Outline

Anomalous Fluctuation Relations

Aleksei V. Chechkin¹, Rainer Klages², Peter Dieterich³, Friedrich Lenz²

1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Queen Mary University of London, School of Mathematical Sciences 3 Institute for Physiology, Technical University of Dresden, Germany

MPIPKS Dresden, 10 April 2013

- 'Normal' fluctuation relations: motivation and warm-up
- Gaussian stochastic dynamics:
 check transient fluctuation relations for generalized (correlated) Langevin dynamics
- Relations to experiments: glassy dynamics and cell migration
- Other anomalous dynamics:
 normal / anomalous fluctuation relations for Lévy flights
 and time-fractional kinetics (CTRW)

Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial state into a nonequilibrium steady state.

Measure the probability distribution $ho(\xi_t)$ of entropy production

 ξ_t during time t:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

Transient Fluctuation Relation (TFR)

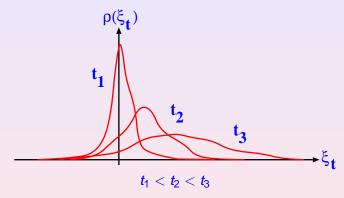
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and

- generalizes the Second Law to small noneq. systems
- connection with fluctuation dissipation relations
- 3 can be checked in experiments (Wang et al., 2002)

Fluctuation relation and the Second Law

meaning of TFR in terms of the Second Law:



$$\rho(\xi_t) = \rho(-\xi_t) \exp(\xi_t) \ge \rho(-\xi_t) \ (\xi_t \ge 0) \ \Rightarrow <\xi_t > \ge 0$$

sample specifically the tails of the pdf (large deviation result)

Fluctuation relation for Langevin dynamics

warmup: check TFR for the overdamped Langevin equation

$$\dot{\mathbf{x}} = \mathbf{F} + \zeta(t)$$
 (set all irrelevant constants to 1)

with constant field F and Gaussian white noise $\zeta(t)$.

entropy production ξ_t is equal to (mechanical) work $W_t = Fx(t)$

with $\rho(W_t) = F^{-1}\varrho(x,t)$; remains to solve corresponding Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

$$\varrho(x,t) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left(-\frac{(x-\langle x\rangle)^2}{2\sigma_x^2}\right)$$

straightforward:

(work) TFR holds if
$$\langle x \rangle = \sigma_x^2/2$$

and ∃ fluctuation-dissipation relation 1 (FDR1) ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)

Gaussian stochastic dynamics

goal: check TFR for Gaussian stochastic processes defined by the (overdamped) **generalized Langevin equation**

$$\int_0^t dt' \dot{x}(t') K(t-t') = F + \zeta(t)$$
e.g., Kubo (1965)

with Gaussian noise $\zeta(t)$ and memory kernel K(t)

such dynamics can generate anomalous diffusion:

$$\sigma_{\mathsf{x}}^2 \sim t^{\alpha} \; \text{with} \; \; \alpha \neq 1 \; (t \to \infty)$$

examples of applications: polymer dynamics (Panja, 2010); biological cell migration (Dieterich et al., 2008)

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,

$$<\zeta(t)\zeta(t')>\sim K(t-t')$$
,

with non-Markovian (correlated) noise; e.g., $K(t) \sim t^{-\beta}$

solving the corresponding generalized Langevin equation in

Laplace space yields FD

$$FDR2 \Rightarrow 'FDR1'$$

and since $\rho(W_t) \sim \varrho(x, t)$ is Gaussian

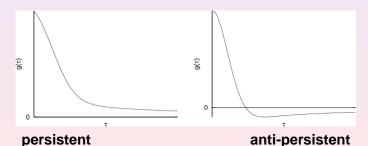
for correlated internal Gaussian noise ∃ TFR

