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Abstract

The idea of chaotic diffusion is briefly discussed, along with the definition

of a diffusion coefficient. The Taylor-Green-Kubo formula is then derived,

starting from Einstein’s formula for diffusion in one dimension. This is

then used to evaluate the diffusion coefficient for a lifted Bernoulli shift.

The diffusion coefficient is obtained via the famous Takagi function, which

is a continuous but nowhere differentiable fractal function, which can be

calculated by solving a functional recursion relation. A parameter depen-

dent version of the lifted Bernoulli shift map is considered, and again, the

Taylor-Green-Kubo formula is used to calculate the diffusion coefficient.

The structure of the diffusion coefficient is explained using a method based

on Markov partitions.
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1 Introduction

One-dimensional, chaotic dynamical systems can provide us with relatively simple examples

for studying certain transport coefficients. In particular, given certain maps, an ensemble

of points will seemingly spread out when they are iterated (see [9]). This spreading out

is analogous to the physical phenomenon of diffusion, and appropriate diffusion coefficients

can be obtained. In some parameter dependent maps, the diffusion coefficient has been

found to be a fractal function of the parameter. One method in particular uses appropriate

Taylor-Green-Kubo formulas, and certain fractal “Takagi” functions in order to obtain the

parameter dependent diffusion coefficient (see [7]). The ultimate goal of this project is to

apply this method to a lifted Bernoulli shift map, and hence obtain an exact, analytical

expression for the diffusion coefficient, in terms of the lift parameter.

Firstly, in section 2, a brief outline of the idea of diffusion as a physical phenomenon will be

given. This will be developed into the analogous case of diffusion in a purely mathematical

context. The case of a random walk will be briefly discussed and then the idea of determin-

istic diffusion will be explained.

In section 3, the Taylor-Green-Kubo formula will be derived directly from Einstein’s formula

for diffusion. This formula is central to the method that will be used to obtain the diffusion

coefficient. The Takagi function will be introduced as a constituent part of the Taylor-Green-

Kubo formula. This formula will then be used to obtain a diffusion coefficient for a particular

value of the parameter. This hopefully helps the reader (and the author) understand the

process of obtaining the diffusion coefficient via the Taylor-Green-Kubo formula.

In section 4, the full, parameter dependent Takagi function will be derived and a necessary

invariant density will be calculated. These two will be combined in the Taylor-Green-Kubo

formula, to work out an expression for the parameter dependent diffusion coefficient. From

this precise expression, very simple formulas for both large, and small values of the param-

eter will be derived.

Finally, in section 5, the fractal structure of the diffusion coefficient is explained by showing

that there are certain classes of Markov partition that give the local extreme points of the

diffusion coefficient.
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2 Diffusion

2.1 Molecular Diffusion

From a purely physical perspective, diffusion is the process in which a system will move

toward a state of concentration equilibrium, without any external influences like mixing.

Diffusion causes a region of high concentration within a system to spread out, thereby di-

luting itself. As an illustration, one can imagine a drop of ink colouring an entire glass of

water, without any mixing or turbulent motion within the water. The process of diffusion

can be modeled by the partial differential equation,

∂C

∂t
= D

∂2C

∂x2
. (1)

This is a one-dimensional (one dimension will suffice in this project) version of the “diffusion

equation” (see [5]). C is the concentration, t denotes time and x is our coordinate. D is a

constant and is known as the “diffusion coefficient”. This equation serves as a macroscopic

definition of the diffusion coefficient. Eq.(1) can be derived from two simple equations.

Firstly, the “continuity equation”, given by,

∂C

∂t
= −∂Fx

∂x
. (2)

In Eq.(2), Fx is the “current density”, or the number of molecules passing a point per unit

time, in the x direction. Eq.(2) simply states that any rise or fall in concentration is caused

by the movement of molecules into, or out of a region, respectively. Secondly, we need Fick’s

first law of diffusion, given by,

Fx = −D∂C
∂x

. (3)
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Fick’s first law states that the current density is proportional to the concentration gradient.

So a higher concentration gradient will result in a higher current density, and the change

in current density is linear with respect to the change in concentration gradient. Note

the minus sign; this indicates that the movement is from high to low concentration. By

combining Eq.(2) and Eq.(3), Eq.(1) is recovered:

∂C

∂t
= − ∂

∂x

(
−D∂C

∂x

)

= D
∂

∂x

(
∂C

∂x

)

= D
∂2C

∂x2
. (4)

The diffusion coefficient in this physical example is a measure of how easily a molecule moves

through it’s given medium (e.g. how easily a drop of ink spreads out through water). By

considering what is behind this process of molecular diffusion, we can build a more mathe-

matical model.

