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Outline

1 escape of particles in billiards and maps : from
experiment to theory

2 hole dependence of diffusion in a simple chaotic map

3 parameter dependence of diffusion : from maps to
billiards
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Motivation: Experiments on atom-optics billiards

ultracold atoms confined by a rapidly scanning laser beam
generating billiard-shaped potentials

measure the decay of the number of atoms through a hole:

Friedmann et al., PRL (2001); see also Milner et al., PRL (2001)

⇒ decay depends on the position of the hole
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Microscopic dynamics of particle billiards

explanation: hole like a scanning device that samples different
microscopic structures in different regions of phase space

−2.9−2.9

−2.5

−2.5

−2

−2

−1.5

−1.5

−1

−1

−0.5

−0.5

−0.5

−0.5

0

0

0

0

0.66 0.66

0.66 0.66

φ

p 
=

 c
os

 α

1 2 3 4 5 6
−1

−0.5

0

0.5

1

−2 −1 0 1 2
−1

−0.5

0

0.5

1

rotator

x

y

−2 −1 0 1 2
−1

−0.5

0

0.5

1

librator

x

y

Lenz et al., EPL (2007)
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Simplify the system

Instead of a particle billiard, consider a toy model: simple
one-dimensional deterministic map
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iterate steps on the unit interval in
discrete time according to

xn+1 = M(xn)
as equation of motion with

M(x) = 2x mod 1

Bernoulli shift

note: This dynamics can be mapped onto a stochastic coin
tossing sequence (cf. random number generator)
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Ljapunov exponents and periodic orbits

Bernoulli shift dynamics again: xn = 2xn−1 mod 1

Iterate a small perturbation
∆x0 := x̃0 − x0 ≪ 1:
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∆xn = 2∆xn−1 = 2n∆x0

= enln 2∆x0

Ljapunov exponent
λ := ln 2 > 0

But there are also . . .
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. . . infinitely many periodic
orbits , and they are dense
on the unit interval.
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Deterministic chaos

Definition of deterministic chaos according to Devaney
(1989):

1 irregularity: There is sensitive dependence on initial
conditions.

2 regularity: The periodic points are dense.

3 indecomposability: The system is topologically transitive.

The Bernoulli shift is chaotic in that sense.

(nb: 2 and 3 imply 1)
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Hole and escape: a textbook problem

choose M(x) = 3x mod 1 and ‘dig a hole in the middle’:
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• There is escape from a fractal
Cantor set.

• The number of particles decays
as Nn = N0 exp(−γn)
with escape rate γ = ln(3/2).

see e.g. Ott, Chaos in dynamical
systems (Cambridge, 2002)
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Hole and escape revisited

Bunimovich, Yurchenko:

Where to place a hole to achieve a maximal escape rate?

(Isr.J.Math., submitted 2008, published 2011!)

Theorem for Bernoulli shift:
Consider (Markov) holes at different positions but with equal
size. Find in each hole the periodic point with minimal period.
Then the escape will be faster through the hole where the
minimal period is bigger .

Corollary:
The escape rate may be larger through smaller holes!

more general theorem (later on) by Keller, Liverani, JSP (2009)
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Escape rate and diffusion coefficient

Solve the one-dimensional diffusion equation
∂̺

∂t
= D

∂2̺

∂x2

for particle density ̺ = ̺(x , t) and diffusion coefficient D with
absorbing boundary conditions ̺(0, t) = ̺(L, t) = 0:

̺(x , t) ≃ A exp (−γt) sin
(π

L
x
)

(t , L → ∞)

exponential decay with

D =

(

L
π

)2

γ

escape rate γ yields diffusion coefficient D

For a diffusive dynamical system the same relation can be
established by solving the Frobenius-Perron equation, see
escape rate formalism by Gaspard, Nicolis, Dorfman (1990ff)
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A deterministically diffusive map

dig symmetric holes into
the Bernoulli shift:
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lift the unit cell by degree one and
couple the cells suitably:
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Question: How does the diffusion coefficient of this model
depend on size and position of a hole ?
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Computing hole-dependent diffusion coefficients

rewrite Einstein’s formula for the diffusion coefficient

D := lim
n→∞

< (xn − x)2 >

2n

with average < . . . >:=
∫ 1

0 dx ρ(x) . . . , x = x0 over invariant
density ρ(x) for M(x) as

Dn = 1
2

〈

v2
0

〉

+
∑n

k=1 〈v0vk 〉 → D (n → ∞)

Taylor-Green-Kubo formula

with integer velocities vk (x) = ⌊xk+1⌋ − ⌊xk⌋ at discrete time k
jumps between cells are captured by fractal functions

T (x) :=

∫ x

0
dx̃

∞
∑

k=0

vk (x̃) ,

as solutions of (de Rham-type) functional recursion relations
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Computing hole-dependent diffusion coefficients

For the Bernoulli shift M(x) the invariant density is ρ(x) = 1.