Correlated external Gaussian noise

2. external Gaussian noise for which there is no FDR2, modeled by the (overdamped) generalized Langevin equation

$$\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$$

consider two types of Gaussian noise correlated by $g(\tau) = \langle \zeta(t)\zeta(t') \rangle_{\tau=t-t'} \sim (\Delta/\tau)^{\beta}$ for $\tau > \Delta$, $\beta > 0$:



it is $\langle x \rangle = Ft$ and $\sigma_x^2 = 2 \int_0^t d\tau (t - \tau) g(\tau)$

TFRs for correlated external Gaussian noise I

persistent noise:

results for σ_x^2 and the fluctuation ratio $R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)}$

- 0 < *β* < 1:
- superdiffusion $\sigma_{\it x}^2 \sim t^{2-eta}$ with anomalous TFR $\it R \sim {W_t \over t^{1-eta}}$
- β = 1:

weak superdiffusion $\sigma_{\rm x}^2 \sim t {\rm ln}\left(\frac{t}{\Delta}\right)$ with weakly anomalous TFR

$$R \sim W_t/\ln\left(\frac{t}{\Delta}\right)$$

• $1 < \beta < \infty$:

normal diffusion $\sigma_x^2 \sim 2Dt$ with $D = \int_0^\infty d\tau g(\tau)$ and anomalous (generalized) TFR $R \sim \frac{W_t}{D}$

TFRs for correlated external Gaussian noise II

antipersistent noise:

Outline

$$\int_0^\infty d au g(au) > 0$$
 yields normal diffusion with a generalized TFR

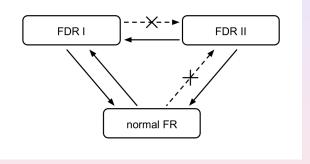
for $t \gg \Delta$; for 'pure' antipersistent case with $\int_0^\infty d\tau g(\tau) = 0$:

- The regime $0 < \beta < 1$ does not exist (spectral density <0)
- 1 < β < 2: subdiffusion $\sigma_x^2 \sim t^{2-\beta}$ with anomalous TFR $R \sim W_t t^{\beta-1}$
- $\beta=2$: weak subdiffusion $\sigma_{\rm x}^2\sim \ln(t/\Delta)$ with anomalous TFR $R\sim W_t t/\ln(t/\Delta)$
- 2 < β < ∞ : localization $\sigma_x^2 = const.$ with anomalous TFR $R \sim W_t t$

FDR and TFR

Outline

relation between TFR and FDR I,II for correlated Gaussian stochastic dynamics: ('normal FR'= conventional TFR)



in particular:

FDR2
$$\Rightarrow$$
 FDR1 \Rightarrow TFR

 \nexists TFR \Rightarrow \nexists FDR2

Experiments

$$R(W_t) = \ln \frac{\rho(W_t)}{\rho(-W_t)} = \mathbf{f}_{\beta}(\mathbf{t}) W_t$$

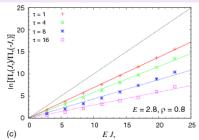
means by plotting *R* for different *t* the slope should change.

example 1:

Outline

computer simulations for glassy lattice gas with external field E

Sellitto, PRE (2009)



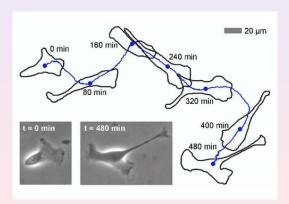
similar simulation results for three other models exhibiting glassy dynamics: Crisanti et al., PRL (2013)

Biological cell migration

example 2:

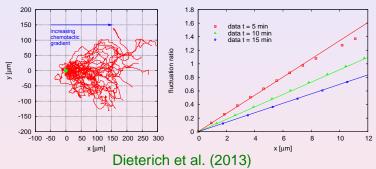
Outline

single biological cell crawling on a substrate; trajectory recorded with a video camera (Dieterich et al., 2008)



Cell migration under chemical gradients

experiments on murine neutrophils under chemotaxis:



- linear drift in the direction of the gradient, $\langle x(t) \rangle \sim t$
- $\sigma_{\rm v}^2 \sim t^{\beta}$ with $\beta > 1$ (long t): $\not\equiv$ FDR1
- some relation to the generalized Langevin equation with external noise and $0 < \beta < 1$ discussed before

TFR for Lévy flights

Second type of anomalous dynamics: consider the Langevin

$$\dot{\mathbf{x}} = \mathbf{F} + \zeta(\mathbf{t})$$

with white Lévy noise
$$\rho(\zeta) \sim |\zeta|^{-1-\alpha} (\zeta \to \infty)$$
, $0 \le \alpha < 2$

examples of applications: fluid dynamics (Solomon et al., 1993); Lévy flights for light (Barthelemy, 2008)

by solving the corresponding Fokker-Planck equation

$$\frac{\partial \rho}{\partial t} = -F \frac{\partial \rho}{\partial \mathbf{x}} + \frac{\partial^{\alpha} \rho}{\partial |\mathbf{x}|^{\alpha}}$$

with Riesz fractional derivative in Fourier space

$$\mathcal{F}\left\{\partial^{\alpha}\rho/\partial|\mathbf{x}|^{\alpha}\right\} = -|\mathbf{k}|^{\alpha}\mathcal{F}\left\{\rho\right\}$$

and using the scaled variable $w_t = W_t/(F^2t)$ we recover

$$\lim_{w_t o \pm \infty} rac{
ho(w_t)}{
ho(-w_t)} = 1$$
 Touchette, Cohen, PRE (2007)

i.e., large fluctuations are equally possible

Third type of anomalous dynamics: via subordinated Langevin

Outline

$$\frac{dx(u)}{du} = F + \zeta(u)$$
 , $\frac{dt(u)}{du} = \tau(u)$

with Gaussian white noise $\zeta(u)$ and white Lévy stable noise $\tau(u) > 0$; leads to the time-fractional Fokker-Planck equation

$$\frac{\partial \rho}{\partial t} = \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left[-\frac{\partial F}{\partial x} + \frac{\partial^2}{\partial x^2} \right] \rho$$

with Riemann-Liouville fractional derivative

$$rac{\partial^{\gamma}
ho}{\partial t^{\gamma}} = rac{\partial^{m}}{\partial t^{m}} \left[rac{1}{\Gamma(m-\gamma)} \int_{0}^{t} dt' rac{
ho(t')}{(t-t')^{\gamma+1-m}}
ight] ext{ for } m-1 < \gamma < m \,, \; m \in \mathbb{N}$$

and $\frac{\partial^{\gamma} \rho}{\partial t^{\gamma}} = \frac{\partial^{m} \rho}{\partial t^{m}}$ for $\gamma = m$, which **preserves** a generalized **FDR1**

examples of applications: photo current in copy machines (Scher et al., 1975) and related systems modeled by *Continuous Time Random Walk theory* (Metzler, Klafter, 2004) for this dynamics we recover the conventional TFR

Summary

Outline

- TFR tested for three fundamental types of anomalous stochastic dynamics:
 - correlated Gaussian stochastic dynamics:

$$FDR2 \Rightarrow FDR1 \Rightarrow TFR$$

TFR holds for *internal* noise, violations for *external* persistent / anti-persistent noise

- strong violation of TFR for space-fractional (Lévy) dynamics
- TFR holds for time-fractional (CTRW) dynamics
- anomalous TFRs appear to be important for glassy dynamics: cf. computer simulations on various glassy models and experiments on ('gel-like') cell migration

Summary

Open questions

- derive anomalous Jarzynski, Crooks, Seifert relations
- derive nonlinear response relations for anomalous dynamics
- compare anomalous fluctuation relations to experiments

References

- A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
- A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)
- RK, A.V. Chechkin, P.Dieterich, Anomalous fluctuation relations in:

