
Abstract

In the first part of this thesis we review the concept of stochastic Langevin
equations. We state a simple example and explain its physical meaning in
terms of Brownian motion. We then calculate the mean square displacement
and the velocity autocorrelation function by solving this equation. These
quantities are related to the diffusion coefficient in terms of the Green-Kuba
formula, and will be defined properly. In the second part of the thesis we
introduce a deterministic Langevin equation which models Brownian motion
in terms of deterministic chaos, as suggested in recent research literature.
We solve this equation by deriving a recurrence relation. We review Takagi
function techniques of dynamical systems theory and apply them to this
model. We also apply the correlation function technique. Finally, we derive,
for the first time, an exact formula for the diffusion coefficient as a function
of a control parameter for this model.
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Chapter 1

Introduction

The stochastic Langevin equation is the simplest and the most widely known
mathematical model for the phenomenon of Brownian motion. It is a first-
order differential equation which contains a stochastic term corresponding
to a random force. From physics point of view a deterministic equation is
an equation that governs the motion of a dynamical system and does not
contain terms corresponding to random forces. The dynamical system con-
cept is a mathematical formalization for any fixed ”rule” which describes the
time dependence of an evolved variable in its ambient space. Deterministic
models thus produce the same output for a given starting condition. In the
picture of classical physics, any macroscopic transport is caused mechanically
by microscopic dynamics. The theory of dynamical systems allows a descrip-
tion of the deterministic dynamics of a chaotic system, i.e, the microscopic
movements of the particles are taken into account completely [10].

The modern theory of chaotic dynamical systems thus provides an op-
portunity to ”take the microscopic dynamics seriously” in the calculation
of macroscopic statistical quantities in the sense that the complete, usually
highly non-linear deterministic dynamics of a system can be taken into ac-
count. In this sense the motivation arises to replace the randomness in the
stochastic Langevin equation by a deterministic chaotic force in order to get
back to a microscopic setting [1]. This way we are closer to the statistical
phenomenon of Brownian motion in terms of fully deterministic equations of
motion.

This thesis consists of five Chapters and is organized as follows.
In Chapter 2, we give a brief historical overview of Brownian motion. One

way to model the Brownian motion is via the stochastic Langevin equation.
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We present a physical derivation of this equation. Then we calculate the
mean square displacement and the autocorrelation function for the Brown-
ian/particle by using this equation.

In Chapter 3, as motivated above, we replace the randomness in the
stochastic Langevin equation by a deterministic term. In our case this term
is a deterministic chaotic kick force. By making suitable approximations,
we then solve this equation by deriving a recurrence relation. Based on this
result, we calculate the value for the diffusion coefficient for the kick force
using the Green-Kubo formula. The kick force is given by a Bernoulli shift
map model. We develop two different techniques to achieve this: the corre-
lation function technique and the Takagi function approach. Both are new
results.

Finally, in Chapter 4 we first parametrize our Bernoulli shift model with
a control parameter ℎ. We then derive a generalized Takagi function which
depends on ℎ. Finally, for the first time again, we derive an exact analytical
formula for the diffusion coefficient as a function of the control parameter ℎ.
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Chapter 2

Stochastic Langevin Equation

2.1 What is Brownian motion?

Brownian motion is the seemingly random movement of a tracer particle sus-
pended in a fluid.

The phenomenon of Brownian motion was first observed by J. Ingenhousz
for coal dust particles on the surface of alcohol. However, it became more
widely known only later on by the work of botanist R. Brown in 1827, who
reported vigorous irregular motion of small particles originating from pollen
floating on water [14]. It was Einstein who first provided a theoretical anal-
ysis of the Brownian motion by describing this irregular motion in terms of
diffusion processes. Einstein proved that the diffusion constant D is related
to its mobility � by

D = �kT (2.1)

where k is the Boltzmann constant and T is temperature. Equation (2.1)
is called Einstein relation. It is a good basis of experimental verification
that Brownian motion is related to the thermal motion of molecules. Ein-
stein’s work led J.B. Perrin to the experimental measurement of the Avogadro
number. Brownian motion can give considerable insight into the mechanism
responsible for the existence of fluctuations and ”dissipation of energy” [16].
This problem is also of great practical interest because of the fact that such
fluctuations represent ”noise” which can limit the accuracy of physical mea-
surements. The theory of Brownian motion was further developed by P.
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Langevin, and many others. Brownian motion is very common. It takes
place in electrical circuits, in finance, such as stock market fluctuations, etc.

2.2 The Langevin equation

The time evolution of the position of a Brownian particle is best described
using the Langevin equation, an equation which involves a random force
representing the effect of thermal fluctuations of the solvent on the particle.

