$
$$\varrho(\mathbf{x}) \chi_{d}(\Delta_{0}) \chi_{d}(\Delta_{1}) \dots \chi_{d}(\Delta_{n-1}) \mathbf{x}_{n}^{k}$$

special case: noisy slopes as an example (wlog),

$$d = da, \ \Delta_n = \Delta a_n \Rightarrow < \mathbf{x}_n >_{\varrho, \chi_d} = 0$$

IntroductionSpatial disorder
occoTemporal disorder
cocoSummary
coDeriving approximations in terms of the exact D(a)Let Δa_n be uniformly distributed in [-da, da] and $\Delta a = \Delta a_0$.

Let Δa_n be uniformly distributed in [-da, da] and $\Delta a = \Delta a_0$. It holds: $\Delta a_{n-1} = \Delta a + \epsilon, -2da \le \epsilon \le 2da$ notation: $x_{n,a+\Delta a_{n-1}} = M_{a+\Delta a_{n-1}}(x_{n-1})$ step 1: $da \ll 1 \Rightarrow \epsilon \ll 1 \Rightarrow \Delta a_{n-1} \simeq \Delta a$ $\langle x_n^2 \rangle_{\varrho,\chi_{da}} = \int dx \int d(\Delta a) d(\Delta a_1) \dots d(\Delta a_{n-1})$ $\rho_0(x)\chi_{da}(\Delta a)\chi_{da}(\Delta a_1) \dots \chi_{da}(\Delta a_{n-1})x_{n,a+\Delta a_{n-1}}^2$ $= \int dx \int d(\Delta a)\varrho(x)\chi_{da}(\Delta a)x_{n,a+\Delta a}^2$

step 2: exchange time limit with integration $D_{app}(a, da) = \lim_{n \to \infty} \langle x_n^2 \rangle_{\varrho, \chi_{da}} / (2n)$ $= \int d(\Delta a) \chi_{da}(\Delta a) \lim_{n \to \infty} \int dx \varrho(x) x_{n, a + \Delta a}^2 / (2n)$ $= \int d(\Delta a) \chi_{da}(\Delta a) D(a + \Delta a, 0)$

Spatial disorder

Temporal disorder

Summary

Validity of this approximation

note:

This approximation needs to be handled with much care!

- does not work for quenched shifts
- works for **noisy shifts**, but *only* in the limit of *very small* perturbations, because ∃ current; cp. to numerical results
- works well for noisy slopes in the limit of small perturbations

Spatial disorder

Temporal disorder

Summary

Random walk approximation

unperturbed diffusion coefficient

$$D(a) = \lim_{n \to \infty} \frac{1}{2n} \int_0^1 dx \varrho_a^*(x) (x_n - x)^2$$

with invariant density $\varrho_a^*(x)$ of map $M_a(x) \mod 1$

random walk approximation:

1. no memory in jumps: replace $\Delta x_n = x_n - x$ by single jump at time n = 1 over distance $\Delta x = \Delta x_1$

2. no memory in invariant density: assume $\rho_a^*(\mathbf{x}) \simeq 1$

$$\Rightarrow D_{rw}(a) = \frac{1}{2} \int_0^1 dx \Delta x^2$$

Spatial disorder

Temporal disorder

Summary

Deriving random walk approximations

$$D_{rw}(a) = rac{1}{2}\int_0^1 dx \Delta x^2$$

consider two limiting cases of jumps:

- random walk I: $a \ll 3$; set $\Delta x = 0$ if $0 \le M_a(x) \le 1$ and $|\Delta x| = 1$ otherwise, $D_{rwl}(a) = 1/2 \int_{0,\forall \Delta x=1}^{1} dx = (a-2)/(2a) \simeq (a-2)/4 \ (a \rightarrow 2)$
- random walk II: $a \gg 3$; set $\Delta x = M_a(x) x$ exactly, $D_{rwll}(a) = 1/2 \int_0^1 dx (M_a(x) - x)^2 = (a - 1)^2/24$

feed back results into **perturbed random walk** approximation $D_{app}(a, da) = \int d(\Delta a)\chi_{da}(\Delta a)D(a + \Delta a)$ by replacing $D(a + \Delta a) \rightarrow D_{rw}(a + \Delta a)$

example: Let random slopes Δa be δ -distributed,

- for $2 \ll a \le 3$ random walk I yields suppression of diffusion due to concavity (Reimann, 1994ff)
- for $a \rightarrow 2$ random walk I yields no change at all in the diffusion coefficient due to linearity
- for 3 ≪ a random walk II yields enhancement of diffusion due to convexity, D_{rwll}(a, da) = D_{rwll}(a) + Δa²/24

 in simulations random walk II well seen but not I

Summary

simple model with diffusion due to deterministic chaos under random perturbations:

1. in three of four cases of random perturbations the **diffusion coefficient exists**

2. the unperturbed fractal diffusion coefficient is quite stable against perturbations

3. ∃ simple **approximations for the perturbed diffusion coefficient** in terms of the unperturbed diffusion coefficient

4. multiple (irregular) suppression and enhancement of deterministic diffusion by stochastic perturbations

5. transitions from deterministic to stochastic diffusion via suppresion and enhancement

Introduction	Spatial disorder	Temporal disorder	Summary ⊙●
Literature			

- spatial disorder: R.K., PRE 65, 055203(R) (2002)
- noise: R.K., EPL 57, 796 (2002)
- all together:

see Part 1; file of this talk, details and taster sections on www.maths.qmul.ac.uk/~klages