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Outline

1 Cell migration: physical and biological motivation

2 Experimental results: statistical data analysis

3 Theoretical modeling: anomalous dynamics and its

biophysical interpretation

4 Fluctuation relations for cell migration under chemical

gradients
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Brownian motion of migrating cells?

animation

Brownian motion

Perrin (1913)

three colloidal particles,

positions joined by straight

lines

Dieterich et al. (2008)

single biological cell crawling on

a substrate

Brownian motion?

conflicting results:

yes: Dunn, Brown (1987)

no: Hartmann et al. (1994)
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Why cell migration?

motion of the primordium in developing zebrafish:

Lecaudey et al. (2008); here collective cell migration

positive aspects:

morphogenesis

immune defense

negative aspects:

tumor metastases

inflammation reactions
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How do cells migrate?

membrane protrusions and
retractions ∼ force generation:

lamellipodia (front)

uropod (end)

actin-myosin network

formation of a polarized state

front/end

cell-substrate adhesion

Here we do not study the microscopic

origin of cell migration; instead:

How does a cell migrate as a whole in

terms of diffusion?
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Our cell types and some typical scales

renal epithelial MDCK-F (Madin-Darby canine kidney) cells;

two types: wildtype (NHE+) and NHE-deficient (NHE−)

observed up to 1000 minutes: here no limit t → ∞!

cell diameter 20-50µm; mean velocity ∼ 1µm/min;

lamellipodial dynamics ∼ seconds

movies: NHE+: t=210min, dt=3min NHE-: t=171min, dt=1min
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Measuring cell migration
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Theoretical modeling of Brownian motion

‘Newton’s law of stochastic physics’:

v̇ = −κv+
√
ζ ξ(t) Langevin equation (1908)

for a tracer particle of velocity v immersed in

a fluid

force decomposed into viscous damping and

random kicks of surrounding particles

Application to cell migration?

but: cell migration is active motion, not passively driven!

cf. active Brownian particles (e.g., Romanczuk et al., 2012)
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Mean square displacement

• msd(t) := 〈[x(t)− x(0)]2〉 ∼ tβ with β → 2 (t → 0) and

β → 1 (t → ∞) for Brownian motion; β(t) = d ln msd(t)/d ln t

anomalous diffusion if β 6= 1 (t → ∞); here: superdiffusion
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Velocity autocorrelation function

• vac(t) := 〈v(t) · v(0)〉 ∼ exp(−κt) for Brownian motion

• fits with same parameter values as msd(t)

crossover from stretched exponential to power law
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Position distribution function

• P(x , t) → Gaussian

(t → ∞) and kurtosis

κ(t) := 〈x4(t)〉
〈x2(t)〉2 → 3 (t → ∞)

for Brownian motion (green

lines, in 1d)

• other solid lines: fits from

our model; parameter values

as before

note: model needs to be

amended to explain

short-time distributions
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The model

• Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

∂P

∂t
= − ∂

∂x
[vP] +

∂1−α

∂t1−α
κ

[

∂

∂v
v + v2

th

∂2

∂v2

]

P

with probability distribution P = P(x , v , t), damping term κ,

thermal velocity v2
th = kT/m and Riemann-Liouville fractional

(generalized ordinary) derivative of order 1 − α
for α = 1 Langevin’s theory of Brownian motion recovered

• analytical solutions for msd(t) and P(x , t) can be obtained

in terms of special functions (Barkai, Silbey, 2000; Schneider,

Wyss, 1989)

• 4 fit parameters vth, α, κ (plus another one for short-time

dynamics)
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What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): d1/2

dx1/2 =?

one way to proceed: we know that for integer m, n
dm

dxm xn = n!
(n−m)!x

n−m = Γ(n+1)
Γ(n−m+1)x

n−m;

assume that this also holds for m = 1/2 , n = 1

⇒ d1/2

dx1/2 x = 2√
π

x1/2

extension leads to the Riemann-Liouville fractional derivative,

which yields power laws in Fourier (Laplace) space:
dγ

dxγ F (x) ↔ (ik)γF̃ (k)

∃ well-developed mathematical theory of fractional calculus,

see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro
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Physical meaning of the fractional derivative?