We consider the simple case of a Brownian (tracer) particle in a fluid.
The particle is not acted upon by any other force except the one arising from
the collisions with molecules in the fluid [15]. The physical model for this
should start from the microscopic motion itself. Recall that Newton’s second
law of motion can be written as

m
dv

dt
= F, (2.2)

where m is the mass of the particle, v is the velocity and F is the force acting
on the particle from the molecules of the fluid surrounding the Brownian
particle. We treat only the one-dimensional case. Langevin suggested that
the force F can be written as a sum of two parts, i.e two different forces. The
first part is the frictional force (viscous drag) which represents the dynamical
friction experienced by the particle and is proportional to the velocity of the
particle. This force is

FA = −mv, (2.3)

where m is the friction coefficient. The second part of the force, FB, is
regarded as random, in the sense that it does not depend on the motion of
the particle, i.e its displacement. It is a rapidly fluctuating force which is
again due to the impacts of the molecules of the fluid on the particle ([14],[6]).
The Gaussian white noise is considered to be a model of this force. This force
fulfils certain stochastic conditions, the most important being that the time
average is zero, and that the force is �-correlated [2]. This means that the
autocorrelation function is

⟨FB(t)FB(t′)⟩ = C�(t− t′), (2.4)

where �(t) denotes the Dirac delta function (see Appendix), t and t′ are
different times, ⟨⋅ ⋅ ⋅ ⟩ denotes the expectation value, and C is called the spec-
tral density. In physics, the spectral density, is a positive real function of a
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frequency variable associated with a stationary stochastic process, or a deter-
ministic function of time, which has dimensions of power per Hz, or energy
per Hz. It is often called simply the spectrum of the signal. Intuitively,
the spectral density captures the frequency content of a stochastic process
and helps identify periodicities. In general, by autocorrelation we mean the
quantity,

⟨A (t1)A (t2)⟩ = KA(t1, t2) (2.5)

which is a measure of the ”statistical correlation between the value of the
fluctuating variable A at time t1and its value at time t2”. Moreover, if the
force FB(t) is passed through a filter (by Fourier transforming it), the spectral
density is not a function of the angular frequency !, it is constant for all
values of !. In this case we have white noise [6]. Now (2.2) can be written
as

m
dv

dt
= −mv + FB (2.6)

In the case of a spherical particle, Eq.(2.6) becomes

m
dv

dt
= −�v + FB, (2.7)

where � = 6�a� is known as Stoke’s law. Equation (2.7) is known as the
Langevin equation. In case of an external force FC , it can be written as

m
dv

dt
= FC − �v + FB (2.8)

2.3 Calculation of the mean square displace-

ment

We first define what the mean square displacement (msd) means. It is a
measure of the average distance squared a molecule or particle travels. It is
defined as

msd(t) = ⟨xi(t)2⟩ = ⟨(xi(t)− xi(0))2⟩ (2.9)

where xi(t)− xi(0) is the distance molecule i travels over some time interval
of length t. ⟨⋅ ⋅ ⋅ ⟩ means the ensemble average, which is the statistical average
of the quantity inside the brackets at a given time over all systems of the
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ensemble. If we consider all the molecules in the system then we could write

msd(t) =
1

N

N∑
i=1

⟨xi(t)2⟩ (2.10)

where N is the number of molecules in the system.
In this thesis we only consider a single particle. We wish to proceed by

calculating the msd of a Brownian particle at time t. We will employ the
Langevin equation in (2.7) to achieve this [16]. Recall that, in Eq.(2.7), we
have v = dx

dt
= ẋ. Hence, Eq.(2.7) now becomes

m
dẋ

dt
= −�ẋ+ FB (2.11)

Multiplying both sides of Eq.(2.11) by x and taking the ensemble average of
both sides gives

m⟨ d
dt

(xẋ)⟩ −m⟨ẋ2⟩ = −�⟨xẋ⟩+ ⟨x⟩⟨FB⟩ (2.12)

where we have used xdẋ
dt

= d
dt

(xẋ) − ẋ2. Also note that the operations of
taking a time derivative and taking an ensemble average commute. The
mean value of the fluctuating part FB always vanishes irrespective of the
velocity or position of the particle. So ⟨x⟩⟨FB⟩ = 0. From the equipartition
theorem we have 1

2
m⟨ẋ2⟩ = 1

2
kT . Thus Eq.(2.12) becomes

m
d

dt
⟨xẋ⟩ = kT − �⟨xẋ⟩ (2.13)

which is a first-order differential equation and we can solve it for ⟨xẋ⟩. We
use the integrating factor technique. Letting y = ⟨xẋ⟩, Eq.(2.13) becomes

dy

dt
+
�

m
y =

kT

m
(2.14)

The solution of Eq.(2.14) is given by

ye
�
m
x =

∫
kT

m
e
�
m
xdx (2.15)

This gives

y = Ce−
�
m
x +

kT

�
(2.16)
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where C is a constant of integration. Let  ≡ �/m, so that −1 is a charac-
teristic time constant of the system. Thus we have

⟨xẋ⟩ = Ce−t +
kT

�
(2.17)

Assuming the initial conditions, x = 0 at t = 0, the above equation implies
that C = −kT

�
. Hence we can write

⟨xẋ⟩ =
kT

�
(1− e−t) (2.18)

Writing xẋ as 1
2
d
dt

(x2) in Eq.(2.18) and integrating with respect to time t
gives,

1

2

∫ t

0

d

dt
⟨x2⟩dt′ =

∫ t

0

kT

�
dt′ −

∫ t

0

kT

�
e−t

′
dt′ (2.19)

which then gives

⟨x2⟩ =
2kT

�
+

2kT

�

(
e−t − 1

)
=

2kT

�

[
t− 1



(
1− e−t

)]
(2.20)

which is the mean square displacement of a Brownian particle at time t.
Depending on the value of t relative to 1


, we can consider two limiting

cases,

case 1 : t << −1. Using Taylor series, we can write e−t = 1 − t +
1
2
2t2 − .... Then

⟨x2⟩ =
2kT

�

[
t− 1



(
1− 1 + t− 1

2
2t2 + ...

