Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Institut für Theoretische Elektrotechnik and Institut für Theoretische Physik Leibniz Universität Hannover, 30 May 2013

Summary

Outline

- Motivation: microscopic chaos and transport; Brownian motion, dissipation and thermalization
- the thermostated dynamical systems approach to nonequilibrium steady states and its surprising (fractal) properties
- generalized Hamiltonian dynamics and universalities?

Why this talk?

Introduction 000000

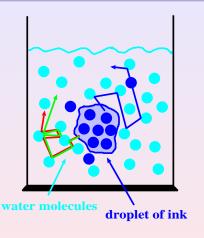
W. and R. Mathis: talks about canonically dissipative systems

(sorry!)

but: R.F. Werner, Generally observed features of the theory, like, e.g., the approach of equilibrium in macroscopic systems, deserve a general explanation don't they?

main point of this talk: There is a cross-link...

Microscopic chaos in a glass of water?



Introduction

- dispersion of a droplet of ink by diffusion
- assumption: chaotic collisions between billiard balls

microscopic chaos macroscopic transport

relaxation to equilibrium

J.Ingenhousz (1785), R.Brown (1827), L.Boltzmann (1872), P.Gaspard et al. (Nature, 1998)

Simple theory of Brownian motion

Introduction

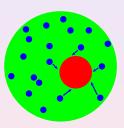
for a single **big** tracer particle of velocity **v** immersed in a fluid:

$$\dot{\mathbf{v}} = -\kappa \mathbf{v} + \sqrt{\zeta} \, \boldsymbol{\xi}(t)$$

Langevin equation (1908)

'Newton's law of stochastic physics'

force decomposed into viscous damping and random kicks of surrounding particles



- models the interaction of a subsystem (tracer particle) with a thermal reservoir (fluid) in (r, v)-space
- two aspects: diffusion and dissipation; replace the tracer particle by a bottle of beer: thermalization problem in v-space

Langevin dynamics

Introduction 000000

$$\dot{\mathbf{v}} = -\kappa \mathbf{v} + \sqrt{\zeta} \, \boldsymbol{\xi}(t)$$

basic properties:

stochastic dissipative not time reversible

⇒ not Hamiltonian

however:

see, e.g., Zwanzig's (1973) derivation of the Langevin equation from a heat bath of harmonic oscillators.

non-Hamiltonian dynamics arises from eliminating the reservoir degrees of freedom by starting from a purely Hamiltonian system

Summary I

Introduction

setting the scene:

- microscopic chaos and transport
- Brownian motion, dissipation and thermalization
- Langevin dynamics: stochastic, dissipative, not time reversible, not Hamiltonian

now to come:

the deterministically thermostated dynamical systems approach to nonequilibrium steady states

Introduction

Nonequilibrium and the Gaussian thermostat

Langevin equation with an electric field

$$\dot{\mathbf{v}} = \mathbf{E} - \kappa \mathbf{v} + \sqrt{\zeta} \, \boldsymbol{\xi}(t)$$

generates a nonequilibrium steady state: physical macroscale quantities are constant in time numerical inconvenience: slow relaxation

alternative method via velocity-dependent friction coefficient

$$\dot{\mathbf{v}} = \mathbf{E} - \alpha(\mathbf{v}) \cdot \mathbf{v}$$

(for free flight); keep kinetic energy constant, $d\mathbf{v}^2/dt = 0$:

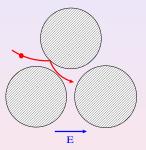
$$\alpha(\mathbf{v}) = \frac{\mathbf{E} \cdot \mathbf{v}}{\mathbf{v}^2}$$

Gaussian (isokinetic) thermostat Evans/Hoover (1983)

- follows from Gauss' principle of least constraints
- generates a microcanonical velocity distribution
- total internal energy can also be kept constant

The Lorentz Gas

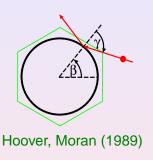
free flight is a bit boring: consider the periodic Lorentz gas as a microscopic toy model for a conductor in an electric field

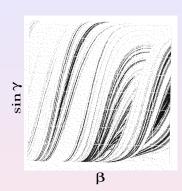


Galton (1877), Lorentz (1905)

couple it to a Gaussian thermostat - **surprise**: dynamics is **deterministic**, **chaotic**, **time reversible**, **dissipative**, **ergodic**Hoover/Evans/Morriss/Posch (1983ff)

