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Outline

1 Motivation: chaos, diffusion and polygonal billiards

2 Model: a simple non-chaotic map with non-trivial diffusive
properties

3 Summary: match results from the deterministic model to
stochastic theory
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Microscopic chaos in a glass of water?

water molecules
droplet of ink

• dispersion of a droplet of ink
by diffusion

• chaotic collisions between
billiard balls

• chaotic hypothesis:

microscopic chaos
⇓

macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle
in water; diffusion due to microscopic chaos based on positive
pattern entropy per unit time h(ǫ, τ) ≤ hKS =

∑
λi>0 λi
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The random wind tree model

counterexample:

Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and h(ǫ, τ)
indistinguishable from the colloidal particle
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Polygonal billiards

examples:

γ

βα

(a)

α

(b)

(c)

Artuso et al. (1997,2000); Casati et al. (1999)

rational billiards: all angles are rational multiples of π
irrational billiards: otherwise

non-trivial ergodic properties: rational billiards are not ergodic;
phase space splits into invariant manifolds wrt initial angle of
trajectory (e.g., Gutkin, 1996)
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Pseudointegrability

joining all identical edges yields compact invariant surfaces:
(a) (b) (c)

genus g = 1: billiard is integrable
g > 1: pseudointegrable (Richens, Berry, 1981); ∃ isolated
saddles resembling hyperbolic fixed points imposing a ‘chaotic
character’ onto the flow

asymptotic growth of displacement of two trajectories ∆(t) ∼ t
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Diffusion in polygonal billiard channels

(a) (b)

(c) (d)

ψ

φ

Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

mean square displacement < x2 >:=
∫

dx x2ρ(x , t) ∼ tγ

from simulations: sub- (γ < 1), super- (γ > 1) or normal (γ = 1)
diffusion depending on parameters; partially conflicting results

Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)
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Particle dispersion in polygonal billiards

simple picture:
mechanism generating diffusion in these channels may be
crucially determined by how scatterers slice a beam

this may in turn be captured by interval exchange
transformations (Hannay, McCraw, 1990)
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The slicer map I: basic idea

a simple one-dimensional spatially dependent interval
exchange transformation:

zero Lyaponuv exponent: different points neither converge nor
diverge from each other in time; slicer points are of Lebesgue
measure zero; hence non-chaotic dynamics
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The slicer map II: definition of slicers

consider a chain of intervals M̂ := M × Z, M := [0, 1]

product measure µ̂ := λ × δZ on M̂ with Lebesgue measure λ
on M and Dirac measure δZ on integers

X̂ = (x , m) is a point in M̂ and M̂m := M × {m} the m-th cell of
M̂

subdivide each M̂m in 4 subintervals, separated by 3 points
called slicers : {1/2} × {m} , {ℓm} × {m} , {1 − ℓm} × {m},
where 0 < ℓm < 1/2 for every m ∈ Z
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The slicer map III: definition of model

slicer model:
the dynamical system (M̂, µ̂, S) which, at each time step n ∈ N,
moves all subintervals from their cells to neighbouring cells by
the rule S : M̂ → M̂,

S(x , m) =

{
(x , m − 1) if 0 ≤ x < ℓm or 1

2 < x ≤ 1 − ℓm,

(x , m + 1) if ℓm ≤ x ≤ 1
2 or 1 − ℓm < x ≤ 1.

family of slicers :

Lα =

{(
ℓj(α), 1 − ℓj(α)

)
: ℓj(α) = 1

(|j|+21/α)
α , j ∈ Z

}
, α > 0

slicer map Sα: all slicers belong to Lα, ℓm = ℓm(α)
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Spreading of points in the slicer model

take an ensemble of points Ê0 in the central cell M̂0 = M × {0}
and study how Sα spreads them in M̂

at time n they reach M̂n and M̂−n; cells occupied at time n are
odd/even if n odd/even

with Pn = {j ∈ Z : j is even and |j | ≤ n}

Dn = {j ∈ Z : j is odd and |j | ≤ n}

we have
Sn

α M̂0 =
⋃

j∈Pn

(
Rj × {j}

)
if n is even

Sn
α M̂0 =

⋃

j∈Dn

(
Rj × {j}

)
if n is odd

with union of intervals Rj × {j} ⊂ M̂j ; Rj ⊂ M, Ri ∩ Rj = ∅ if i 6= j
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Measure and density under slicer action

consider probability measure dν0 := ρ̂0(X̂ )d µ̂ on M̂
with density

ρ̂0

(
X̂

)
=

{
1, if X̂ ∈ M̂0

0, otherwise

which evolves under the action of Sα as

ρ̂n(X̂ ) =

{
1 if X̂ ∈ Sn

αM̂0

0 otherwise

the sets R̂j := Sn
αM̂0 ∩ M̂j , j = −n, . . . , n, constitute the total

phase space volume occupied at time n in cell M̂j

the measure of R̂j equals the probability of cell j at time n,
Aj := µ̂(R̂j) = νn(M̂j), yielding the coarse grained distribution

