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Outline

1 Motivation: microscopic chaos and transport; Brownian

motion, dissipation and thermalization

2 the thermostated dynamical systems approach to

nonequilibrium steady states and its surprising (fractal)

properties

3 generalized Hamiltonian dynamics and universalities?
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My scientific movements and research interests

my scientific foraging; and my food sources:

chaos, complexity and nonequilibrium statistical physics with

applications to small systems and biology
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Why this topic?

h
(sorry!)

but: R.F. Werner (U. Hannover)

Generally observed features of the theory, like, e.g., the

approach of equilibrium in macroscopic systems, deserve a

general explanation don’t they?

point of this talk: There is a cross-link.
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Microscopic chaos in a glass of water?

water molecules
droplet of ink

• dispersion of a droplet of ink

by diffusion

• assumption: chaotic collisions

between billiard balls

microscopic chaos

m
macroscopic transport

• relaxation to equilibrium

J.Ingenhousz (1785), R.Brown (1827), L.Boltzmann (1872),

P.Gaspard et al. (Nature, 1998)
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Simple theory of Brownian motion

for a single big tracer particle of velocity v immersed in a fluid:

v̇ = −κv+
√
ζ ξ(t) Langevin equation (1908)

‘Newton’s law of stochastic physics’

force decomposed into

viscous damping

and

random kicks of surrounding particles

• models the interaction of a subsystem (tracer particle) with a

thermal reservoir (fluid) in (r, v)-space

• two aspects: fluctuations and dissipation; replace the tracer

particle by a bottle of beer: thermalization problem in v-space
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Langevin dynamics

v̇ = −κv+
√
ζ ξ(t)

basic properties:
stochastic

dissipative

not time reversible

⇒ not Hamiltonian

however:

see, e.g., Zwanzig’s (1973) derivation of the Langevin equation

from a heat bath of harmonic oscillators

non-Hamiltonian dynamics arises from eliminating the reservoir

degrees of freedom by starting from a purely Hamiltonian

system
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Summary I

setting the scene:

microscopic chaos and transport

Brownian motion, dissipation and thermalization

Langevin dynamics: stochastic, dissipative, not time

reversible, not Hamiltonian

now to come:

the deterministically thermostated dynamical systems

approach to nonequilibrium steady states
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Nonequilibrium and the Gaussian thermostat

• Langevin equation with an electric field

v̇ = E − κv +
√
ζ ξ(t)

generates a nonequilibrium steady state: physical macro-

scale quantities are constant in time

numerical inconvenience: slow relaxation

• alternative method via velocity-dependent friction coefficient

v̇ = E−α(v) · v

(for free flight); keep kinetic energy constant, dv2/dt = 0:

α(v) =
E · v

v2

Gaussian (isokinetic) thermostat

Evans/Hoover (1983)

follows from Gauss’ principle of least constraints

generates a microcanonical velocity distribution

total internal energy can also be kept constant

Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics Rainer Klages 9



Introduction Deterministic thermostats Nosé-Hoover dynamics Summary

The Lorentz Gas

free flight is a bit boring: consider the periodic Lorentz gas as a

microscopic toy model for a conductor in an electric field

E

Galton (1877), Lorentz (1905)

couple it to a Gaussian thermostat - surprise: dynamics is

deterministic, chaotic, time reversible, dissipative, ergodic

Hoover/Evans/Morriss/Posch (1983ff)
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Gaussian dynamics: first basic property

γ

β

Hoover, Moran (1989)

γ
s
in

β

reversible equations of motion

m
fractal attractors in phase space

m
irreversible transport
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Second basic property

• use equipartitioning of energy: v2/2 = T/2

• consider ensemble averages: < α >=
E· < v >

T

absolute value of average rate of phase space contraction

= thermodynamic (Clausius) entropy production

that is:

entropy production is due to contraction onto fractal attractor

in nonequilibrium steady states

more generally: identity between Gibbs entropy production and

phase space contraction (Gerlich, 1973 and Andrey, 1985)
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Third basic property

• define conductivity σ by < v >=: σE; into previous eq. yields

σ =
T

E2
< α >

• combine with identity − < α >= λ+ + λ− for Lyapunov

exponents λ+/−:

σ = − T

E2
(λ+ + λ−)

conductivity in terms of Lyapunov exponents

Posch, Hoover (1988); Evans et al. (1990)

similar relations for Hamiltonian dynamics and other transport

coefficients from a different theory

Gaspard, Dorfman (1995)
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Side remark: electrical conductivity

field-dependent electrical conductivity from NEMD computer

simulations:

ε

(ε
)

σ

Lloyd et al. (1995)

• mathematical proof that there exists Ohm’s Law for small

enough (?) field strength (Chernov et al., 1993)