Gaussian dynamics: first basic property





reversible equations of motion

irreversible transport

Second basic property

- use equipartitioning of energy: $v^2/2 = T/2$
- consider ensemble averages: $|<\alpha>=\frac{\mathbf{E}\cdot<\mathbf{v}>}{\mathbf{T}}$

$$<\alpha>=\frac{\mathbf{E}\cdot<\mathbf{v}>}{T}$$

absolute value of average rate of phase space contraction = thermodynamic (Clausius) entropy production

that is:

Introduction

entropy production is due to **contraction onto fractal attractor** in nonequilibrium steady states

more generally: identity between Gibbs entropy production and phase space contraction (Gerlich, 1973 and Andrey, 1985)

Third basic property

• define conductivity σ by $\langle \mathbf{v} \rangle =: \sigma \mathbf{E}$; into previous eq. yields

$$\sigma = \frac{T}{E^2} < \alpha >$$

• combine with identity $-<\alpha>=\lambda_++\lambda_-$ for Lyapunov exponents $\lambda_{+/-}$:

$$\sigma = -\frac{T}{E^2}(\lambda_+ + \lambda_-)$$

conductivity in terms of Lyapunov exponents

Posch, Hoover (1988); Evans et al. (1990)

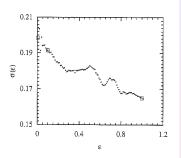
similar relations for Hamiltonian dynamics and other transport coefficients from a different theory

Gaspard, Dorfman (1995)

Side remark: electrical conductivity

Introduction

field-dependent electrical conductivity from NEMD computer simulations:



Lloyd et al. (1995)

- mathematical proof that there exists Ohm's Law for small enough (?) field strength (Chernov et al., 1993)
- but irregular parameter dependence of $\sigma(E)$ in simulations (cf. book by RK, Part 1 on fractal transport coefficients)

Summary II

- thermal reservoirs needed to create steady states in nonequilibrium
- Gaussian thermostat as a deterministic alternative to Langevin dynamics
- Gaussian dynamics for Lorentz gas yields nonequilibrium steady states with very interesting dynamical properties

recall that Gaussian dynamics is *microcanonical*

last part:

construct a deterministic thermostat that generates a canonical distribution

The (dissipative) Liouville equation

Introduction

Let $(\dot{\mathbf{r}}, \dot{\mathbf{v}})^* = \mathbf{F}(\mathbf{r}, \mathbf{v})$ be the equations of motion for a point particle and $\rho = \rho(t, \mathbf{r}, \mathbf{v})$ the probability density for the corresponding Gibbs ensemble

balance equation for conserving the number of points in phase space:

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{F} = 0$$

Liouville equation (1838)

For Hamiltonian dynamics there is no phase space contraction, $\nabla \cdot \mathbf{F} = \mathbf{0}$, and Liouville's theorem is recovered:

$$\frac{d\rho}{dt}=0$$

The Nosé-Hoover thermostat

Let $(\dot{\mathbf{r}}, \dot{\mathbf{v}}, \dot{\alpha})^* = \mathbf{F}(\mathbf{r}, \mathbf{v}, \alpha)$ with $\dot{\mathbf{r}} = \mathbf{v}$, $\dot{\mathbf{v}} = \mathbf{E} - \alpha(\mathbf{v})\mathbf{v}$ be the equations of motion for a point particle with friction variable α

problem: derive an equation for α that generates the canonical

distribution

Introduction

$$ho(t,\mathbf{r},\mathbf{v},lpha)\sim \exp\left[-rac{v^2}{2T}-(aulpha)^2
ight]$$

put the above equations into the Liouville equation

$$\frac{\partial \rho}{\partial t} + \dot{\mathbf{r}} \frac{\partial \rho}{\partial \mathbf{r}} + \dot{\mathbf{v}} \frac{\partial \rho}{\partial \mathbf{v}} + \dot{\alpha} \frac{\partial \rho}{\partial \alpha} + \rho \left[\frac{\partial \dot{\mathbf{r}}}{\partial \mathbf{r}} + \frac{\partial \dot{\mathbf{v}}}{\partial \mathbf{v}} + \frac{\partial \dot{\alpha}}{\partial \alpha} \right] = \mathbf{0}$$