ρG
n (j) =

{
Aj if j ∈ {−n, . . . , n},
0 otherwise
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Diffusion in the slicer map

define the mean square displacement based on ρG
n :

〈∆X̂ 2
n 〉 :=

n∑

j=−n

Aj j
2 ,

where j is the distance travelled by a point in M̂j at time n

for γ ∈ [0, 2] define

Tα(γ) := lim
n→∞

〈∆X̂ 2
n 〉

nγ

if Tα(γt) ∈ (0,∞) for γt ∈ [0, 2], γt is called the transport
exponent of the slicer dynamics with generalized diffusion
coefficient Tα(γt)
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The diffusing slicer density

For even n > 2 we get

ρG
n (j) =






2(ℓ0 − ℓ1) , j = 0
ℓ|2k−1| − ℓ|2k+1| , |j | = 2k , k = 1, . . . , n−2

2
ℓ|n−1| , |j | = n

0 , elsewhere

and for odd n > 3

ρG
n (j) =






ℓ|2k | − ℓ|2k+2| , |j | = 2k + 1, k = 0, . . . , n−3
2

ℓ|n−1| , |j | = n
0 , elsewhere

put in definition of slicer: for α ∈ [0, 2) and large n, j the tails
correspond to Lévy stable distributions ,

ρG
n (j) ∼ 2α/|j |α+1

I{|j|<n} ,

except in the traveling regions j = ±n
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Anomalous diffusion in the slicer

Proposition

Given α ∈ [0, 2) and a uniform initial distribution in M̂0, we have

Tα(γ) =






+∞ if 0 ≤ γ < 2 − α
4

2−α if γ = 2 − α

0 if 2 − α < γ ≤ 2 ,

hence the transport exponent γt takes the value 2 − α with
〈∆X̂ 2

n 〉 ∼ n2−α. For α = 2 the transport regime is logarithmically
diffusive, i.e. 〈∆X̂ 2

n 〉 ∼ log n asymptotically in n.

for α > 2 it is 〈∆X̂ 2
n 〉 → const . (n → ∞), i.e., localisation sets in
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The higher order moments in the slicer

Theorem

For α ∈ (0, 2] the moments 〈∆X̂ p
n 〉 =

∑n
j=−n Aj jp with p > 2

even and initial condition uniform in M̂0 have the asymptotic
behavior

〈∆X̂ p
n 〉 ∼ np−α

while the odd moments (p = 1, 3, ...) vanish.
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Example: α = 1/3

we have 〈∆X̂ p
n 〉 ∼ np−1/3 and especially 〈∆X̂ 2

n 〉 ∼ n5/3:
superdiffusion; plot of analytic ρG

n (m) (continuous line):

10
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10
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10
−2

m

ρG n
,ρ

α n

cp. with asymptotics: ρα
n (m) =






Cα

(m + 21/α)α+1 , m < n

0 , m > n
with normalisation Cα; note peak in the traveling area
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Summary

slicer map generates subdiffusive, diffusive and superdiffusive
dynamics:

1 α = 0: ballistic motion with 〈x2
n 〉 ∼ n2

2 0 < α < 1: superdiffusion with MSD 〈x2
n 〉 ∼ n2−α

3 α = 1: normal diffusion with linear MSD 〈x2
n 〉 ∼ n

note: non-chaotic normal diffusion with non-Gaussian density

4 1 < α < 2: subdiffusion with MSD 〈x2
n 〉 ∼ n2−α

note: subdiffusion with ballistic peaks

5 α = 2: logarithmic subdiffusion with MSD 〈x2
n 〉 ∼ log n

6 α > 2: localisation in the MSD with 〈x2
n 〉 ∼ const .
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Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers
on a line from which it is transmitted / reflected with probability
1/2
distance r between two scatterers is a random variable iid from
Lévy distribution, λ(r) ≡ βrβ

0
1

rβ+1 , r ∈ [r0, +∞) β > 0 and cutoff
r0

→ model exhibits only superdiffusion

→ all moments scale with the slicer moments for α ∈ (0, 1]
(piecewise linearly depending on parameters)
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Matching to stochastic dynamics?

• Lévy walk modeled by CTRW theory:

moments calculated to ∼ tp+1−β for p > β , 1 < β < 2
matches to slicer superdiffusion with β = 1 + α
but conceptually a totally different process

• correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law
memory kernel
formal analogy in the subdiffusive regime
but Gaussian distribution and a conceptual mismatch
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Summary

central theme:
diffusion generated by non-chaotic dynamics

main result:
slicer model generates 6 different types of diffusive
dynamics under parameter variation covering the whole
spectrum of diffusion

this result might help to explain a controversy about
different stochastic models for diffusion in polygonal
billiards : sensitive dependence of diffusion on parameters
matching to different stochastic processes
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