The Physics of Foraging: Bumblebee Flights under Predation Risk

Friedrich Lenz ${ }^{1} \quad$ Thomas C. Ings ${ }^{2} \quad$ Lars Chittka ${ }^{2}$ Aleksei V. Chechkin ${ }^{3}$ Rainer Klages ${ }^{1}$
${ }^{1}$ Queen Mary University of London, School of Mathematical Sciences
${ }^{2}$ Queen Mary University of London, Biological and Chemical Sciences
${ }^{3}$ Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine
Colloquium on Complex and Biological Systems University of Potsdam, 16 November 2012

Outline

(1) The physics of foraging:

Can biologically relevant search strategies be identified by mathematical modeling?

- the albatross story and the Lévy flight hypothesis
- further biological data, their analysis and interpretation
(2) Bumblebees foraging under predation risk:
- the experiment
- the analysis
- the modeling

(3) Modeling bumblebee flights

Part 1:

The Physics of Foraging

Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):
for albatrosses foraging in the South Atlantic the flight times were recorded

the distribution of flight times was fitted with a Lévy flight model (power law)

Lévy flights in a nutshell

Lévy flights have well-defined mathematical properties:

- a Markovian stochastic process
- with probability distribution function of flight lengths exhibiting power law tails, $\rho(\ell) \simeq \ell^{-1-\alpha}, 0<\alpha<2$;
- it has infinite variance, $\left\langle\ell^{2}\right\rangle=\infty$,
- satisfies a generalized central limit theorem (Gnedenko, Kolmogorov, 1949) and
- is scale invariant
for an outline see, e.g., Shlesinger at al., Nature 363, 31 (1993)
(remark: \exists the more physical model of Lévy walks)

Optimizing the success of random searches

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about "best statistical strategy to adapt in order to search efficiently for randomly located objects"
- random walk model leads to Lévy flight hypothesis:

Lèvy flights provide an optimal search strategy for sparsely, randomly distributed, revisitable targets

Brownian motion (left) vs. Lévy flights (right)

- Lévy flights also obtained for bumblebee and deer data

Revisiting Lévy flight search patterns

Edwards et al., Nature 449, 1044 (2007):

- Viswanathan et al. results revisited by correcting old data (Buchanan, Nature 453, 714, 2008):

- no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
- but claim that truncated Lévy flights fit yet new data Humphries et al., PNAS 109, 7169 (2012)

Lévy or not Lévy?

Lévy paradigm: Look for power law tails in pdfs!

- Sims et al., Nature 451, 1098 (2008): scaling laws of marine predator search behaviour; > 10^{6} data points!

- prey distributions also display Lévy-like patterns...

Lévy flights induced by the environment?

- Humphries et al., Nature 465, 1066 (2010): environmental context explains Lévy and Brownian movement patterns of marine predators; $>10^{7}$ data points!; for blue shark:

blue: exponential; red: truncated power law
- note: \exists day-night cycle, cf. oscillations; suggests to fit with two different pdfs (not done)

Optimal searches: adaptive or emergent?

strictly speaking two different Lévy flight hypotheses:
(1) Lévy flights represent an (evolutionary) adaptive optimal search strategy
Viswanathan et al. (1999) the 'conventional' Lévy flight hypothesis

(2) Lévy flights emerge from the interaction with a scale-free food source distribution Viswanathan et al. (1996) more recent reasoning

An alternative to Lévy flight search strategies

Bénichou et al., Rev. Mod. Phys. 83, 81 (2011):

- for non-revisitable targets intermittent search strategies minimize the search time

- popular account of this work in Shlesinger, Nature 443, 281 (2006): "How to hunt a submarine?"; cf. also protein binding on DNA
- approach extended by Lomholt et al., PNAS 105, 11055 (2008) to intermittent search with Lévy relocations for rare revisitable targets

In search of a mathematical foraging theory

Summary of Part 1:

- two different Lévy flight hypothesis: adaptive and emergent
- scale-free Lévy flight paradigm
- problems with the data analysis
- different dynamics on different time scales and intermittent search strategies

Part 2:

Bumblebee Foraging under Predation Risk

Motivation: bumblebees

bumblebee foraging - two very practical problems:

1. find food (nectar, pollen) in complex landscapes

2. try to avoid predators

What type of motion?