)]
=

2kT

�

[
t− t+

1

2
t2 − ...

]
=

kT

m
t2 (2.21)

where we have used  ≡ �
m

, and O(t3) = 0.
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This means that during a short interval of time the particle behaves as
though it were a free particle moving with the constant thermal velocity
v = (kT/m)1/2

case 2 : t >> −1. This implies that e−t → 0. Then Eq.(2.20) becomes,

⟨x2⟩ =
2kT

�
t (2.22)

This means that the particle exhibits diffusive movements, so that ⟨x2⟩ ∝ t.
We define the diffusion coefficient D for a tracer particle via the Einstein
formula

D = lim
t→∞

⟨x2⟩
2t

(2.23)

Recalling that � = 6��a, and using Eq.(2.22), we derive an explicit result
for the msd of a Brownian particle for t >> −1,

⟨x2⟩ =
kT

3��a
t (2.24)

2.4 Derivation of the velocity autocorrelation

function

The velocity autocorrelation function is defined as

⟨v(t′)v(t′′)⟩ = ⟨v(0)v(t)⟩ ≡ Kv(t) (2.25)

where t = t′′ − t′. The system is assumed to be in equilibrium state, hence
time-translation invariant.
We wish to derive an expression for ⟨v(0)v(t)⟩ in terms of t. We start with
the Langevin equation (2.7)

m
dv

dt
= −�v + FB (2.26)
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Then

v(t+ �)− v(t) = −v(t)� +
1

m

∫ t+�

t

FB(t′)dt′ (2.27)

where  ≡ �/m and � is macroscopically small (but large in a microscopic
scale). Next we multiply the last equation by v(0) and take the ensemble
average,

⟨v(0)v(t+�)⟩−⟨v(0)v(t)⟩ = −⟨v(0)v(t)⟩�+
1

m
⟨v(0)

∫ t+�

t

FB(t′)dt′⟩ (2.28)

The second term on the RHS is zero [16]. This is because ⟨FB⟩ is zero for
the reasons explained in section 2.3.

Equation (2.28) now becomes

⟨v(0)v(t+ �)⟩ − ⟨v(0)v(t)⟩
�

=
d

ds
⟨v(0)v(t)⟩ = −⟨v(0)v(t)⟩ (2.29)

For t > 0, by integration this gives

⟨v(0)v(t)⟩ = ⟨v2(0)⟩e−t (2.30)

Using the equipartition theorem result ⟨1
2
v2(0)⟩ = 1

2
kT , the last equation

yields

⟨v(0)v(t)⟩ = ⟨v2(0)⟩e−∣t∣ = kT

m
e−∣t∣ (2.31)

for all values of t.
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Chapter 3

Deterministic Langevin
Equation

In this chapter we wish to replace the randomness (i.e, the stochastic term)
in the stochastic Langevin equation by a deterministic chaotic force in order
to get back to a microscopic setting [1].

3.1 Langevin equation revisited

In the previous chapter we considered a stochastic Langevin equation. More
precisely we considered Eq.(2.7) which contained a random force. We can
rewrite this equation in the form

dY

dt
= −Y + L(t) (3.1)

which is also a linear equation, where we have replaced v by Y , −�/m by 
and FB/m by L(t). Here L(t) is Gaussian white noise.  > 0, which is the
same as in (2.6), represents a damping constant.

In [1] a deterministic version of the above stochastic Langevin equation
has been proposed. Namely, if the Gaussian white noise as a stochastic
term is replaced by a chaotic process generated by a deterministic chaotic
dynamics, one gets a deterministic Langevin equation. These are also called
dynamical systems of Langevin type.

We consider a one-dimensional particle of unit mass under the influence
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of a linear damping force that is driven by a rapidly fluctuating chaotic force.
As a model, we replace the Gaussian white noise L(t) by a more complicated
chaotic process L� (t), which can be considered to be a deterministic chaotic
kick force. The velocity Y (t) of the particle obeys

dY

dt
= −Y + L� (t) (3.2)

At discrete time points n� , with a fixed � and integers n = 0, 1, 2, ..., the
particle gets a kick of strength xn,

L� = � 1/2
∞∑
n=1

xn� (t− n�) , (3.3)

where again � is Dirac’s delta function, � > 0 is the time difference between
subsequent impulses, and the kick strengths xn evolve in a deterministic way
[2]. So we assume that the kick strength at time (n + 1)� is a deterministic
function of the kick strength at time n� ,

xn+1 = B(xn) (3.4)

In this thesis the deterministic function will be the Bernoulli shift map in
the interval −1/2 ⩽ x ⩽ 1/2 (see Section 3.3). The constant factor � 1/2 has
been included in Eq.(3.3) for scaling purposes.