The cause of molecular diffusion is the thermal energy associated with each molecule. This

thermal energy causes each molecule to move randomly. Consequently, within a region of

high concentration, a proportion of molecules will move out of the region, this results in

diffusion (see [5]). We can now understand why a high concentration gradient results in a

higher current density as it increases the probability of diffusive motion within a system.

This understanding now leads us to develop more mathematical models of diffusion.

2.2 “Random Walk” Diffusion

Suppose we have a one-dimensional system in which a molecule moves positively or negatively

a distance ∆ with equal probability. Suppose further that this happens at discrete time

intervals of length τ . This system is an example of a “random walk” (see [13]). The often

given analogy is of a drunken sailor trying to make his way home from the bar (see [11]).

This inebriated sailor is so far gone that he has no control of his movement and simply steps

to the left or the right with equal probability (hence “random walk”). If our sailor, or our

molecule, starts at a point a∆, what can we say about the probability of being found at b∆

given a time interval of cτ? (a,b,c ∈ N).
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We can say that the probability of being found at b∆ after a time interval of (c+ 1)τ relies

on the neighbouring probabilities as follows, (see [13]):

P (b∆; (c+ 1)τ | a∆) =
1

2
[P ((b− 1)∆; cτ | a∆) + P ((b+ 1)∆; cτ | a∆)] . (5)

Eq.(5) simply states that the probability of being at b∆ after a time (c + 1)τ is the sum of

the probabilities of arriving at b∆ from the neighboring points. Eq.(5) can be rewritten by

subtracting P (b∆; cτ | a∆) from both sides, dividing both sides by τ and multiplying the

right hand side by ∆2/∆2:

P (b∆; (c+ 1)τ | a∆)− P (b∆; cτ | a∆)

τ
=

∆2

2τ

(
[P ((b− 1)∆; cτ | a∆) + P ((b+ 1)∆; cτ | a∆)− 2P (b∆; cτ | a∆)

∆2

)
.

Now if we let ∆ and τ go to zero, we get a familiar looking partial differential equation (see

Eq.(1)):

∂P

∂t
= D

∂2P

∂x2
. (6)

So we see that a sailor undergoing a simple random walk, will actually experience a diffusive

process. Hence, if we start with a whole crew of sailors, they will diffuse away from the

bar over time. In this case, the diffusion coefficient D = ∆2/2τ is defined in terms of a

microscopic interpretation. It is a special case of Einstein’s formula (see [7]) for the diffusion

coefficient:

D = lim
n→∞

〈(xn − x0)
2〉

2n
. (7)

Here x0 is the starting point and xn is the distance from x0 after n discrete time steps. The

average is taken over the initial distribution of points. If we let ∆ = 1 and τ = 1, we obtain

a diffusion coefficient of,

D =
1

2
. (8)
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2.3 Chaotic (Deterministic) Diffusion

Chaotic diffusion is found in some chaotic, dynamical systems. This project will focus on

discrete-time. An ensemble of points in these systems, will diffuse away from their starting

point over many time steps, and an appropriate diffusion coefficient can be derived. A simple

case of chaotic diffusion, is found in one-dimensional, piecewise linear maps. The equations

of motion are of the form,

xn+1 = M(xn), M : < 7→ <, x ∈ <, n ∈ N. (9)

An important feature of these maps is that they are chaotic in the sense that they have “sen-

sitive dependence on initial conditions” (see [1, 8]), i.e. small differences in initial conditions

are amplified by iteration of the map. This causes an initial ensemble of points to spread

out under iteration. This is crucial if we are going to define a diffusion coefficient for these

maps. The defining feature of the diffusion in these maps, is that the position of a point

x0 at the nth iteration is uniquely determined by the equations of motion given by Eq.(9).