Define the coupling by creating a map M̃(x) : [0, 1] → [−1, 2]:

jump through left hole to the right: if x ∈ [a1, a2],
0 < a1 < a2 ≤ 0.5 then M̃(x) = M(x) + 1 yielding
vk (x) = 1

jump through right hole to the left: if x ∈ [1 − a1, 1 − a2]
then M̃(x) = M(x) − 1 yielding vk (x) = −1

otherwise no jump, M̃(x) = M(x) yielding vk (x) = 0

This map is lifted by degree one, B̃(x + 1) = B̃(x) + 1 , x ∈ R.

For this spatially extended model we obtain the exact result

D = 2T (a2) − 2T (a1) − h ; h = a2 − a1

Knight, R.K., Nonlinearity (2011)
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Diffusion coefficient vs. hole position

Diffusion coefficient D as a function of the position of the left
hole IL of size h = a2 − a1 = 1/2s , s = 3, 4, 12:

• (b), (c): for IL = [0.125, 0.25] it is D = 1/16, but for smaller
hole IL = [0.125, 0.1875] we get larger D = 5/64

• (f): at x = 0, 1/7, 2/7, 3/7 particle keeps running through
holes in one direction; at x = 1/3 particle jumps back and forth;
these orbits dominate diffusion in the small hole limit
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A fractal structure in the diffusion coefficient

resolve the irregular structure of the hole-dependent diffusion
coefficient D by defining the cumulative function

Φs(x) = 2s+1
∫ x

0 (D(y) − 2−s) dy
(subtract < Ds >= 2−s from D(x) and scale with 2s+1)

• Φs(x) converges towards a fractal structure for large s
• this structure originates from the dense set of periodic orbits
in M(x) dominating diffusion
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Diffusion for asymptotically small holes

center the hole on a standing, a non-periodic and a running
orbit and let the hole size h → 0:

dashed lines from analytical
approximation for small h

D(h) ≃











h 1+2−p

1−2−p , running

h 1−2−p/2

1+2−p/2 , standing
h , non-periodic

p : period of the orbit

• fractal parameter dependencies for D(h) (RK, Dorfman, 1995)

• violation of the random walk approximation for small holes
converging to periodic orbits!
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Diffusion vs. escape

γ: escape rate out of only one box
D: diffusion coefficient for the whole chain of boxes

for small h:

running standing

γ − 〈γ〉 −2h
2p − 2h

2p/2

D − 〈D〉 2h
2p−1 − 2h

2p/2+1

p: period of orbit

⇒ ∃ similarities and differences between γ and D
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A lifted Bernoulli shift with different holes

Consider the symmetrically shifted
Bernoulli shift

Mh(x) =

{

2x + h 0 ≤ x < 1
2

2x − 1 − h 1
2 ≤ x < 1

,

Mh(x + 1) = Mh(x) + 1

with shift h ≥ 0 as a control parameter
(different h cp. before, sorry!)

Gaspard, RK (1998)
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Another fractal diffusion coefficient

Applying the Taylor-Green-Kubo method yields

D(h) = ⌈h⌉2

2 +
(

1−ĥ
2

)

(1 − 2 ⌈h⌉) + Th

(

ĥ
)

with ĥ := h mod 1 (h /∈ N), ĥ := 1 (h ∈ N), ĥ := 0 (h = 0),
where Th(x) is a de Rham-type function.

on large scales we recover
the random walk solution

on small scales D(h) is again
partially a fractal function
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. . . and further strange diffusion coefficients

Knight, RK, Nonlinearity (2011)
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Irregular diffusion coefficients in the Lorentz gas

diffusion coefficient D vs. minimal spacing w between two
nearby scatterers (Klages, Dellago, 2000)

computer simulation results:
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dots (left): random walk approx. (Machta, Zwanzig, 1983)
⇒ periodic Lorentz gas exhibits ‘irregular’ diffusion coefficient
open question: degree of smoothness?
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Summary

How does the diffusion coefficient of a chaotic map depend
on size and position of a hole?

two surprising results:

1 size: contrary to intuition, a smaller hole may yield a larger
diffusion coefficient

2 position: violation of simple random walk approximation
for the diffusion coefficient if the hole converges to a
periodic orbit

• intimate relation between hole-dependence of escape and
fractality of parameter-dependent diffusion coefficients
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Outlook

Can these phenomena be observed in more realistic models?

example:

periodic particle billiards such as Lorentz gas channels

. . .and perhaps even in experiments?

(particle in a periodic potential landscape on an annulus?)
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