The Physics of Foraging: Bumblebee Flights under Predation Risk

Friedrich Lenz¹ Thomas C. Ings² Lars Chittka² Aleksei V. Chechkin³ Rainer Klages¹

¹Queen Mary University of London, School of Mathematical Sciences

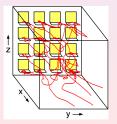
²Queen Mary University of London, Biological and Chemical Sciences

³Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine

INI Colloquium Series University and ETH Zurich, 25 October 2013

The physics of foragin

Bumblebee foraging


Summary

Outline

The physics of foraging: Can biologically relevant search strategies be identified by mathematical modeling?

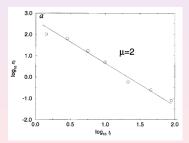
- the albatross story and the Lévy flight hypothesis
- further biological data, their analysis and interpretation
- Bumblebees foraging under predation risk:
 - the experiment
 - the analysis
 - the modeling

Part 1:

The Physics of Foraging

Physics of foraging and bumblebee flights

Rainer Klages 3


Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

the distribution of flight times was fitted with a Lévy flight model (power law)

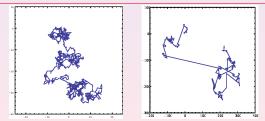
Summary

Lévy flights in a nutshell

Lévy flights have well-defined mathematical properties:

- a Markovian stochastic process (no memory)
- with probability distribution function of flight lengths exhibiting power law tails, ρ(ℓ) ~ ℓ^{-1−α}, 0 < α < 2;
- it has infinite variance, $<\ell^2>=\infty$,
- satisfies a generalized central limit theorem (Gnedenko, Kolmogorov, 1949) and
- is scale invariant

for an outline see, e.g., Shlesinger at al., Nature 363, 31 (1993)


(remark: ∃ the more physical model of *Lévy walks*)

Optimizing the success of random searches

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to Lévy flight hypothesis:

Lévy flights provide an optimal search strategy for sparsely, randomly distributed, revisitable targets

Brownian motion (left) vs. Lévy flights (right)


• Lévy flights also obtained for bumblebee and deer data

 Outline
 The physics of foraging ooo
 Bumblebee foraging ooo
 Summary ooo

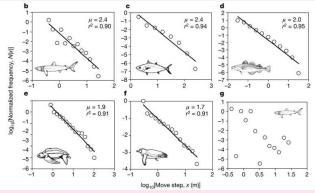
Revisiting Lévy flight search patterns

Edwards et al., Nature 449, 1044 (2007):

• Viswanathan et al. results revisited by correcting old data (Buchanan, Nature **453**, 714, 2008):

- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- **but** claim that truncated Lévy flights fit yet new data Humphries et al., PNAS **109**, 7169 (2012)

The physics of foraging

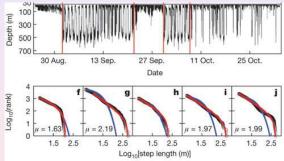

Bumblebee foraging

Summary

Lévy or not Lévy?

Lévy paradigm: Look for power law tails in pdfs!

 Sims et al., Nature 451, 1098 (2008): scaling laws of marine predator search behaviour; > 10⁶ data points!


prey distributions also display Lévy-like patterns...

 Outline
 The physics of foraging
 Bumblebee foraging
 Summary

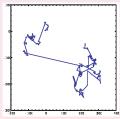
 00
 00000000
 00000000
 000

Lévy flights induced by the environment?

 Humphries et al., Nature 465, 1066 (2010): environmental context explains Lévy and Brownian movement patterns of marine predators; > 10⁷ data points!; for blue shark:

blue: exponential; red: truncated power law

 note: ∃ day-night cycle, cf. oscillations; suggests to fit with two different pdfs (not done)


Summary

Optimal searches: adaptive or emergent?

strictly speaking two different Lévy flight hypotheses:

Lévy flights represent an (evolutionary) adaptive optimal search strategy Viswanathan et al. (1999) the 'conventional' Lévy

flight hypothesis

Lévy flights emerge from the interaction with a scale-free food source distribution

Viswanathan et al. (1996)

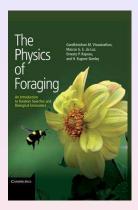
more recent reasoning

Summary

An alternative to Lévy flight search strategies

Bénichou et al., Rev. Mod. Phys. 83, 81 (2011):

• for *non-revisitable targets* **intermittent** search strategies minimize the search time



 popular account of this work in Shlesinger, Nature 443, 281 (2006): "How to hunt a submarine?"; cf. also protein binding on DNA

In search of a mathematical foraging theory

Summary of Part 1:

- two different Lévy flight hypothesis: adaptive and emergent
- scale-free Lévy flight paradigm
- problems with the data analysis
- intermittent search strategies as alternatives

 \Rightarrow discussion is ongoing: spider monkeys (2004); biological cell migration (2008, 2012); mussels (2011); ...

Part 2:

Bumblebee Foraging under Predation Risk

Physics of foraging and bumblebee flights

Rainer Klages 13

The physics of foraging

Bumblebee foraging

Summary

Motivation: bumblebees

bumblebee foraging – two very practical problems:

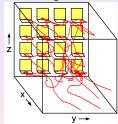
1. find food (nectar, pollen) in complex landscapes

2. try to avoid predators

What type of motion?

Study bumblebee foraging in a laboratory experiment.

