> A simple non-chaotic map generating subdiffusive, diffusive and superdiffusive dynamics

L. Salari¹ L. Rondoni^{1,2} C. Giberti³ R. Klages^{4,5}

¹Dipartimento di Scienze Matematiche, Politecnico di Torino ²GraphenePoliTO Lab, Politecnico di Torino and INFN Sezione di Torino ³Dipt. di Scienze e Metodi dell Ingegneria, Universita di Modena e Reggio E. ⁴Max Planck Institute for the Physics of Complex Systems, Dresden ⁵Queen Mary University of London, School of Mathematical Sciences

University of Warwick, 17 Nov. 2015

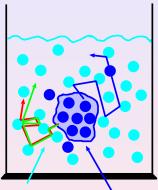
Outline •	Motivation	Model ୦୦୦	Slicer diffusion	Results 0000	Summary 00000
Outline					

- Motivation: chaos, diffusion and polygonal billiards
- Model: a simple non-chaotic map with non-trivial diffusive properties
- Summary: match results from the deterministic model to stochastic theory

 Outline
 Motivation
 Model
 Slicer diffusion
 Results
 Summary

 0
 00000
 000
 000
 0000
 0000

Microscopic chaos in a glass of water?



water molecules droplet of ink

• dispersion of a droplet of ink by diffusion

- chaotic collisions between billiard balls
- chaotic hypothesis:

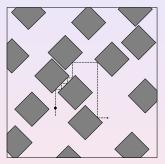
microscopic chaos ↓ macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle in water; diffusion due to microscopic chaos based on positive pattern entropy per unit time $h(\epsilon, \tau) \leq h_{KS} = \sum_{\lambda_i > 0} \lambda_i$

Outline	Motivation	Model	Slicer diffusion	Results	Summary		
o	○●○○○○	ooo		0000	00000		
The random wind tree model							

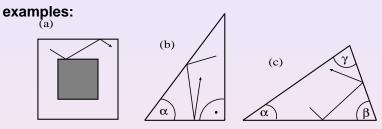
counterexample:



Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and $h(\epsilon, \tau)$ indistinguishable from the colloidal particle

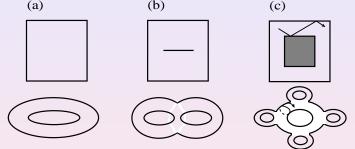


Artuso et al. (1997,2000); Casati et al. (1999)

rational billiards: all angles are rational multiples of π irrational billiards: otherwise

non-trivial ergodic properties: rational billiards are not ergodic; phase space splits into invariant manifolds wrt initial angle of trajectory (e.g., Gutkin, 1996)

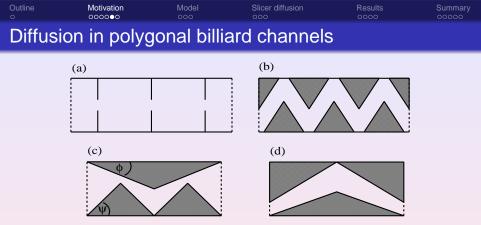
joining all identical edges yields compact invariant surfaces:



genus g = 1: billiard is integrable

g > 1: pseudointegrable (Richens, Berry, 1981); \exists isolated saddles resembling hyperbolic fixed points imposing a 'chaotic character' onto the flow

asymptotic growth of displacement of two trajectories $\Delta(t) \sim t$



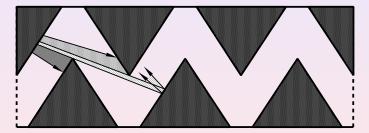
Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

mean square displacement $\langle x^2 \rangle := \int dx \ x^2 \rho(x, t) \sim t^{\gamma}$ from simulations: sub- ($\gamma < 1$), super- ($\gamma > 1$) or normal ($\gamma = 1$) diffusion depending on parameters; partially conflicting results Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)

Outline	Motivation	Model	Slicer diffusion	Results	Summary		
o	○○○○○●	୦୦୦		0000	00000		
Particle dispersion in polygonal billiards							