3.2 Solving the deterministic Langevin equa-

tion

We refer to equation (3.2) as a deterministic Langevin equation. We wish
to solve this equation, that is, we wish to find Y (t). We use the integrating
factor technique with the integrating factor et. We assume that the impulses
start at t = 0. Integrating Eq.(3.2) gives

etY (t) =

∫ t

0

L� (t
′)et

′
dt′ + C (3.5)

where C = Y (0). Then

Y (t) = e−tY (0) +

∫ t

0

L� (t
′)e−(t−t

′)dt′ (3.6)
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For t >> 0, the first term on the RHS vanishes. Hence using Eq.(3.3) and
the definition of Dirac delta function (see Appendix) we can write

Y (t) =

∫ t

0

L� (t
′)e(t−t

′)dt′

= � 1/2
∫ t

0

∞∑
k=1

e−(t−t
′)xk� (t′ − k�)

= � 1/2
n∑
k=1

xke
−(t−k�) (3.7)

= e−(t−n�)yn (3.8)

where n� < t < (n+ 1)� , and n = ⌊ t
�
⌋, (⌊⌋: floor function).

Using Eqs.(3.7) and (3.8) we can define yn to be

yn = � 1/2
n∑
k=1

xke
−(t−k�)e(t−n�)

= � 1/2
n∑
k=1

xke
−�(n−k) (3.9)

Then for yn+1 we have

yn+1 = � 1/2
n+1∑
k=1

xke
−�(n+1−k)

= � 1/2
n∑
k=1

xke
−�(n+1−k) + � 1/2xn+1e

−�(n+1−n−1)

= e−�� 1/2
n∑
k=1

xke
−�(n−k) + � 1/2xn+1

= �yn + � 1/2xn+1 (3.10)
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where � = e−� is a parameter. The position Z(t) of the particle can be
found by integrating Y (t) given by Eq.(3.8),

Z(t) =

∫ t

0

e−(t
′−n�)yndt

′

=

∫ �

0

e−(t
′−0�)y0dt

′ +

∫ 2�

�

e−(t
′−�)y1dt

′ + ⋅ ⋅ ⋅+
∫ t

n�

e−(t
′−n�)yndt

′

=
1



n−1∑
k=0

yk
(
1− e−�

)
+

1− e−(t−n�)


yn (3.11)

Let the sum in Eq.(3.11) be zn. That is, let

zn =
n−1∑
k=0

yk
(
1− e−�

)
(3.12)

Then for zn+1 we have

zn+1 =
n∑
k=0

yk
(
1− e−�

)
=

n−1∑
k=0

yk
(
1− e−�

)
+

1


yn
(
1− e−�

)
= zn + �yn (3.13)

where � = (1− �)/ is also a parameter.

Thus we have established the following recurrence relation

xn+1 = B(xn) (3.14)

yn+1 = �yn + � 1/2xn+1 (3.15)

zn+1 = zn + �yn (3.16)

Equations (3.14)-(3.16) which we have just derived are very important re-
sults. They represent the setup for the rest of the work in this thesis. Note
that the derivation of the above recurrence relation was done independently
and is omitted in [1].
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3.3 Calculation of the Diffusion Coefficient

In this section we calculate the value for the diffusion coefficientD for the kick
force xn. We do this by using the so-called Green-Kubo formula ([10],[9],[8])
which is given by

D =
∞∑
k=0

⟨vkv0⟩ −
1

2
⟨v02⟩ (3.17)

where v here is the ”velocity” function, which for our map model will be
defined precisely, and k is the k-th iterate. A detailed derivation of Green-
Kubo formula is shown in [13]. A discrete version of Green-Kubo formula is
given in [3].

The Bernoulli shift map on the interval [−1/2, 1/2] is defined by

B(x) =

⎧⎨⎩
2x+ 1

2
−1/2 ≤ x < 0

2x− 1
2

0 ≤ x < 1/2
(3.18)

The map is shown in Fig.(3.1). We calculate a value for D for the kick
force given by this map.

We now return to our recurrence relation that we derived in section 3.4,

xn+1 = B(xn) (3.19)

yn+1 = �yn + � 1/2xn+1 (3.20)

zn+1 = zn + �yn (3.21)

For simplicity reasons we consider the over-damped case, that is, when  ≫ 0
for fixed � . This means � = e−� → 0. In order to compute D by us-
ing Eq.(3.17) we need to define a ”velocity” function vn. We define it as
vn := zn+1 − zn, which is the difference between two successive positions of
the particle, in other words it measures how far a particle travels under one
iteration. Using this definition and the above recurrence relation we can write

vn := zn+1 − zn = �yn (3.22)
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Figure 3.1: The Bernoulli shift map on the interval [ -1/2,1/2]

Hence for the velocity function we now have

vn := � 1/2xn (3.23)

For convenience we let � = 1 and  = 1. Equation (3.17) is equivalent to the
equation

D = lim
n→∞

n∑
k=0

∫ 1/2

−1/2
v(x)v(xk)dx−

1

2

∫ 1/2

−1/2
v2(x)dx (3.24)

where we have taken x = x0. Note that the integration is performed over the
invariant density �∗(x) and one could show that it is unity for the Bernoulli
shift map ([10],[11]).