• the generalized Langevin equation

v̇ +
∫ t

0
dt ′ κ(t − t ′)v(t ′) =

√
ζ ξ(t)

e.g., Mori, Kubo (1965/66)

with time-dependent friction coefficient κ(t) ∼ t−α generates

the same msd(t) and vac(t) as the fractional Klein-Kramers

equation

• fractional derivatives naturally model power law

correlations:
∂γP
∂tγ := ∂m

∂tm

[

1
Γ(m−γ)

∫ t
0

dt ′ P(t ′)
(t−t ′)γ+1−m

]

, m − 1 ≤ γ ≤ m

• cell anomalies might originate from glassy behavior of the

cytoskeleton gel, where power law exponents are conjectured

to be universal (Fabry et al., 2003; Kroy et al., 2008)
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Biological meaning of the anomalous cell migration?

• results show diffusion for short times slower than Brownian

motion while long-time motion is faster:

intermittent dynamics can minimize search times

Bénichou et al. (2006)

• T-cells found to perform generalized Lévy walks by optimizing

search efficiency (Harris et al., 2012)

relates to the Lévy flight hypothesis (Krummel et al., 2016; cf.

also ASG 2015 at PKS)
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial

state into a nonequilibrium steady state.

Measure the probability distribution ρ(ξt) of entropy production

ξt during time t :
ln

ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

1 generalizes the Second Law to small systems in nonequ.

2 connection with fluctuation dissipation relations (FDRs)

3 can be checked in experiments (Wang et al., 2002)
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Anomalous TFR for Gaussian stochastic processes

theory:

consider overdamped generalized Langevin equation

ẋ = F + ζ(t)

with force F and Gaussian power-law correlated noise

< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0

that is external (i.e., no FDR):

dynamics can generate anomalous diffusion,

σ2
x ∼ t2−β with 2 − β 6= 1 (t → ∞)

yields an anomalous work fluctuation relation,

ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt

A.V.Chechkin, R.K. et al., J.Stat.Mech. L11001 (2012); L03002 (2009)
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Cell migration under chemical gradients

experiments:

test this theory for chemotaxis of murine neutrophils:

Dieterich et al. (submitted)
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Anomalous fluctuation relation for cell migration

experim. results: position

pdfs ρ(x , t) are Gaussian

fluctuation ratio R(Wt) is time

dependent

< x(t) >∼ t and σ2
x ∼ t2−β with 0 < β < 1: 6 ∃ FDR1 and

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
=

Wt

t1−β

Dieterich et al. (tbp)
data matches to theory for persistent Gaussian correlations
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Summary: Anomalous cell migration

experimental results: MDCKF cells move superdiffusively

with power law velocity correlations and non-Gaussian

position pdfs for long times

theoretical model: coherent mathematical description of

experimental data by an anomalous stochastic process

fluctuation relations: generalized version derived

theoretically and verified experimentally for chemotaxis of

murine neutrophils
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Outlook

biological significance of anomalous diffusion?

superdiffusion enhances colony formation of stem cells

(Barbaric et al., 2014)

cf. Lévy hypothesis that anomalous diffusion enhances

search success? (Viswanathan et al., 1996)

cross-link to active Brownian particles by non-trivial

correlation decay (Fodor et al., 2016): importance of

breaking FDR? (Volpe, RK, work in progress)

single vs. collective cell migration?

single cell motility controls glass and jamming transition

(Bi et al., 2016)

impact of velocity correlations on formation of nematic

phases in interacting particle systems (Nava-Sedeno,

Hatzikirou, RK, Deutsch, work in progress)
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