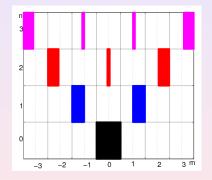
simple picture:

mechanism generating diffusion in these channels may be crucially determined by how scatterers slice a beam



this may in turn be captured by interval exchange transformations (Hannay, McCraw, 1990)

a simple one-dimensional *spatially dependent* interval exchange transformation:



zero Lyaponuv exponent: different points neither converge nor diverge from each other in time; slicer points are of Lebesgue measure zero; hence non-chaotic dynamics

Outline Model Slicer diffusion Results Summary 0 0 0 0 0 0 The slicer map II: definition of slicers

consider a chain of intervals $\widehat{M} := M \times \mathbb{Z}$, M := [0, 1]product measure $\widehat{\mu} := \lambda \times \delta_{\mathbb{Z}}$ on \widehat{M} with Lebesgue measure λ on M and Dirac measure $\delta_{\mathbb{Z}}$ on integers $\widehat{X} = (x, m)$ is a point in \widehat{M} and $\widehat{M}_m := M \times \{m\}$ the *m*-th cell of \widehat{M}

subdivide each \widehat{M}_m in 4 subintervals, separated by 3 points called slicers: $\{1/2\} \times \{m\}$, $\{\ell_m\} \times \{m\}$, $\{1 - \ell_m\} \times \{m\}$, where $0 < \ell_m < 1/2$ for every $m \in \mathbb{Z}$

slicer model:

the dynamical system $(\widehat{M}, \widehat{\mu}, S)$ which, at each time step $n \in \mathbb{N}$, moves all subintervals from their cells to neighbouring cells by the rule $S : \widehat{M} \to \widehat{M}$,

$$S(x,m) = \begin{cases} (x,m-1) & \text{if } 0 \le x < \ell_m \text{ or } \frac{1}{2} < x \le 1 - \ell_m, \\ (x,m+1) & \text{if } \ell_m \le x \le \frac{1}{2} \text{ or } 1 - \ell_m < x \le 1. \end{cases}$$

family of slicers:

$$L_{lpha} = \left\{ \left(\ell_j(lpha), 1 - \ell_j(lpha)
ight) : \ell_j(lpha) = rac{1}{\left(|j| + 2^{1/lpha}
ight)^{lpha}}, j \in \mathbb{Z}
ight\} \ , \ lpha > 0$$

slicer map S_{α} : all slicers belong to L_{α} , $\ell_m = \ell_m(\alpha)$

 Outline
 Motivation
 Model
 Slicer diffusion
 Results
 Summary

 Observation
 000
 000
 000
 000
 0000

 Spreading of points in the slicer model

take an ensemble of points \widehat{E}_0 in the central cell $\widehat{M}_0 = M \times \{0\}$ and study how S_α spreads them in \widehat{M} at time *n* they reach \widehat{M}_n and \widehat{M}_{-n} ; cells occupied at time *n* are odd/even if *n* odd/even

with

 $P_n = \{j \in \mathbb{Z} : j \text{ is even and } |j| \le n\}$ $D_n = \{j \in \mathbb{Z} : j \text{ is odd and } |j| \le n\}$

we have

$$S_{\alpha}^{n} \widehat{M}_{0} = \bigcup_{j \in P_{n}} (R_{j} \times \{j\}) \text{ if } n \text{ is even}$$
$$S_{\alpha}^{n} \widehat{M}_{0} = \bigcup_{j \in D_{n}} (R_{j} \times \{j\}) \text{ if } n \text{ is odd}$$

with union of intervals $R_j \times \{j\} \subset \widehat{M}_j$; $R_j \subset M$, $R_i \cap R_j = \emptyset$ if $i \neq j$

 Outline
 Motivation
 Model
 Slicer diffusion
 Results
 Summary

 o
 ooo
 ooo
 ooo
 ooo
 ooo
 ooo

Measure and density under slicer action

consider probability measure $d\nu_0 := \hat{\rho}_0(\hat{X}) d\hat{\mu}$ on \hat{M} with density