3.3.1 Correlation function technique

Here we present a technique for calculating the value for the diffusion coef-
ficient for the kick strength/force given by the Bernoulli shift map xn+1 =
B(xn) (see Eq.(3.18)). We use the definition of the two-point position au-
tocorrelation function. The two-point position autocorrelation function is
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given by

Ck = ⟨xkx0⟩ (3.25)

Then,

C0 = ⟨x02⟩ =

∫ 1/2

−1/2
x0

2dx0 =
1

12
(3.26)

We also have that xk = B(k)(x0) = B(k)(x), where we have taken x = x0.
Then, using Eq.(3.25) we can write

Ck = ⟨B(k)(x)x⟩ =

∫ 1/2

−1/2
B(k)(x)xdx (3.27)

=

∫ 0

−1/2
B(k)(x)xdx+

∫ 1/2

0

B(k)(x)xdx

=

∫ 0

−1/2
B(k−1)(B(x))xdx+

∫ 1/2

0

B(k−1)(B(x))xdx

=

∫ 0

−1/2
B(k−1)

(
2x+

1

2

)
xdx+

∫ 1/2

0

B(k−1)
(

2x− 1

2

)
xdx(3.28)

Using the substitutions u = 2x+ 1
2

and v = 2x− 1
2
, and changing the limits

of integration accordingly, after some algebra we get

Ck =
1

4

∫ 1/2

−1/2
B(k−1)(u)udu+

1

4

∫ 1/2

−1/2
B(k−1)(v)vdv

=
1

2

∫ 1/2

−1/2
B(k−1)(u)udu, (3.29)

where we have relabelled v with u. Now for Ck+1 using Eq.(3.27) we can
write

Ck+1 =
1

2

∫ 1/2

−1/2
B(k)(u)udu =

1

2
Ck (3.30)
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Using this relation we can further write,

Ck =
1

2
Ck−1 =

(
1

2

)k
C0

=
1

12

(
1

2

)k
(3.31)

Finally, using the Green-Kubo formula (3.17), we get

D =
∞∑
k=0

Ck −
1

2
C0

=
1

12

∞∑
k=0

(
1

2

)k
− 1

24

=
1

8
(3.32)

We see that the correlation function decays exponentially. This is a new result
calculated for the first time by this method. Using different approaches, the
two-point correlation function is also evaluated in [5] and [17]. Higher-order
correlation functions have been considered in [4] and [5].

3.3.2 Takagi function technique

Here we derive the so-called generalised Takagi function as an alternative
technique of calculating a value for the diffusion coefficient for the kick
strength xn+1 = B(xn) (see Eq.(3.18))

Following the method outlined in [6], the summation in Eq.(3.24) can be
moved inside the integral in order to define a ”jump function”

Jn(x0) =
n∑
k=0

v(xk) =
n∑
k=0

xk, (3.33)

where xk = Bk(x0). Due to sensitive dependence on initial conditions the
function Jn(x0) will behave very irregularly for large n. Thus in order to

17



calculate D, we need a way to control the function Jn(x0). We start by
deriving a recursion formula for it. We have

Jn(x0) =
n∑
k=0

v(Bkx0)

= v(x0) +
n∑
k=1

v(Bkx0)

= v(x0) + Jn−1(B(x0)) (3.34)

For evaluating the Green-Kubo formula, it is suitable to define a more well-
behaved function T n(x) [10], such that

T n(x) =

∫
Jn(x)dx (3.35)

This will also help us to manipulate T n(x). Using Eqs.(3.34) and (3.35) we
can derive a recursion relation for T n(x). Hence we can write

T n(x) =

∫
Jn(x)dx

=

∫ (
v(x) + Jn−1(B(x))

)
dx

=

∫
v(x)dx+

∫
Jn−1(B(x))dx

=

∫
xdx+

1

2
T n−1(B(x))

=
x2

2
+ C +

1

2
T n−1(B(x)) (3.36)

We define C so that T n(x) is continuous on the interval [−1/2, 1/2] and
T n(−1/2) = T n(1/2) = 0. In order to be able to use T n(x), we need a more
user friendly recursion relation. Using Eq.(3.23) and Eq.(3.34) we see that
Jn(x) is satisfied by

Jn(x) =

⎧⎨⎩
x+ Jn−1(2x+ 1

2
) −1/2 ≤ x < 0

x+ Jn−1(2x− 1
2
) 0 ≤ x < 1/2

(3.37)
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Figure 3.2: Takagi function. Note that the function is symmetric about the origin

and converges very fast according to Eq.(3.39). Here we have taken n=10, but even for

larger values of n, the graph looks the same. It is a continuous but non-differentiable

function. This plot was created with Maple 9.5

Integrating the above equation we obtain a recursion relation for T n(x),

T n(x) =

⎧⎨⎩
x2

2
+ 1

2
T n−1(2x+ 1

2
) + C1 −1/2 ≤ x < 0

x2

2
+ 1

2
T n−1(2x− 1

2
) + C2 0 ≤ x < 1/2

(3.38)

Applying the condition T n(−1/2) = T n(1/2) = 0, we see that C1 = C2 = −1
8
.

