

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions
Outline				

- **Cell migration:** motivation and some biological details
- Brownian motion: theory in a nutshell
- Separation Experimental results: statistics of cell migration
- Theoretical modeling: fractional stochastic equation
- Conclusions: physical and biological interpretations?

 Cell migration
 Brownian motion
 Experimental results

 •000000
 0000
 0000

Theoretical modeling

Conclusions

Setting the scene

I. Cell migration

animation: Brownian motion vs. cell migration

J. Ingenhousz (1785) R. Brown (1827)

Cell migration o●ooooo	Brownian motion	Experimental results	Theoretical modeling	Conclusions 000
Brownian	motion of m	igrating cells?		

Brownian motion

3 colloidal particles of radius 0.53μ m; positions every 30 seconds, joined by straight lines (Perrin, 1913)

20 µm 160 min 240 min 320 min 1 = 0 min 1 = 480 min 400 min 480 min

single biological cell crawling on a substrate (Dieterich, R.K. et al., PNAS, 2008) Brownian motion?
 Cell migration
 Brownian motion
 Experimental results
 Theoretical modeling
 Conclusic

 ooo
 Brownian motion of migrating cells?
 Conclusion
 <t

yes: Dunn, Brown (1987); Stokes et al. (1991)
not quite: Hartmann et al. (1994); Upadhyaya et al. (2001);
T.-Norrelykke, Jülicher (2007); H.Takagi et al. (2008)

Cell migration Brownian motion Experimental results Theoretical models occorrectly and the second se

Conclusions

Why cell migration?

motion of the *primordium* in developing zebrafish (Gilmour, 2008):

positive aspects:

- morphogenesis
- immune defense

negative aspects:

- tumor metastases
- inflammation reactions

Cell migration Brownian m

vnian motion

Experimental results

Theoretical modeling

Conclusions

How do cells migrate?

- membrane protrusions and retractions ~ force generation:
 - Iamellipodia (front)
 - uropod (end)
 - actin-myosin network
- formation of a polarized state front/end
- cell-substrate adhesion

note: here we do not study the *microscopic origin* of cell migration, which is a *highly complex process* involving a huge number of proteins and signaling mechanisms

 Cell migration
 Brownian motion
 Experimental results
 Theoretical modeling
 Conclusio

 Our cell types and some typical scales

- renal epithelial MDCK-F (Madin-Darby canine kidney) cells; two types: wildtype (NHE⁺) and NHE-deficient (NHE⁻)
- observed up to 1000 minutes: here *no* limit $t \to \infty$!
- cell diameter 20-50 μ m; mean velocity ~ 1 μ m/min; lamellipodial dynamics ~ seconds

movies: NHE+: t=210min, dt=3min

NHE-: t=171min, dt=1min

Cell migration 0000000

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions

II. Brownian motion

ell migration Brownian motion Experimental results Theoretical modeling Conclusions

The Langevin equation

microscopic understanding of Brownian motion: Einstein (1905)

simple theory suggested by Langevin (1908):

Newton's law for a particle of mass m and velocity \underline{v} immersed in a fluid

 $m\underline{\dot{v}} = \underline{F}_d(t) + \underline{F}_r(t)$

with total force of surrounding particles decomposed into viscous damping $\underline{F}_d(t)$ and random kicks $\underline{F}_r(t)$

suppose $\underline{F}_d(t)/m = -\kappa \underline{v}$ and $\underline{F}_r(t)/m = \sqrt{\zeta} \underline{\xi}(t)$ as Gaussian white noise of strength $\sqrt{\zeta}$:

 $\underline{\dot{v}} + \kappa \underline{v} = \sqrt{\zeta} \, \underline{\xi}(t)$ Langevin equation

'Newton's law of stochastic physics': apply to cell migration?

calculate three important quantities (in *d* dimensions):

1. the diffusion coefficient $D := \lim_{t\to\infty} msd(t)/(2dt)$

with mean square displacement $msd(t) := \langle [\underline{x}(t) - \underline{x}(0)]^2 \rangle$ over ensemble average $\langle \dots \rangle$; for Langevin eq. one obtains

$$msd(t)=2d extsf{v}_{th}^{2}\left(t-\kappa^{-1}(1- extsf{exp}\left(-\kappa t
ight))
ight)/\kappa$$

with $v_{th}^2 = kT/m$; note that $msd(t) \sim t^2 (t \to 0)$ and $msd(t) \sim t (t \to \infty) \Rightarrow \exists D$