 $\hat{\rho}_0\left(\widehat{X}\right) = \begin{cases} 1, & \text{if } \widehat{X} \in \widehat{M}_0\\ 0, & \text{otherwise} \end{cases}$

which evolves under the action of S_{α} as

$$\widehat{
ho}_n(\widehat{X}) = \left\{ egin{array}{cc} 1 & ext{ if } \widehat{X} \in S^n_lpha \widehat{M}_0 \ 0 & ext{ otherwise} \end{array}
ight.$$

the sets $\widehat{R}_j := S_{\alpha}^n \widehat{M_0} \cap \widehat{M}_j$, $j = -n, \dots, n$, constitute the total phase space volume occupied at time *n* in cell \widehat{M}_j

the measure of \widehat{R}_j equals the probability of cell *j* at time *n*, $A_j := \widehat{\mu}(\widehat{R}_j) = \nu_n(\widehat{M}_j)$, yielding the coarse grained distribution

$$\rho_n^{\mathsf{G}}(j) = \begin{cases} \mathsf{A}_j & \text{if } j \in \{-n, \dots, n\}, \\ 0 & \text{otherwise} \end{cases}$$

Outline Motivation Model Slicer diffusion Results Summary Object Oot Oot Oot Oot Oot Oot

define the mean square displacement based on ρ_n^G :

$$\langle \Delta \hat{X}_n^2 \rangle := \sum_{j=-n}^n A_j j^2 ,$$

where *j* is the distance travelled by a point in \widehat{M}_j at time *n* for $\gamma \in [0, 2]$ define

$$\mathcal{T}_{lpha}(\gamma):=\lim_{n
ightarrow\infty}rac{\langle\Delta X_n^2
angle}{n^{\gamma}}$$

if $T_{\alpha}(\gamma^t) \in (0, \infty)$ for $\gamma^t \in [0, 2]$, γ^t is called the transport exponent of the slicer dynamics with generalized diffusion coefficient $T_{\alpha}(\gamma^t)$

 Outline
 Motivation
 Model
 Slicer diffusion
 Results
 Summary

 One
 One
 One
 One
 One
 One

For even n > 2 we get

$$\rho_n^G(j) = \begin{cases} 2(\ell_0 - \ell_1), & j = 0\\ \ell_{|2k-1|} - \ell_{|2k+1|}, & |j| = 2k, \ k = 1, \dots, \frac{n-2}{2}\\ \ell_{|n-1|}, & |j| = n\\ 0, & \text{elsewhere} \end{cases}$$

and for odd n > 3

$$\rho_n^{\mathsf{G}}(j) = \begin{cases} \ell_{|2k|} - \ell_{|2k+2|}, & |j| = 2k+1, \ k = 0, \dots, \frac{n-3}{2} \\ \ell_{|n-1|}, & |j| = n \\ 0, & \text{elsewhere} \end{cases}$$

put in definition of slicer: for $\alpha \in [0, 2)$ and large n, j the tails correspond to Lévy stable distributions,

$$\rho_n^{\mathsf{G}}(j) \sim 2\alpha/|j|^{\alpha+1} \mathbb{I}_{\{|j| < n\}},$$

except in the traveling regions $j = \pm n$

Outline o	Motivation	Model ooo	Slicer diffusion	Results o●oo	Summary 00000

Anomalous diffusion in the slicer

Proposition

Given $\alpha \in [0, 2)$ and a uniform initial distribution in \widehat{M}_0 , we have $T_{\alpha}(\gamma) = \begin{cases} +\infty & \text{if } 0 \leq \gamma < 2 - \alpha \\ \frac{4}{2-\alpha} & \text{if } \gamma = 2 - \alpha \\ 0 & \text{if } 2 - \alpha < \gamma \leq 2 \end{cases},$ hence the transport exponent γ^t takes the value $2 - \alpha$ with $\langle \Delta \hat{X}^2 \rangle \sim n^{2-\alpha}$. For $\alpha = 2$ the transport regime is logarithmically.