restricting to $\partial \dot{\alpha}/\partial \alpha = 0$ yields the **Nosé-Hoover thermostat**

$$\dot{\alpha} = \frac{v^2 - 2T}{\tau^2 2T}$$

Nosé (1984), Hoover (1985)

widely used in NEMD computer simulations

Generalized Hamiltonian formalism for Nosé-Hoover

Dettmann, Morriss (1997): use the Hamiltonian

$$H(\mathbf{Q}, \mathbf{P}, Q_0, P_0) := e^{-Q_0} E(\mathbf{P}, P_0) + e^{Q_0} U(\mathbf{Q}, Q_0)$$

where $E(\mathbf{P}, P_0) = \mathbf{P}^2/(2m) + P_0^2/(2M)$ is the kinetic and $U(\mathbf{Q}, Q_0) = u(\mathbf{Q}) + 2TQ_0$ the potential energy of particle plus reservoir for generalized position and momentum coordinates

Hamilton's equations by imposing $H(\mathbf{Q}, \mathbf{P}, \mathbf{Q}_0, P_0) = 0$:

$$\begin{split} \dot{\mathbf{Q}} &= e^{-Q_0} \frac{\mathbf{P}}{m} \,, \ \dot{\mathbf{P}} = -e^{Q_0} \frac{\partial u}{\partial \mathbf{Q}} \\ \dot{Q_0} &= e^{-Q_0} \frac{P_0}{M} \,, \ \dot{P_0} = 2 (e^{-Q_0} E(\mathbf{P}, P_0) - e^{Q_0} \mathit{T}) \end{split}$$

uncoupled equations for $Q_0 = 0$ suggest relation between physical and generalized coordinates

$$\mathbf{Q} = \mathbf{q}$$
, $\mathbf{P} = \mathbf{e}^{Q_0} \mathbf{p}$, $Q_0 = q_0$, $P_0 = \mathbf{e}^{Q_0} p_0$
for $M = 2T\tau^2$, $\alpha = p_0/M$, $m = 1$ Nosé-Hoover recovered

note: the above transformation is noncanonical!

Nosé-Hoover dynamics

summary:

Nosé-Hoover thermostat constructed both from Liouville equation and from generalized Hamiltonian formalism

properties:

- fractal attractors
- identity between phase space contraction and entropy production
- formula for transport coefficients in terms of Lyapunov exponents

that is, we have the same class as Gaussian dynamics

basic question:

Are these properties universal for deterministic dynamical systems in nonequilibrium steady states altogether?

Non-ideal and boundary thermostats

counterexample 1:

Introduction

increase the coupling for the Gaussian thermostat parallel to the field by making the friction field-dependent:

$$\dot{\mathbf{v}}_{\mathbf{x}} = \mathbf{E}_{\mathbf{x}} - \alpha (\mathbf{1} + \mathbf{E}_{\mathbf{x}}) \mathbf{v}_{\mathbf{x}} , \ \dot{\mathbf{v}}_{\mathbf{y}} = -\alpha \mathbf{v}_{\mathbf{y}}$$

- breaks the identity between phase space contraction and entropy production and the conductivity-Lyapunov exponent formula
- fractal attractors seem to persist
- non-ideal Nosé-Hoover thermostat constructed analogously

counterexample 2:

a time-reversible deterministic boundary thermostat generalizing stochastic boundaries (RK et al., 2000)

same results as above

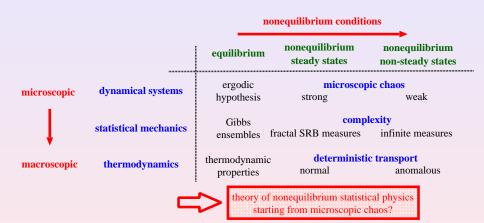
Introduction

Universality of Gaussian and Nosé-Hoover dynamics?

- in general **no identity** between *phase space contraction and* entropy production
- Lyapunov exponents in thermostated systems are **not** universal
- existence of fractal attractors confirmed (stochastic reservoirs: open question)

(possible way out: need to take a closer look at first problem...)

Outlook: the big picture



approach should be particularly useful for small nonlinear systems

Acknowledgements and literature

counterexamples developed with:

K.Rateitschak (PhD thesis 2002, now Rostock), Chr.Wagner (postdoc in Brussels 2002/3), G.Nicolis (Brussels)

literature:

(Part 2)