Then we obtain

T n(x) =

⎧⎨⎩
x2

2
− 1

8
+ 1

2
T n−1(2x+ 1

2
) −1/2 ≤ x < 0

x2

2
− 1

8
+ 1

2
T n−1(2x− 1

2
) 0 ≤ x < 1/2

(3.39)

We may call the function T n(x) as a generalized Takagi funcion. It is shown
in Fig.(3.2). Letting n → ∞, we assume that T n(x) converges to some lim-
iting function T (x) [10]. Using the limiting function T (x) we can calculate
the diffusion coefficient D. The Green-Kubo formula gives
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D =
∞∑
k=0

∫ 1/2

−1/2
v(xk)v(x)dx− 1

2

∫ 1/2

−1/2
v2(x)dx

=

∫ 1/2

−1/2

∞∑
k=0

v(xk)v(x)dx− 1

2

∫ 1/2

−1/2
v2(x)dx

=

∫ 1/2

−1/2
xJn(x)dx− 1

2

∫ 1/2

−1/2
x2dx

= [xT n(x)]
1/2
−1/2 −

∫ 1/2

−1/2
T n(x)dx− 1

2

∫ 1/2

−1/2
x2dx

= − 1

24
−
∫ 1/2

−1/2
T n(x)dx (3.40)

where the term [xT n(x)]
1/2
−1/2 vanishes. We now need to compute the second

term, where n→∞. Thus we have

∫ 1/2

−1/2
T n(x)dx =

∫ 0

−1/2
T n(x)dx+

∫ 1/2

0

T n(x)dx

=

∫ 0

−1/2

(
x2

2
− 1

8
+

1

2
T n−1(2x+

1

2
)

)
dx

+

∫ 1/2

0

(
x2

2
− 1

8
+

1

2
T n−1(2x− 1

2
)

)
dx

= − 1

12
+

1

2

[∫ 0

−1/2
T n−1(2x+

1

2
)dx

]
+

1

2

[∫ 1/2

0

T n−1(2x− 1

2
)dx

]
(3.41)

By assumption, T n−1(x) also converges to the same limiting function T (x).
Using the substitutions 2x + 1

2
= u and 2x− 1

2
= v and changing the limits

of integration accordingly, one gets∫ 1/2

−1/2
T n(x)dx = − 1

12
+

1

4

[∫ 1/2

−1/2
T n−1(u)du+

∫ 1/2

−1/2
T n−1(v)dv

]
(3.42)
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Relabelling u and v with x, then the above equation is just an equation with

one unknown, namely
∫ 1/2

−1/2 T
n(x)dx. After some algebra one gets∫ 1/2

−1/2
T n(x)dx = −1

6
(3.43)

Finally, for the diffusion coefficient we have

D =
1

6
− 1

24

=
1

8
(3.44)

This is a new result, calculated for the first time by this method. It is
identical to the result (3.32).
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Chapter 4

Parameter Dependence

In this chapter we consider a parameter dependence of the diffusion coeffi-
cient. We introduce a control parameter ℎ ∈ [0, 1) in the Bernoulli shift map
(3.18) that we considered in the previous chapter. We do this in such a way
that we lift the left branch by ℎ and lower the right branch of the map by
−ℎ. Our goal is to derive an analytical expression for the diffusion coefficient
in terms of the parameter ℎ.

4.1 Bernoulli shift map with parameter

Let us first redefine the Bernoulli shift map in terms of the parameter ℎ. It
is defined as,

Bℎ(x) =

⎧⎨⎩
2x+ 1

2
+ ℎ −1/2 ≤ x < 0

2x− 1
2
− ℎ 0 ≤ x < 1/2

(4.1)

Note that Eq.(3.18) corresponds to the case ℎ = 0. After lifting the left
branch by ℎ and lowering the right branch by −ℎ, Eq.(4.1) becomes,
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Figure 4.1: Bernoulli shift map with parameter h. The horizontal axis is the x

axis, whereas the vertical axis is the B̃ℎ(x) axis. The graph has four branches for any

values of h∈(0,1).

B̃ℎ(x) =

⎧⎨⎩

2x+ 1
2

+ ℎ −1/2 ≤ x < −ℎ/2

2x− 1
2

+ ℎ −ℎ/2 ≤ x < 0

2x+ 1
2
− ℎ 0 ≤ x < ℎ/2

2x− 1
2
− ℎ ℎ/2 ≤ x < 1/2

(4.2)

The graph of this map is shown in Fig.(4.1).

4.2 Takagi Function with parameter

In this section we derive a generalized Takagi function with parameter h. We
start by defining the velocity function for the map (4.2). Again we define it as

vℎ(x) := x − 1/2 ≤ x ≤ 1/2 (4.3)

Using Eq.(4.2) and Eq.(4.3) we see that for the parameter dependent jump
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function Jnℎ (x) we can write,

Jnℎ (x) =

⎧⎨⎩

x+ Jn−1ℎ (2x+ 1
2

+ ℎ) −1/2 ≤ x < −ℎ/2

x+ Jn−1ℎ (2x− 1
2

+ ℎ) −ℎ/2 ≤ x < 0

x+ Jn−1ℎ (2x+ 1
2
− ℎ) 0 ≤ x < ℎ/2

x+ Jn−1ℎ (2x− 1
2
− ℎ) ℎ/2 ≤ x ≤ 1/2

(4.4)

Integrating the above equation gives the parameter dependent Takagi func-
tion in terms of constants of integration,

T nℎ (x) =

⎧⎨⎩

x2

2
+ 1

2
T n−1ℎ (2x+ 1

2
+ ℎ) + c1 −1/2 ≤ x < −ℎ/2

x2

2
+ 1

2
T n−1ℎ (2x− 1

2
+ ℎ) + c2 −ℎ/2 ≤ x < 0

x2

2
+ 1

2
T n−1ℎ (2x+ 1

2
− ℎ) + c3 0 ≤ x < ℎ/2

x2

2
+ 1

2
T n−1ℎ (2x− 1

2
− ℎ) + c4 ℎ/2 ≤ x ≤ 1/2

(4.5)