• but irregular parameter dependence of σ(E) in simulations

(cf. book by RK, Part 1 on fractal transport coefficients)
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Summary II

thermal reservoirs needed to create steady states in

nonequilibrium

Gaussian thermostat as a deterministic alternative to

Langevin dynamics

Gaussian dynamics for Lorentz gas yields nonequilibrium

steady states with very interesting dynamical properties

recall that Gaussian dynamics is microcanonical

last part:

construct a deterministic thermostat that generates a canonical

distribution
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The (dissipative) Liouville equation

Let (ṙ, v̇)∗ = F(r, v) be the equations of motion for a point

particle and ρ = ρ(t , r, v) the probability density for the

corresponding Gibbs ensemble

balance equation for conserving the number of points in phase

space:
dρ

dt
+ ρ∇ · F = 0

Liouville equation (1838)

For Hamiltonian dynamics there is no phase space contraction,

∇ · F = 0, and Liouville’s theorem is recovered:
dρ

dt
= 0
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The Nosé-Hoover thermostat

Let (ṙ, v̇, α̇)∗ = F(r, v, α) with ṙ = v , v̇ = E − α(v)v be the

equations of motion for a point particle with friction variable α

problem: derive an equation for α that generates the canonical

distribution
ρ(t , r, v, α) ∼ exp

[

− v2

2T
− (τα)2

]

put the above equations into the Liouville equation

∂ρ

∂t
+ ṙ

∂ρ

∂r
+ v̇

∂ρ

∂v
+ α̇

∂ρ

∂α
+ ρ

[

∂ṙ

∂r
+

∂v̇

∂v
+

∂α̇

∂α

]

= 0

restricting to ∂α̇/∂α = 0 yields the Nosé-Hoover thermostat

α̇ =
v2 − 2T

τ22T

Nosé (1984), Hoover (1985)

widely used in NEMD computer simulations
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Generalized Hamiltonian formalism for Nosé-Hoover

Dettmann, Morriss (1997): use the Hamiltonian

H(Q,P,Q0,P0) := e−Q0E(P,P0) + eQ0U(Q,Q0)
where E(P,P0) = P2/(2m) + P2

0/(2M) is the kinetic and

U(Q,Q0) = u(Q) + 2TQ0 the potential energy of particle plus

reservoir for generalized position and momentum coordinates

Hamilton’s equations by imposing H(Q,P,Q0,P0) = 0:

Q̇ = e−Q0 P
m , Ṗ = −eQ0 ∂u

∂Q

Q̇0 = e−Q0 P0

M , Ṗ0 = 2(e−Q0E(P,P0)− eQ0T )

uncoupled equations for Q0 = 0 suggest relation between

physical and generalized coordinates

Q = q , P = eQ0p , Q0 = q0 , P0 = eQ0p0

for M = 2T τ2, α = p0/M, m = 1 Nosé-Hoover recovered

note: the above transformation is noncanonical!
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Nosé-Hoover dynamics

summary:

Nosé-Hoover thermostat constructed both from Liouville

equation and from generalized Hamiltonian formalism

properties:

fractal attractors

identity between phase space contraction and entropy

production

formula for transport coefficients in terms of Lyapunov

exponents

that is, we have the same class as Gaussian dynamics

basic question:

Are these properties universal for deterministic dynamical

systems in nonequilibrium steady states altogether?

Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics Rainer Klages 19



Introduction Deterministic thermostats Nosé-Hoover dynamics Summary

Non-ideal and boundary thermostats

counterexample 1:

increase the coupling for the Gaussian thermostat parallel to

the field by making the friction field-dependent:

v̇x = Ex − α(1+Ex )vx , v̇y = −αvy

• breaks the identity between phase space contraction and

entropy production and the conductivity-Lyapunov exponent

formula

• fractal attractors seem to persist

• non-ideal Nosé-Hoover thermostat constructed analogously

counterexample 2:

a time-reversible deterministic boundary thermostat

generalizing stochastic boundaries (RK et al., 2000)

• same results as above
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Universality of Gaussian and Nosé-Hoover dynamics?

⊖ in general no identity between phase space contraction and

entropy production

⊖ consequently, relations between transport coefficients and

Lyapunov exponents in thermostated systems are not

universal

⊕ existence of fractal attractors confirmed (stochastic

reservoirs: open question)

(possible way out: need to take a closer look at first problem...)
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Outlook: the big picture

ergodic
hypothesis

Gibbs
ensembles

dynamical systems

statistical mechanics

thermodynamics

equilibrium nonequilibrium
steady states

microscopic chaos

complexity

nonequilibrium conditions

thermodynamic
properties

microscopic

macroscopic

theory of nonequilibrium statistical physics
starting from microscopic chaos?

infinite measures

deterministic transport

weakstrong

fractal SRB measures

normal anomalous

nonequilibrium
non-steady states

approach should be particularly useful for

small nonlinear systems
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Acknowledgements and literature

counterexamples developed with:

K.Rateitschak (PhD thesis in Brussels, 1997-2002),

Chr.Wagner (postdoc in Brussels, 1998-2000), G.Nicolis

literature:

(Part 2)
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