If we consider stochastic random walks, this is obviously not the case. A random walk is a

“Markov” process, as each step is independent of the step that went before it. The random

walk system has no memory. In chaotic diffusion, all of the motion is purely deterministic

and hence we are studying deterministic diffusion. A particular example of chaotic diffusion

is found in the lifted Bernoulli shift map. The main structure of the map is,

Mh(x) =

 2x+ h 0 ≤ x < 1
2

2x− 1− h 1
2
≤ x < 1

, 0 ≤ x ≤ 1 . (10)

Eq.(10) tells us how the map is defined on the unit interval and will be referred to as the

“box” map. To create diffusion, the phase space will need to be sufficiently large. In our

case, the phase space is the entire real line. To rigorously define this we have the condition,

Mh(x+ 1) = Mh(x) + 1, −∞ ≤ x ≤ ∞. (11)

Eq.(11) takes the box map, copies it onto each unit interval, and raises or lowers it with a

degree of one, so as to create a chain of boxes over the entire real line. This combination of

a box map and a raising condition is a typical way to create a diffusive map (see [7]). The

parameter h in Eq.(10) and Eq.(11) quantifies the lift condition, as it determines by how

much the first piecewise branch of the box map is raised up from the x-axis, and by how

much the second piecewise branch of the box map is lowered from the x-axis. We see that at
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h = 0 the Bernoulli shift map is recovered, hence the term “lifted Bernoulli shift”. Fig.(1)

depicts the box map of Eq.(10) and the result of applying the raising condition of Eq.(11)

to Eq.(10), and so gives a section of the map that will be studied in this project.

Figure 1: The lifted Bernoulli shift map. This figure depicts a section of the map that will be the

focus of this project. The box map is on the left, and a section showing how the chain of boxes is constructed

is on the right. Note that there are intervals where a point will move from one box to the next when iterated.

This is necessary for diffusion. The orbit of such a point is included.

Now that we have our explicit equations of motion, we can quantify the spreading out of our

initial ensemble of points via the “local Ljapunov exponent”; λ(x0), defined by,

λ(x0) := lim
n→∞

1

n

n−1∑
i=0

ln |M ′
h(xi)| . (12)

Here, x0 is an initial point and xi is the ith iterate of x0. λ(x0) is a measure of the rate

of separation of two nearby points (see[8]). For the maps Mh, λ(x0) = ln 2 as |M ′
h(xi)| =

2, (∀x0, x0 6= 0.5). The positive Ljapunov exponent is a precise, mathematical measure of

the “spreading out” of an initial ensemble of points.
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3 The Taylor-Green-Kubo formula

3.1 Derivation

The Taylor-Green-Kubo formula (sometimes known as the Green-Kubo formula (see[2],[3],[7],[9]))

can be used to obtain the diffusion coefficient for our map. Hence, it can be used to study the

dependence of the diffusion coefficient on the parameter h. It can be derived straight from

Eq.(7) (see [2]), along with the assumption that there exists an initial probability density

distribution ρ(x) that is invariant under the Frobenius-Perron equation (see [8]) given by,

ρn+1(x) =
∑

x∈M(xi)

ρn(xi) |M ′(xi) |−1 . (13)

So we assume that there exists a ρ∗(x) such that ρ∗n+1(x) = ρ∗n(x). This is analogous to

studying diffusion in a system that is in a state of equilibrium. This invariant density will be

explicitly calculated in section 4. In addition, we need to define a “velocity” function that

measures how far a point travels under one iteration. It is defined as,

ṽj = ṽ(xj) := xj+1 − xj . (14)

Remember that our diffusion coefficient D is given by Eq.(7) as follows:

D = lim
n→∞

〈(xn − x0)
2〉

2n

= lim
n→∞

1

2n

〈
(xn − xn−1 + xn−1 − xn−2 + xn−2 − xn−3 + ...− x0)

2
〉

= lim
n→∞

1

2n

〈n−1∑
j=0

ṽj

2〉
. (15)

The average 〈...〉 is taken over the points in our initial invariant density distribution. Con-

tinuing to evaluate the right hand side of Eq.(15) we find that,

D = lim
n→∞

1

2n
〈(ṽ0 + ṽ1 + ṽ2 + ...+ ṽn−1) (ṽ0 + ṽ1 + ṽ2 + ...+ ṽn−1)〉

= lim
n→∞

1

2n

〈n−1∑
j=0

(ṽj)
2 + (ṽ0ṽ1 + ṽ0ṽ2 + ...+ ṽ1ṽ0 + ṽ1ṽ2 + ...+ ṽn−1ṽ0 + ṽn−1ṽ1 + ...)