In order to compute the constants of integration, we use the condition that
T nℎ (−1/2) = T nℎ (1/2) = 0 and the fact that the Takagi function above is
continuous. Again, we assume that T nℎ (x) and T n−1ℎ (x) converge to the same
limiting function T∞ℎ (x) as n→∞. For simplicity let this limiting function
be just Tℎ(x). Applying the above conditions gives the following relations:

1. Tℎ(−1
2
) = 1

8
+ 1

2
Tℎ(ℎ− 1

2
) + c1 = 0

2. Tℎ(−ℎ
2
) = ℎ2

8
+ c1

3. Tℎ(−ℎ
2
) = ℎ2

8
+ c2

4. Tℎ(0) = 1
2
Tℎ(ℎ− 1

2
) + c2

5. Tℎ(0) = 1
2
Tℎ(

1
2
− ℎ) + c3

6. Tℎ(
ℎ
2
) = ℎ2

8
+ c3

24



7. Tℎ(
ℎ
2
) = ℎ2

8
+ c4

8. Tℎ(
1
2
) = 1

8
+ 1

2
Tℎ(

1
2
− ℎ) + c4 = 0

After some easy algebra we find that

c1 = c2 = c3 = c4 = −1

8
− 1

2
Tℎ

(
1

2
− ℎ
)

(4.6)

Note that Tℎ(
1
2
− ℎ), by assumption, is a limiting function of T n−1ℎ (1

2
− ℎ) as

n → ∞, and the same applies to Tℎ(ℎ − 1
2
). Substituting the values of the

constants in Eq.(4.5), then the Takagi function becomes,

Tℎ(x) =

⎧⎨⎩

x2

2
+ 1

2
Tℎ(2x+ 1

2
+ ℎ)− 1

8
− 1

2
Tℎ(

1
2
− ℎ) −1/2 ≤ x < −ℎ/2

x2

2
+ 1

2
Tℎ(2x− 1

2
+ ℎ)− 1

8
− 1

2
Tℎ(

1
2
− ℎ) −ℎ/2 ≤ x < 0

x2

2
+ 1

2
Tℎ(2x+ 1

2
− ℎ)− 1

8
− 1

2
Tℎ(

1
2
− ℎ) 0 ≤ x < ℎ/2

x2

2
+ 1

2
Tℎ(2x− 1

2
− ℎ)− 1

8
− 1

2
Tℎ(

1
2
− ℎ) ℎ/2 ≤ x ≤ 1/2

(4.7)

4.3 Diffusion Coefficient D(ℎ)

Having derived the parameter dependent Takagi function, we can proceed
to derive an analytical expression for the diffusion coefficient as a function
of the parameter ℎ. One could show that the invariant density for the map
(4.2) is unity for all 0 ≤ ℎ ≤ 1. This is related to the fact that the invariant
density for the Bernoulli shift map (xn+1 = 2x (mod 1)) is unity which is
recovered for ℎ = 0 and ℎ = 1. Also this is based on the fact that in (4.2)
there exist full branches, in the sense that after lifting and lowering by ℎ and
−ℎ, respectively, we don’t loose any part of the two branches or we don’t
create new ones (see Fig.4.1). This will greatly simplify our calculation of
the diffusion coefficient in using the Green-Kubo formula (3.17). Thus we
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can write,

D(ℎ) =

∫ 1/2

−1/2
vℎ(x)Jnℎ (x)dx− 1

2

∫ 1/2

−1/2
v2ℎ(x)dx

=

∫ 1/2

−1/2
xJnℎ (x)dx− 1

2

∫ 1/2

−1/2
x2dx

= [xT nℎ (x)]
1/2
−1/2 −

∫ 1/2

−1/2
T nℎ (x)dx− 1

2

∫ 1/2

−1/2
x2dx

= −
∫ 1/2

−1/2
T nℎ (x)dx− 1

24
(4.8)

where the term [xT nℎ (x)]
1/2
−1/2 vanishes. Our next task is to evaluate

∫ 1/2

−1/2 T
n
ℎ (x)dx.

It can be written as,

∫ 1/2

−1/2
T nℎ (x)dx =

∫ −ℎ/2
−1/2

T nℎ (x)dx+

∫ 0

−ℎ/2
T nℎ (x)dx

+

∫ ℎ/2

0

T nℎ (x)dx+

∫ 1/2

ℎ/2

T nℎ (x)dx (4.9)

Evaluating each of the four integrals separately, where we use Eq.(4.7), gives

∫ −ℎ/2
−1/2

T nℎ (x)dx = −ℎ
3

48
− 1

24
+

ℎ

16
+
ℎ

4
T

(
ℎ− 1

2

)
− 1

4
T

(
ℎ− 1

2

)
+

1

2

∫ −ℎ/2
−1/2

T (2x+
1

2
+ ℎ)dx

=
−ℎ3

48
− 1

24
+

ℎ

16
+
ℎ

4
T (ℎ− 1

2
)

