Statistical Physics and **Anomalous Dynamics of Foraging**

Rainer Klages

(Max Planck Institute for the Physics of Complex Systems, Dresden) Queen Mary University of London, School of Mathematical Sciences

> Complex Systems Seminar QMUL, 27 September 2016

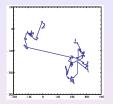
The problem

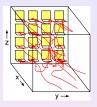
Introduction •00

Chupeau, Nature Physics (2015)

Outline of my talk

Introduction





Theme of this talk:

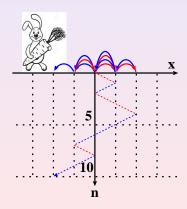
Can search for food by biological organisms be understood by mathematical modeling?

Three parts:

- Lévy flight hypothesis: review
- Biological data: analysis and interpretation
- 3 Stochastic modeling: Advanced Study Group research

Introduction

Karl Pearson (Drapers' Company Research Memoirs, 1906): model movements of biological organisms by a **random walk** in one dimension: position x_n at discrete time step n



$$x_{n+1} = x_n + \ell_n$$

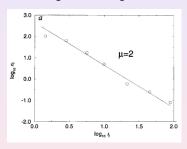
- here: steps of length $|\ell_n| = \ell$ to the left/right; sign determined by coin tossing
- Markov process: the steps are uncorrelated
- generates Gaussian distributions for x_n (central limit theorem)

Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

the histogram of flight times



was fitted by a Lévy distribution (power law $\sim t^{-\mu}$)

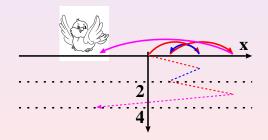
 may be due to the food distribution on the ocean surface being scale invariant: Lévy Environmental Hypothesis

What are Lévy flights?

a random walk generating **Lévy flights**:

 $x_{n+1} = x_n + \ell_n$ with ℓ_n drawn from a Lévy α -stable distribution

$$\frac{\rho(\ell_n) \sim |\ell_n|^{-1-\alpha} \left(|\ell_n| \gg 1\right), \ 0 < \alpha < 2}{\text{P. Lévy (1925ff)}}$$



• fat tails: larger probability for long jumps than for a Gaussian!

Introduction

- a Markov process (no memory)
- which obeys a generalized central limit theorem if the Lévy distributions are α -stable (for $0 < \alpha < 2$)

 Gnedenko, Kolmogorov, 1949
- implying that they are scale invariant and thus self-similar
- $\rho(\ell_n)$ has infinite variance

$$\langle \ell_n^2 \rangle = \int_{-\infty}^{\infty} d\ell_n \, \rho(\ell_n) \ell_n^2 = \infty$$

• Lévy flights have arbitrarily large velocities, as $v_n = \ell_n/1$

Introduction

cure the problem of infinite moments and velocities:

a Lévy walker spends a time

$$t_n = v\ell_n$$
, $|v| = const$.

to complete a step; yields finite moments and finite velocities in contrast to Lévy flights

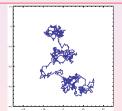
Lévy walks generate anomalous (super) diffusion:

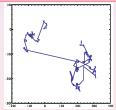
$$\langle x^2
angle \sim t^{\gamma} \ (t
ightarrow \infty)$$
 with $\gamma > 1$

see Shlesinger at al., Nature **363**, 31 (1993) for an outline, Zaburdaev et al., RMP **87**, 483 (2015) for details and RK, Radons, Sokolov (Eds.), *Anomalous transport* (Wiley, 2008) another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to Lévy flight hypothesis:

Lévy flights provide an *optimal search strategy* for *sparse*, *randomly distributed*, *immobile*, *revisitable targets in unbounded domains*





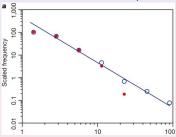
Brownian motion (left) vs. **Lévy flights** (right)

yields the second Lévy Foraging Hypothesis

Revisiting Lévy flight search patterns

Edwards et al., Nature **449**, 1044 (2007):

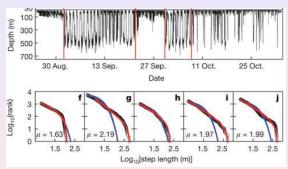
 Viswanathan et al. results revisited by correcting old data (Buchanan, Nature 453, 714, 2008):



- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- but claim that truncated Lévy flights fit yet new data Humphries et al., PNAS 109, 7169 (2012)

Lévy Paradigm: Look for power law tails in pdfs

Humphries et al., Nature 465, 1066 (2010): blue shark data



blue: exponential; red: truncated power law

- velocity pdfs extracted, not the jump pdfs of Lévy walks
- environment explains Lévy vs. Brownian movement
- data averaged over day-night cycle, cf. oscillations

