Statistical physics of biological motion: Crawling cells and foraging bumblebees

Rainer Klages

School of Mathematical Sciences, Queen Mary University of London

Institute for Theoretical Physics, Humboldt Universität Berlin 14 May 2012
 Queen Mary
 University of London

Outline

two parts:
(1) cell migration
(2) bumblebee foraging
in both cases:

- motivation and experiment
- experimental results and statistical analysis
- theoretical stochastic modeling and summary

Part 1:

Cell Migration

Brownian motion of migrating cells?

Brownian motion

Perrin (1913)
three colloidal particles, positions joined by straight lines

Dieterich et al. (2008) single biological cell crawling on a substrate
Brownian motion?
conflicting results: yes: Dunn, Brown (1987) no: Hartmann et al. (1994)

Why cell migration?

motion of the primordium in developing zebrafish:

Gilmour (2008)
positive aspects:

- morphogenesis
- immune defense
negative aspects:
- tumor metastases
- inflammation reactions

How do cells migrate?

- membrane protrusions and retractions \sim force generation:
- lamellipodia (front)
- uropod (end)
- actin-myosin network
- formation of a polarized state front/end
- cell-substrate adhesion

Our cell types and some typical scales

- renal epithelial MDCK-F (Madin-Darby canine kidney) cells; two types: wildtype $\left(\mathrm{NHE}^{+}\right)$and NHE-deficient $\left(\mathrm{NHE}^{-}\right)$
- observed up to 1000 minutes: here no limit $t \rightarrow \infty$!
- cell diameter $20-50 \mu \mathrm{~m}$; mean velocity $\sim 1 \mu \mathrm{~m} / \mathrm{min}$; lamellipodial dynamics \sim seconds
movies: NHE $+: \mathrm{t}=210 \mathrm{~min}, \mathrm{dt}=3 \mathrm{~min}$

NHE-: $\mathrm{t}=171 \mathrm{~min}, \mathrm{dt}=1 \mathrm{~min}$

Measuring cell migration

Sequences of microscopic phase contrast images are segmented to obtain the cell boundaries.

Theoretical modeling of Brownian motion

'Newton's law of stochastic physics':

$$
\dot{\mathbf{v}}=-\kappa \mathbf{v}+\sqrt{\zeta} \boldsymbol{\xi}(t) \quad \text { Langevin equation (1908) }
$$

for a tracer particle of velocity \mathbf{v} immersed in a fluid
force decomposed into viscous damping and random kicks of surrounding particles

Application to cell migration?

but: cell migration is active motion, not passively driven!

Mean square displacement

- $m s d(t):=\left\langle[\mathbf{x}(t)-\mathbf{x}(0)]^{2}\right\rangle \sim t^{\beta}$ with $\beta \rightarrow 2(t \rightarrow 0)$ and $\beta \rightarrow 1(t \rightarrow \infty)$ for Brownian motion; $\beta(t)=d \ln m s d(t) / d \ln t$

anomalous diffusion if $\beta \neq 1(t \rightarrow \infty)$; here: superdiffusion

Velocity autocorrelation function

- $v_{\text {ac }}(t):=\langle\mathbf{v}(t) \cdot \mathbf{v}(0)\rangle \sim \exp (-\kappa t)$ for Brownian motion
- fits with same parameter values as $m s d(t)$

crossover from stretched exponential to power law

Position distribution function

- $P(x, t) \rightarrow$ Gaussian $(t \rightarrow \infty)$ and kurtosis $\kappa(t):=\frac{\left\langle x^{4}(t)\right\rangle}{\left\langle x^{2}(t)\right\rangle^{2}} \rightarrow 3(t \rightarrow \infty)$ for Brownian motion (green lines, in 1d)
- other solid lines: fits from our model; parameter values as before
note: model needs to be amended to explain short-time distributions

crossover from peaked to broad non-Gaussian distributions

The model

Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}[v P]+\frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa\left[\frac{\partial}{\partial v} v+v_{t h}^{2} \frac{\partial^{2}}{\partial v^{2}}\right] P
$$

with probability distribution $P=P(x, v, t)$, damping term κ, thermal velocity $v_{t h}$ and Riemann-Liouville fractional derivative of order $1-\alpha$ defined by

$$
\frac{\partial^{\gamma} P}{\partial t^{\gamma}}=\frac{\partial}{\partial t}\left[\frac{1}{\Gamma(1-\gamma)} \int_{0}^{t} d t^{\prime} \frac{P\left(t^{\prime}\right)}{\left(t-t^{\prime}\right)^{\gamma}}\right]
$$

with $0<\gamma<1$; for $\alpha=1$ ordinary Klein-Kramers equation recovered

4 fit parameters $v_{t h}, \alpha, \kappa$ (plus another one for 'biological noise' on short time scales)

Solutions for this model

analytical solutions (Barkai, Silbey, 2000):

- mean square displacement:

$$
m s d(t)=2 v_{t h}^{2} t^{2} E_{\alpha, 3}\left(-\kappa t^{\alpha}\right) \rightarrow 2 \frac{D_{\alpha} t^{2-\alpha}}{\Gamma(3-\alpha)}(t \rightarrow \infty)
$$

with $D_{\alpha}=v_{t h}^{2} / \kappa$ and generalized Mittag-Leffler function

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \alpha, \beta>0, z \in \mathbb{C}
$$

note that $E_{1,1}(z)=\exp (z): E_{\alpha, \beta}(z)$ is a generalized exponential function

- velocity autocorrelation function:

$$
v_{a c}(t)=v_{t h}^{2} E_{\alpha, 1}\left(-\kappa t^{\alpha}\right) \rightarrow \frac{1}{\kappa \Gamma(1-\alpha) t^{\alpha}}(t \rightarrow \infty)
$$