Study bumblebee foraging in a laboratory experiment.

The bumblebee experiment

Ings, Chittka, Current Biology 18, 1520 (2008): bumblebee foraging in a cube of $\simeq 75 \mathrm{~cm}$ side length

- artificial yellow flowers: 4×4 grid on one wall
- two cameras track the position (50fps) of a single bumblebee (Bombus terrestris)

- advantages: systematic variation of the environment; easier than tracking bumblebees on large scales
- disadvantage: no typical free flight of bumblebees; no test of the Lévy hypothesis (but questioning of the Lévy paradigm!)

Variation of the environmental conditions

movie

three experimental stages:
(1) spider-free foraging
(2) foraging under predation risk
(3) memory test 1 day later
safe and dangerous
flowers
\#bumblebees=30, \#data per bumblebee for each stage ≈ 7000

Bumblebee experiment: two main questions

(1) What type of motion do the bumblebees perform in terms of stochastic dynamics?

(2) Are there changes of the dynamics under variation of the environmental conditions?

Velocity distributions: analysis

left: experimental data yielding pdf of v_{y}-velocities of a single bumblebee in the spider-free stage (black crosses) with max. likelihood fits of mixture of 2 Gaussians; exponential; power law; single Gaussian
right: quantile-quantile plot of a Gaussian mixture against the experimental data (black) plus surrogate data

Velocity distributions: interpretation

- best fit to the data by a mixture of two Gaussians with different variances (verified by information criteria with resp. weights)
- biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics
- no contradiction to Lévy hypothesis; but Lévy paradigm 'suggests': all relevant information captured by pdfs
$\Rightarrow \begin{aligned} & \text { big surprise: no difference in pdfs between different } \\ & \text { stages under variation of environmental conditions! }\end{aligned}$

Velocity autocorrelation function || to the wall

$$
V_{y}^{A C}(\tau)=\frac{\left\langle\left(v_{y}(t)-\mu\right)\left(v_{y}(t+\tau)-\mu\right)\right\rangle}{\sigma^{2}} \text { with average over all bees: }
$$

- plot: spider-free stage, predation thread, memory test
- correlations change from positive (spider-free) to negative (spiders)
\Rightarrow all changes are in the velocity correlations, not in pdfs!

Predator avoidance and a simple model

predator avoidance as difference in position pdfs spider / no spider from data:

positive spike: hovering; negative region: avoidance
modeled by Langevin equation

$$
\frac{d v_{y}}{d t}(t)=-\eta v_{y}(t)-\frac{\partial U}{\partial y}(y(t))+\xi(t)
$$

η : friction coefficient,
ξ : Gaussian white noise

simulated velocity correlations with repulsive interaction potential U bumblebee - spider off / on

Clever bumblebees!

Summary of Part 2:

- mixture of two Gaussian velocity distributions reflects spatial adjustment of bumblebee dynamics to flower carpet
- all changes to predation thread are contained in the velocity autocorrelation functions that exhibit highly non-trivial temporal behaviour
- no problem with the Lévy hypothesis but with the Lévy paradigm, which suggests that all relevant foraging information is contained in pdfs
- change of correlation decay in the presence of spiders due to experimentally extracted repulsive force as reproduced by Langevin dynamics

Part 3:

Modeling bumblebee flights

Reorientation (or CRW) model

describe biological movements in a plane by speed $s(t)=|v(t)|$ and turning angle β in comoving frame: Correlated Random Walk model

$$
\beta(t)=\xi(t), s(t)=\text { const. }
$$

where $\xi(t)$ is typically drawn i.i.d. from a wrapped normal distribution; model captures directional biological persistence
goal: construct a generalized CRW model from exp. data for reproducing 'free' (away from flowers) bumblebee flights by using Langevin-type dynamics: drift terms plus noise

$$
\begin{aligned}
\frac{d \beta}{d t}(t) & =h(\beta(t), s(t))+\tilde{\xi}(t) \\
\frac{d s}{d t}(t) & =g(\beta(t), s(t))+\psi(t)
\end{aligned}
$$

Drift coefficients: phase space dynamics

 assume Markovianity for estimating Fokker-Planck drift coefficients h and g; normalized drift vector field:
indicates that the cross-dependencies of $h(\beta(t), s(t))$ on s and of $g(\beta(t), s(t))$ on β are weak; vector field splits into

$$
\begin{aligned}
d \beta / d t & =h(\beta(t))+\tilde{\xi}(t) \\
d s / d t & =g(s(t))+\psi(t)
\end{aligned}
$$

Estimation of drift terms from data

extract projection $h(\beta)$ from data: $h(\beta) \simeq-k \beta$ with $k \approx 1 / \Delta t$ integrating $d \beta / d t=h(\beta(t))+\tilde{\xi}(t)$ wrt Δt yields $\beta(t)=\xi(t)$
extract projection $g(s)$ from data: \exists preferred speed s_{0}; piecewise linear approximation for $g(s)$ in $d s / d t=g(s(t))+\psi(t)$ yields $g(s) \approx\left(s-s_{0}\right) \cdot\left\{\begin{array}{l}-d_{1}, s<s_{0} \\ -d_{2}, s \geq s_{0}\end{array}\right.$
with $d_{1}>d_{2}>0$

Velocity-dependent angle noise

pdf for the turning angles β at each speed s is approximated by a Gaussian;
however, the variance σ_{β} is s-dependent (cf. naive reasoning):

$$
\begin{aligned}
\beta(t) & =\xi_{s}(t) \\
\xi_{s}(t) & \sim \mathcal{N}(0, f(s(t)) \\
f(s) & =c_{1} e^{-c_{2} s}+c_{3}
\end{aligned}
$$

Noise autocorrelation functions

noise $\xi_{s}(t)$ of turning angles β is a steep power law:

noise of speed changes
$\psi(t)=d s / d t-g(s(t))$ shows anti-correlations:

best approximated by

$$
\operatorname{acf}_{\psi}(t) \approx a e^{-\lambda_{1} t}+(1-a) e^{-\lambda_{2} t}
$$

Summary: the complete model

$$
\begin{aligned}
\beta(t) & =\xi_{s}(t) \\
\frac{d s}{d t} & =g(s(t))+\psi(t)
\end{aligned}
$$

- turning angles β given by power law-correlated Gaussian noise $\left.\xi_{s}(t) \sim \mathcal{N}\left(0, \sigma_{\xi}(s)\right)\right)$ with $\sigma_{\xi}(s)=c_{1} e^{-c_{2} s}+c_{3}$
- piecewise linear drift $g(s)$ for speed s
- ψ approximately Gaussian and anti-correlated via sum of exponentials

Simulation and comparison to real data

good agreement given the number of approximations

Summary

- Be careful with (power law) paradigms for data analysis
- Correlation functions can contain crucial information about interactions between forager and environment
- Langevin-type correlated random walk model available for bumblebee flights
suggestion: replace the fundamental question
What is the mathematically most efficient search strategy?
by

How can we statistically quantify changes in foraging dynamics due to interactions with the environment?
(is nature necessarily 'simple'?)

References

F.Lenz, T.Ings, A.V.Chechkin, L.Chittka, R.K., Spatio-temporal dynamics of bumblebees foraging under predation risk, Phys.

F.Lenz, A.V.Chechkin, R.K., Constructing a stochastic model of bumblebee flights from experimental data, under review for PLoS ONE