The physics of foragin

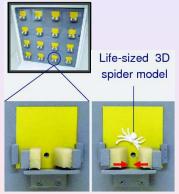

Bumblebee foraging

Summary

The bumblebee experiment

Ings, Chittka, Current Biology **18**, 1520 (2008): **bumblebee foraging** in a cube of \simeq 75cm side length

- artificial yellow flowers: 4x4 grid on one wall
- two cameras track the position (50fps) of a single bumblebee (Bombus terrestris)


- **advantages:** systematic variation of the environment; easier than tracking bumblebees on large scales
- disadvantage: no typical free flight of bumblebees; no test of the Lévy hypothesis (but questioning of the Lévy paradigm!)

The physics of foragin

Bumblebee foraging

Summary

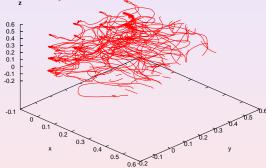
Variation of the environmental conditions

movie

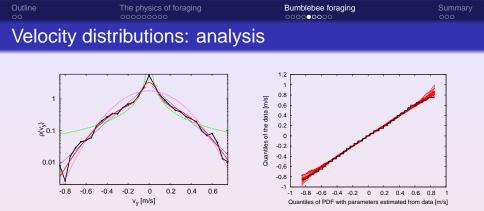
three experimental stages:

- spider-free foraging
- If for aging under predation risk
- memory test 1 day later

safe and dangerous flowers


<code>#bumblebees=30</code> , <code>#data</code> per bumblebee for each stage \approx 7000

 Outline
 The physics of foraging
 Bumblebee foraging


 00
 00000000
 00000000

 Bumblebee experiment: two main questions

What type of motion do the bumblebees perform in terms of stochastic dynamics?

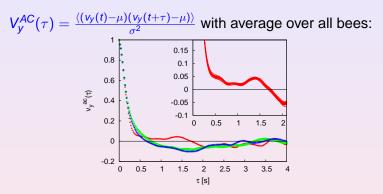
Are there changes of the dynamics under variation of the environmental conditions?

left: experimental data yielding **pdf of** v_y -**velocities** of a single bumblebee in the spider-free stage (black crosses) with max. likelihood fits of mixture of 2 Gaussians; exponential; power law; single Gaussian

right: **quantile-quantile plot** of a Gaussian mixture against the experimental data (black) plus surrogate data

Summary

Velocity distributions: interpretation


- **best fit** to the data by a mixture of two Gaussians with different variances (verified by information criteria with resp. weights)
- biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics
- no contradiction to Lévy hypothesis; but Lévy paradigm 'suggests': all relevant information captured by pdfs

big surprise: no difference in pdfs between different stages under variation of environmental conditions!

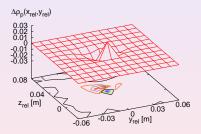
 Outline
 The physics of foraging
 Bumblebee foraging
 Summary

 oo
 ooooooooo
 ooooooooo
 ooo

Velocity autocorrelation function || to the wall

- plot: spider-free stage, predation thread, memory test
- correlations change from positive (spider-free) to negative (spiders)

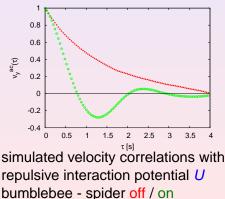
 \Rightarrow all changes are in the velocity correlations, not in pdfs!


The physics of foraging

Bumblebee foraging

Summary

Predator avoidance and a simple model


predator avoidance as difference in position pdfs spider / no spider from data:

positive spike: *hovering*; negative region: *avoidance*

modeled by Langevin equation $\frac{dv_y}{dt}(t) = -\eta v_y(t) - \frac{\partial U}{\partial y}(y(t)) + \xi(t)$

- η : friction coefficient,
- ξ : Gaussian white noise

Clever bumblebees!

Summary of Part 2:

- mixture of two Gaussian velocity distributions reflects spatial adjustment of bumblebee dynamics to flower carpet
- all changes to predation thread are contained in the velocity autocorrelation functions that exhibit highly non-trivial temporal behaviour
- no problem with the Lévy hypothesis but with the Lévy paradigm, which suggests that all relevant foraging information is contained in scale-free pdfs
- change of correlation decay in the presence of spiders due to experimentally extracted repulsive force as reproduced by Langevin dynamics

Outline oo	The physics of foraging	Bumblebee foraging	Summary ●੦੦
Summary			

• Be careful with (power law) paradigms for data analysis:

'... the better fit of the complex model ... trades off with the elegance and clarity of the simpler model.' (???) de Jager et al., Science (2012)

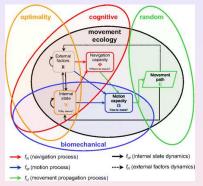
• **Correlation functions** can contain crucial information about interactions between forager and environment

suggestion: replace the question

What is the mathematically most efficient search strategy?

by the more fundamental question

How can we **statistically quantify** changes in foraging dynamics due to **interactions with the environment**?


The physics of foragin

Bumblebee foraging

Summary

Outlook

Our conclusion fits to the Movement Ecology Paradigm:

Nathan et al., PNAS 105, 19052 (2008)

Mathematically, this suggests a state space approach $\mathbf{u}_{t+1} = F(\Omega, \Phi, \mathbf{r}_t, \mathbf{w}_t, \mathbf{u}_t)$ for the location \mathbf{u}_t of an organism at time t.

References

F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.K., Phys. Rev. Lett. **108**, 098103 (2012)

We also have a stochastic model for *free* bumblebee flights: F.Lenz, A.V.Chechkin, R.K., PLoS ONE 8, e59036 (2013)