Summary: two different Lévy Flight Hypotheses

to be published

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (2015)

An alternative to Lévy flight search strategies

Bénichou et al., Rev. Mod. Phys. 83, 81 (2011):

 for non-revisitable targets intermittent search strategies minimize the search time

 popular account of this work in Shlesinger, Nature 443, 281 (2006): "How to hunt a submarine?"; cf. also protein binding on DNA

Beyond the Lévy Flight Hypothesis

to be published

Bartumeus, Boyer, Chechkin, Giuggioli, RK, Pitchford, Watkins (2015)

Summary:

Introduction

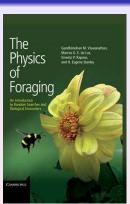
- scale-free Lévy flight paradigm
- problems with the data analysis
- two Lévy Flight Hypotheses: adaptive and emergent
- intermittent search as an alternative
- need to go beyond the Lévy Flight Hypotheses

Ongoing discussions:

- mussels: de Jager et al., Science (2011)
- cells perform Lévy walks: Harris et al., Nature (2012) or not: Dieterich, RK et al., PNAS (2008)

Applications:

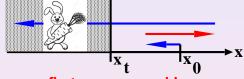
search algorithms for robots? Nurzaman et al. (2010)



Searching for a single target

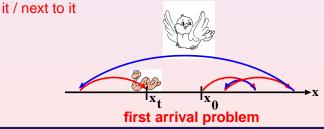
two basic types of foraging (James et al., 2010):

cruise forager: detects a target while moving



first passage problem

saltaltory forager: only detects a target when landing on



Brownian motion:

$$arrho_{FP}(t) \sim t^{-3/2} \sim arrho_{FA}(t)$$

Sparre-Andersen Theorem (1954)

Lévy flights:

Introduction

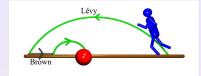
$$\varrho_{FP}(t) \sim t^{-3/2}$$
 (Chechkin et al., 2003; numerics only) $\varrho_{FA}(t) = 0 \ (0 < \alpha \le 1); \ \varrho_{FA}(t) \sim t^{-2+1/\alpha} \ (1 < \alpha < 2)$ (Palyulin et al., 2014)

Lévy walks:

$$\varrho_{FP}(t) \sim t^{-1-\alpha/2} (0 < \alpha \le 1); \ \varrho_{FP}(t) \sim t^{-3/2} (1 < \alpha < 2)$$
(numerics: Korabel, Barkai (2011); analytically: Artuso et al., 2014)

 $\varrho_{FA}(t)$: the same as for Lévy flights, cf. simulations (Blackburn et al., 2016)

Combined Lévy-Brownian motion search



intermittency modeled by a fractional diffusion equation

$$\frac{\partial f(x,t)}{\partial t} = K_{\alpha} \frac{\partial^{\alpha} f(x,t)}{\partial |x|^{\alpha}} + K_{B} \frac{\partial^{2} f(x,t)}{\partial x^{2}}$$

with Riesz fract. derivative $\sim -|\mathbf{k}|^{\alpha} f(\mathbf{k}, t)$ in Fourier space

- define search reliability by cumulative probability P of reaching a target: $P = \lim_{s \to 0} \int_0^\infty \varrho_{FA}(s) \exp(-st) dt$
- result: Brownian motion regularizes Lévy search, 0 < P < 1 for $0 < \alpha < 1$
- search efficiency can also be calculated from $\varrho_{FA}(t)$ Palyulin et al., JPA, 2016

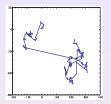
Introduction

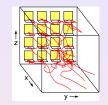
Deriving Lévy-Brownian motion from a Lévy walk

- model short-range correlated Lévy walks by a fractional Klein-Kramers equation (Friedrich et al., 2006)
- for $1 < \alpha < 2$ derive system of moment equations combined with a Cattaneo truncation scheme
- leads to the same fractional diffusion equation in the long time limit as seen before
- however...

Taylor-King et al., PRE, 2016

Summary





- Be careful with (power law) paradigms for data analysis.
- A more general biological embedding is needed to better understand foraging.
- Much work to be done to apply other types of anomalous stochastic processes for modeling foraging problems.

Advanced Study Group

Statistical physics and anomalous dynamics of foraging MPIPKS Dresden, July - December 2015

F.Bartumeus (Blanes, Spain), D.Boyer (UNAM, Mexico), A.V.Chechkin (Kharkov, Ukraine), L.Giuggioli (Bristol, UK), convenor: RK (London, UK), J.Pitchford (York, UK)

ASG webpage: http://www.mpipks-dresden.mpg.de/~asg_2015

Literature:

RK, Extrem gesucht, Physik Journal 14(12), 22 (2015) RK, Search for food of birds, fish and insects, book chapter (preprint, 2016)