- for $\kappa \rightarrow \infty$ fractional Klein-Kramers reduces to a fractional diffusion equation yielding $P(x, t)$ in terms of a Fox function (Schneider, Wyss, 1989)

Possible physical interpretation

Physical meaning of the fractional derivative?

the generalized Langevin equation

$$
\begin{gathered}
\dot{v}+\int_{0}^{t} d t^{\prime} \kappa\left(t-t^{\prime}\right) v\left(t^{\prime}\right)=\sqrt{\zeta} \xi(t) \\
\text { e.g., Mori, Kubo (1965/66) }
\end{gathered}
$$

with time-dependent friction coefficient $\kappa(t) \sim t^{-\alpha}$ generates the same $\operatorname{msd}(t)$ and $v_{a c}(t)$ as the fractional Klein-Kramers equation
cell anomalies might originate from glassy behavior of the cytoskeleton gel, where power law exponents are conjectured to be universal (Fabry et al., 2003; Kroy et al., 2008)
nb: anomalous dynamics observed for many different cell types

Possible biological interpretation

Biological meaning of the anomalous cell migration?

experimental data and theoretical modeling suggest slower diffusion for small times while long-time motion is faster compare with intermittent optimal search strategies of foraging animals (Bénichou et al., 2006)

note: controversy about modeling the migration of foraging animals (albatros, bumblebees, fruitflies,...)

Summary: Anomalous cells

- different cell dynamics on different time scales (cp. with Lévy hypothesis, which suggests scale-freeness)
- for long times cells crawl superdiffusively with power law decay of velocity correlations and non-Gaussian position pdfs
- stochastic modeling of experimental data by a generalized Klein-Kramers equation

Part 2:

Bumblebee Foraging

Motivation

bumblebee foraging - two very practical problems:

1. find food (nectar, pollen) in complex landscapes

2. try to avoid predators

What type of motion?

Study bumblebee foraging in a laboratory experiment.

The bumblebee experiment

Ings, Chittka, Current Biology 18, 1520 (2008): bumblebee foraging in a cube of $\simeq 75 \mathrm{~cm}$ side length

- artificial yellow flowers: 4×4 grid on one wall
- two cameras track the position (50fps) of a single bumblebee (Bombus terrestris)

- advantages: systematic variation of the environment; easier than tracking bumblebees on large scales
- disadvantage: no 'free flight' of bumblebees

Variation of the environmental conditions

movie

three experimental stages:
(1) spider-free foraging
(2) foraging under predation risk
(3) memory test 1 day later
safe and dangerous
flowers
\#bumblebees=30, \#data per bumblebee for each stage ≈ 7000

Bumblebee experiment: two main questions

(1) What type of motion do the bumblebees perform in terms of stochastic dynamics?

(2) Are there changes of the dynamics under variation of the environmental conditions?

Velocity distributions: analysis

left: experimental pdf of v_{y}-velocities of a single bumblebee in the spider-free stage (black crosses) with max. likelihood fits of mixture of 2 Gaussians; exponential; power law; single Gaussian
right: quantile-quantile plot of a Gaussian mixture against the experimental data (black) plus surrogate data

Velocity distributions: interpretation

- best fit to the data by a mixture of two Gaussians with different variances (quantified by information criteria with resp. weights)
- biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics
big surprise: no difference in pdf's between different stages under variation of environmental conditions!

Velocity autocorrelation function \perp to the wall

$$
V_{x}^{A C}(\tau)=\frac{\left\langle\left(v_{x}(t)-\mu\right)\left(v_{x}(t+\tau)-\mu\right)\right\rangle}{\sigma^{2}} \text { with average over all bees }
$$

- plot: spider-free stage, predation thread, memory test
- \exists anti-correlations for $\tau \simeq 0.5$: bees return to flowers
- only small quantitative changes under predation thread, cf. shift of minimum in $V_{x}^{A C}(\tau)$ and changes in pdf of flight times (inset): more flights with long durations

Velocity autocorrelation function || to the wall

- plot: spider-free stage, predation thread, memory test
- \exists profound qualitative change of correlations from positive for spider-free to negative in case of spiders
- resampling of data (inset) confirms existence of positive correlations
\Rightarrow all changes are in the velocity correlations, not the pdf's!

Predator avoidance and a simple model

predator avoidance as difference in position pdfs spider / no spider from data:

positive spike: hovering; negative region: avoidance
modeled by Langevin equation

$$
\frac{d v_{y}}{d t}(t)=-\eta v_{y}(t)-\frac{\partial U}{\partial y}(y(t))+\xi(t)
$$

η : friction coefficient,
ξ : Gaussian white noise

simulated velocity correlations with repulsive interaction potential U bumblebee - spider off / on

Summary: Clever bumblebees

- mixture of two Gaussian velocity distributions reflects spatial adjustment of bumblebee dynamics to flower carpet
- all changes to predation thread are contained in the velocity autocorrelation functions, which exhibit highly non-trivial temporal behaviour
(nb: Lévy hypothesis suggests that all relevant foraging information is contained in pdf's)
- change of correlation decay in the presence of spiders due to experimentally extracted repulsive force as reproduced by generalized Langevin dynamics

Collaborators and literature

work performed with:

1. cells: P.Dieterich, R.K., R.Preuss, A.Schwab, Anomalous Dynamics of Cell Migration, PNAS 105, 459 (2008)
2. bees: F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.K., Spatio-temporal dynamics of bumblebees foraging under predation risk, Phys. Rev. Lett. 108, 098103 (2012) |P