− 1

4
T

(
ℎ− 1

2

)
+

1

4

∫ 1/2

−1/2+ℎ
T (u)du (4.10)

where we have used the substitution u = 2x+ 1
2

+ ℎ and changed the limits

26



of integration accordingly. We do the same with other three integrals. For
the second integral we get,∫ 0

−ℎ/2
T nℎ (x)dx = −ℎ

3

48
− ℎ

16
− ℎ

4
T

(
ℎ− 1

2

)
+

1

4

∫ −1/2+ℎ
−1/2

T (v)dv (4.11)

where we have used the substitution v = 2x − 1
2

+ ℎ. For the third and the
fourth integral we use the substitutions w = 2x+ 1

2
− ℎ and z = 2x− 1

2
− ℎ,

respectively. Thus we get,∫ ℎ/2

0

T nℎ (x)dx =
ℎ3

48
− ℎ

16
− ℎ

4
T

(
ℎ− 1

2

)
+

1

4

∫ 1/2

1/2−ℎ
T (w)dw (4.12)

and∫ 1/2

ℎ/2

T nℎ (x)dx = −ℎ
3

48
− 1

24
+
ℎ

16
−1

4
T

(
ℎ− 1

2

)
+
ℎ

4
T

(
ℎ− 1

2

)
+

1

4

∫ 1/2−ℎ

−1/2
T (z)dz

(4.13)

Substituting Eqs.(4.10), (4.11), (4.12) and (4.13) in Eq.(4.9) gives,

∫ 1/2

−1/2
Tℎ(x)dx =

1

4

[∫ −1/2+ℎ
−1/2

T (v)dv +

∫ 1/2

−1/2+ℎ
T (u)du

]

+
1

4

[∫ 1/2−ℎ

−1/2
T (z)dz +

∫ 1/2

1/2−ℎ
T (w)dw

]

− 1

12
− 1

2
T

(
ℎ− 1

2

)
=

1

2

∫ 1/2

−1/2
Tℎ(x)dx− 1

12
− 1

2
T

(
ℎ− 1

2

)
(4.14)

Finally, this gives ∫ 1/2

−1/2
T nℎ (x)dx = −1

6
− T n−1ℎ

(
ℎ− 1

2

)
(4.15)

where n → ∞. Substituting this into Eq.(4.8) we obtain the analytical ex-
pression for D(ℎ),
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D(ℎ) = −
(
−1

6
− T n−1ℎ

(
ℎ− 1

2

))
− 1

24

=
1

8
+ T n−1ℎ

(
ℎ− 1

2

)
(4.16)

Deriving, for the first time, this exact, analytical formula for the diffusion
coefficient in terms of a control parameter was the main goal of this thesis.

Using the above formula and Eq.(4.7) we see that when ℎ = 0 and ℎ = 1,
D(0) = D(1) = 1

8
, which means that for these values of ℎ our previous result

D = 1
8

from Chapter 3 is recovered. A very surprising result is when ℎ = 1
2
.

This gives D
(
1
2

)
= 0. This simply means that at this value of ℎ there is no

diffusion!
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Chapter 5

Conclusion and outlook

In this thesis the stochastic Langevin equation has been studied first. This
equation was solved by calculating the mean square displacement (msd) and
deriving the autocorrelation velocity function for a Brownian particle. De-
pending on the value of time t, two different explicit expressions for the msd
were derived. Then we made a transition to a deterministic Langevin equa-
tion. This was done by replacing the randomness in the stochastic Langevin
equation by a deterministic chaotic force. For the over-damped case, this
equation was solved by deriving a recurrence relation. This setup enabled us
to calculate, for the first time, a value for the diffusion coefficient D for the
deterministic Langevin dynamics where the Bernoulli shift map on the inter-
val [-1/2,1/2] generates the kicks . Two different techniques were used: the
Takagi function technique and the correlation function technique. They both
gave the same result. This result does not represent a simple random walk,
because the correlation function decays exponentially. Finally, we derived a
parameter dependent Takagi function with parameter ℎ. This helped us to
derive, again for the first time, an exact formula for the diffusion coefficient
as a function of the control parameter ℎ.

For further study, one could plot D(ℎ) in order to see more closely how
the diffusion coefficient varies with ℎ in the interval [0,1]. In addition, one
could explain, numerically or analytically, the result D

(
1
2

)
= 0 obtained in

section 4.3. This is a very surprising result and does not seem to have a
trivial explanation.
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APPENDIX

Dirac delta function

The Dirac delta function is a very convenient ”function”. More exactly it is
the limiting case of a family of functions [16]. It has the property of singling
out a particular value of a function f(t) at a value t = t0. The function is
characterised by the following properties

�(t− t0) =

{
0 t ∕= t0
∞ t = t0

(1)

in such a way that, for any � > 0,∫ t0−�

t0+�

�(t− t0)dt = 1 (2)

which means that the function �(t− t0) has a very sharp peak at t = t0, but
the area under the peak is unity. Given any smooth function f(t), one has∫ q

p

f(t)�(t− t0)dt = f(t0)

∫ q

p

�(t− t0) (3)

since �(t− t0) ∕= 0 only when t = t0, and there f(t) = f(t0). Hence∫ q

p

f(t)�(t− t0)dt =

{
f(t0) if p < t0 < q

0 otℎerwise
(4)
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