2. the velocity autocorrelation function $v_{ac}(t) := \langle \underline{v}(t) \cdot \underline{v}(0) \rangle$ for Langevin eq. one finds

$$v_{ac}(t) = v_{th}^2 \exp\left(-\kappa t\right)$$

Fokker-Planck equations and the like

- 3. the probability distribution function P(x, v, t) (ff in one dimension):
- Langevin dynamics obeys (for $\kappa \gg 1$) the diffusion equation

solution for initial condition $P(x, 0) = \delta(x)$ yields position distribution $P(x, t) = \exp(-\frac{x^2}{4Dt})/\sqrt{4\pi Dt}$

• for velocity distribution P(v, t) of Langevin dynamics one can derive the Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

stationary solution is $P(v) = \exp(-\frac{v^2}{2v_{th}^2})/\sqrt{2\pi}v_{th}$

Cell migration	Brownian motion 000●	Experimental results	Theoretical modeling	Conclusions

• Fokker-Planck equation for position and velocity distribution P(x, v, t) of Langevin dynamics is the Klein-Kramers equation

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[vP \right] + \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

the above eqns. can be derived from it as special cases

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions

III. Experimental results

• $msd(t) := \langle [\underline{x}(t) - \underline{x}(0)]^2 \rangle \langle t^\beta \text{ with } \beta \rightarrow 2 \ (t \rightarrow 0) \text{ and} \beta \rightarrow 1 \ (t \rightarrow \infty) \text{ for Brownian motion; } \beta(t) = d \ln msd(t)/d \ln t$

• solid lines: (Bayes) fits from our model

anomalous diffusion if $\beta \neq 1$: here superdiffusion for $t \rightarrow \infty$

v_{ac}(t) :=< <u>ν(t)</u> · <u>ν(0)</u> >~ exp(-κt) for Brownian motion
 solid lines: fits from our model; same parameter values as *msd(t)*

 \Rightarrow crossover from stretched exponential to power law behavior

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions
Desition	dictribution	function		

Position distribution function

• $P(x, t) \rightarrow \text{Gaussian} (t \rightarrow \infty)$ and kurtosis

 $\kappa(t) := rac{\langle x^4(t) \rangle}{\langle x^2(t)
angle^2} o \mathbf{3} \left(t o \infty\right)$

for Brownian motion (green lines, in 1d)

• other solid lines: fits from our model; parameter values as before

remark: model does not yet explain short-time distributions

а 10⁰ NHE⁺ t = 120 mir 1 min: t = 480 mir 10⁻¹ OU o(x,t) FKK 10-2 10⁻³ 10-4 -10 0 10 -100 0 100 -200 0 200 x [um] x [um] x [µm] b 100 NHE t = 120 mir = 480 min 10-1 OU o(x,t) FKK 10-2 10-3 10-4 -10 10 0 100 0 200 0 -100 -200 x [um] x [um] x [um] С 9 8 data NHE 7 kurtosis K data NHE 6 FKK model NHE 5 FKK model NHE 4 3 2 100 200 300 400 500 time [min]

 \Rightarrow crossover from peaked to broad non-Gaussian distributions

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions

IV. Theoretical modeling

Cell migration	Brownian motion	Experimental results	Theoretical modeling ●○○○	Conclusions
The mode	9			

Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[vP \right] + \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa \left[\frac{\partial}{\partial v} v + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

with probability distribution P = P(x, v, t), damping term κ , thermal velocity v_{th} and *Riemann-Liouville fractional derivative* of order $1 - \alpha$ defined by

$$\frac{\partial^{\gamma} \mathbf{P}}{\partial t^{\gamma}} := \begin{cases} \frac{\partial^{m} \mathbf{P}}{\partial t^{m}} & , \quad \gamma = \mathbf{m} \\ \frac{\partial^{m}}{\partial t^{m}} \begin{bmatrix} 1 \\ \overline{\Gamma(m-\gamma)} & \int_{0}^{t} dt' \frac{\mathbf{P}(t')}{(t-t')^{\gamma+1-m}} \end{bmatrix} & , \quad \mathbf{m}-\mathbf{1} < \gamma < \mathbf{m} \end{cases}$$

with $m \in \mathbb{N}$; for $\alpha = 1$ ordinary Klein-Kramers equation recovered