 $\langle \Delta \hat{X}_n^2 \rangle \sim n^{2-\alpha}$. For $\alpha = 2$ the transport regime is logarithmically diffusive, *i.e.* $\langle \Delta \hat{X}_n^2 \rangle \sim \log n$ asymptotically in *n*.

for $\alpha > 2$ it is $\langle \Delta \hat{X}_n^2 \rangle \rightarrow const. \ (n \rightarrow \infty)$, i.e., localisation sets in

Outline o	Motivation	Model ooo	Slicer diffusion	Results oo●o	Summary 00000

The higher order moments in the slicer

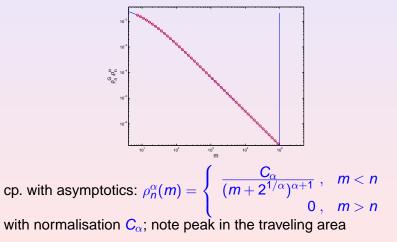
Theorem

For $\alpha \in (0, 2]$ the moments $\langle \Delta \hat{X}_n^p \rangle = \sum_{j=-n}^n A_j j^p$ with p > 2 even and initial condition uniform in \widehat{M}_0 have the asymptotic behavior

 $\langle \Delta \hat{X}^{p}_{n}
angle \sim n^{p-lpha}$

while the odd moments (p = 1, 3, ...) vanish.

we have $\langle \Delta \hat{X}_n^p \rangle \sim n^{p-1/3}$ and especially $\langle \Delta \hat{X}_n^2 \rangle \sim n^{5/3}$: superdiffusion; plot of analytic $\rho_n^G(m)$ (continuous line):



Outline o	Motivation	Model	Slicer diffusion	Results	Summary ●oooo
Summa	ary				

slicer map generates subdiffusive, diffusive and superdiffusive dynamics:

- (1) $\alpha = 0$: ballistic motion with $\langle x_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$
- 3 $\alpha = 1$: normal diffusion with linear MSD $\langle x_n^2 \rangle \sim n$ **note:** non-chaotic normal diffusion with non-Gaussian density
- **1** < α < 2: subdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$ **note:** subdiffusion with ballistic peaks
- **(**) $\alpha = 2$: logarithmic subdiffusion with MSD $\langle x_n^2 \rangle \sim \log n$
- **(**) $\alpha > 2$: localisation in the MSD with $\langle x_n^2 \rangle \sim const.$

Outline Motivation Model Slicer diffusion Results Summary 0 000000 000 00000 00000 00000

Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers on a line from which it is transmitted / reflected with probability 1/2

distance *r* between two scatterers is a random variable iid from Lévy distribution, $\lambda(r) \equiv \beta r_0^{\beta} \frac{1}{r^{\beta+1}}$, $r \in [r_0, +\infty) \beta > 0$ and cutoff r_0

 \rightarrow model exhibits only superdiffusion

 \rightarrow all moments scale with the slicer moments for $\alpha \in (0, 1]$ (piecewise linearly depending on parameters)

Outline Motivation Model Slicer diffusion Results Summary 0 000 000 000 000 000 000

Matching to stochastic dynamics?

Lévy walk modeled by CTRW theory:

moments calculated to $\sim t^{p+1-\beta}$ for $p > \beta$, $1 < \beta < 2$ matches to slicer superdiffusion with $\beta = 1 + \alpha$ but conceptually a totally different process

• correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law memory kernel formal analogy in the subdiffusive regime but Gaussian distribution and a conceptual mismatch

Outline o	Motivation	Model ooo	Slicer diffusion	Results 0000	Summary ooo●o
Summa	ary				

• central theme:

diffusion generated by non-chaotic dynamics

• main result:

slicer model generates 6 different types of diffusive dynamics under parameter variation covering the whole spectrum of diffusion

 this result might help to explain a controversy about different stochastic models for diffusion in polygonal billiards: sensitive dependence of diffusion on parameters matching to different stochastic processes

Outline o	Motivation	Model ০০০	Slicer diffusion	Results 0000	Summary oooo●
Refere	nces				

- slicer:
- L.Salari, L.Rondoni, C.Giberti, RK, Chaos 25, 073113 (2015)
- review about polygonal billiards: Section 17.4 in R.Klages, *Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics* (World Scientific, 2007)