Fractional derivative

interlude - what is a fractional derivative?

letter from Leibniz to L'Hôpital (1695): $\frac{d^{1/2}}{dx^{1/2}} = ?$

one way to proceed: we know that for integer m, n

$$\frac{d^m}{dx^m}x^n=\frac{n!}{(n-m)!}x^{n-m}=\frac{\Gamma(n+1)}{\Gamma(n-m+1)}x^{n-m};$$

assume that this also holds for m = 1/2, n = 1

$$\Rightarrow \quad \frac{d^{1/2}}{dx^{1/2}} \mathbf{x} = \frac{2}{\sqrt{\pi}} \mathbf{x}^{1/2}$$

extension leads to the *Riemann-Liouville fractional derivative*, which yields power laws in Fourier (Laplace) space:

$rac{d^{\gamma}}{dx^{\gamma}}F(x) \leftrightarrow (ik)^{\gamma}\tilde{F}(k)$

∃ well-developed mathematical theory of fractional calculus, see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro

Cell migration Brownian motion Experimental results Theoretical modeling Conclusions

Solutions for this model

analytical solutions (Barkai, Silbey, 2000):

• mean square displacement: $msd(t) = 2v_{th}^2 t^2 E_{\alpha,3}(-\kappa t^{\alpha}) \rightarrow 2\frac{D_{\alpha}t^{2-\alpha}}{\Gamma(3-\alpha)} (t \rightarrow \infty)$ with $D_{\alpha} = v_{th}^2/\kappa$ and generalized Mittag-Leffler function $E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k+\beta)}, \ \alpha, \ \beta > 0, \ z \in \mathbb{C};$ note that $E_{1,1}(z) = \exp(z)$: $E_{\alpha,\beta}(z)$ is a generalized exponential function

- velocity autocorrelation function: $v_{ac}(t) = v_{th}^2 E_{\alpha,1}(-\kappa t^{\alpha}) \rightarrow \frac{1}{\kappa \Gamma(1-\alpha)t^{\alpha}} (t \rightarrow \infty)$
- for κ→∞ fractional Klein-Kramers reduces to a *fractional* diffusion equation yielding P(x, t) in terms of a Fox function (Schneider, Wyss, 1989)

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions
			0000	

note:

3 fit parameters v_{th} , $\alpha \simeq 0.7$, κ plus another one by adding "biological noise" of variance η^2 to *msd*,

 $msd_{noise}(t) := msd(t) + 2\eta^2;$

mimicks measurement errors and cytoskeleton fluctuations

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions

V. Conclusions

• physical meaning of the fractional derivative?

fractional Klein-Kramers equation is *approximately* related to the generalized Langevin equation

$$\dot{\mathbf{v}} + \int_0^t dt' \,\kappa(t-t') \mathbf{v}(t') = \sqrt{\zeta} \,\xi(t)$$

e.g., Mori, Kubo, 1965/66; Lutz, 2001

with time-dependent friction coefficient $\kappa(t) \sim t^{-\alpha}$

cell anomalies might originate from *soft glassy behavior* of the cytoskeleton gel, where power law exponents are conjectured to be universal (Fabry et al., 2003; Kroy et al., 2008)

note: anomalous dynamics observed for 6 different cell types

Cell migration Brownian motion Experimental results Theoretical modeling conclusions

Possible biological interpretation

• biological meaning of the anomalous cell migration?

experimental data and theoretical modeling suggest slower diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging animals (Bénichou et al., 2006)

note: ∃ current controversy about *modeling the migration of foraging animals* (albatross, bumblebees, fruitflies,...)

Cell migration	Brownian motion	Experimental results	Theoretical modeling	Conclusions ○○●
Thanks	and literatur	Δ		

- Thanks to A.V.Chechkin and E.Lutz for helpful discussions.
- reference to this talk:

P.Dieterich, R.K., R.Preuss, A.Schwab, *Anomalous Dynamics* of *Cell Migration*, PNAS **105**, 459 (2008)

• as a general reference:

R.K., G.Radons, I.M.Sokolov (Eds.), Anomalous transport (Wiley-VCH, July 2008)

see www.maths.qmul.ac.uk/~klages for further information