〉

= lim
n→∞

1

2n

〈n−1∑
j=0

(ṽj)
2 + 2

∑
j 6=j′

ṽj ṽj′

〉 . (16)
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Which can be simplified using the fact that the average is taken over an invariant density:

D = lim
n→∞

1

2n

∫ 1

0
ρ∗(x)

n−1∑
j=0

(ṽj)
2 + 2

∑
j 6=j′

ṽj ṽj′

 dx

= lim
n→∞

1

2n

∫ 1

0
ρ∗(x)

n−1∑
j=0

(ṽj)
2 dx+

∫ 1

0
dxρ∗(x)2

∑
j 6=j′

ṽj ṽj′ dx


= lim

n→∞

(
n

2n

∫ 1

0
ρ∗(x)(ṽ0)

2 dx+
2n

2n

∞∑
k=1

∫ 1

0
ρ∗(x)(ṽkṽ0) dx

)

=
1

2

〈
ṽ2

0

〉
+
∞∑

k=1

〈ṽkṽ0〉

=
∞∑

k=0

〈ṽkṽ0〉 −
1

2

〈
ṽ2

0

〉
(17)

The important step is the use of an invariant density. We have ρ∗1(x) = ρ∗2(x) = ... = ρ∗n(x),

as the density remains the same after each iteration of the map. We also have translational

invariance such that 〈vmvn〉 = 〈vm−nv0〉. We can apply this translational invariance due to

the invariant density. Eq.(17) can be simplified further by replacing the ṽ function with a

much simpler function that measures how many boxes a point traverses under one iteration.

(Where b...c denotes the “floor” function. So bxc is the nearest integer ≤ x):

vj = v(xj) := bxj+1c − bxjc . (18)

We can see that this substitution is possible if we let ∆xn = xn − x0 in Eq.(7), and further

we let ∆xn = ∆Xn +∆x̃n. Where Xn is the integer part of the displacement and is therefore

the part we are interested in and x̃n ∈ [0, 1) is the fractional part of the displacement:

D = lim
n→∞

〈(xn − x0)
2〉

2n

= lim
n→∞

〈(∆xn)2〉
2n

= lim
n→∞

〈(∆Xn + ∆x̃n)2〉
2n

= lim
n→∞

〈(∆X2
n + 2∆Xn∆x̃n + ∆x̃2

n)〉
2n

. (19)

The second term in Eq.(19) is bounded by the “Cauchy−Hölder inequality”, (see [10]) and

the third term is also bounded, hence in the limit as n goes to infinity, only ∆Xn contributes

to D. Using this result in Eq.(17), we derive the Taylor-Green-Kubo formula as,
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D = lim
n→∞

〈(∆Xn)2〉
2n

...

=
∞∑

k=0

〈vkv0〉 −
1

2

〈
v2

0

〉
. (20)

3.2 Using the formula

In order to illustrate the power of the Taylor-Green-Kubo formula, it will now be employed

in a simple example where h = 1. Exactly the same calculation has been carried out in [2].

Fig.(2) below depicts a section of the corresponding map.

Figure 2: M1(x), x ∈ [−1, 3]. This figure shows a section of the lifted Bernoulli shift map at a parameter

value of h = 1. At each iteration, points move either to the left, or the right nearest box. So this map serves

as a deterministic version for the random walk that was discussed earlier, in as much as a point picked at

random will move to the left or the right at each time step.
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The explicit equations of motion for the box map of M1(x) are given by,

M1(x) =

 2x+ 1 0 ≤ x < 1
2

2x− 2 1
2
≤ x < 1

, 0 ≤ x ≤ 1. (21)

Hence, the velocity function for M1(x) is given by,

v(xj) =

 1 0 ≤ x̃j <
1
2

−1 1
2
≤ x̃j < 1

. (22)

Where x̃ = x mod 1. Secondly, we need to evaluate the invariant density ρ∗(x) for our map.

In order to do this we need only consider the reduced modulo 1 version of our map, M̃1(x),

due to the condition of Eq.(11). In this case, M̃1(x) is simply the Bernoulli shift map, hence

the invariant density is simply a constant function, i.e. ρ∗(x) = 1, (see [8]). So Eq.(20) can

be expressed as,

D = lim
n→∞

n∑
k=0

∫ 1

0
v(x0)v(xk) dx− 1

2

∫ 1

0
v2(x0) dx . (23)

Following the method outlined in [2], the summation can be moved inside the integral in

order to define a “Jump Function”:

Jn
1 (x0) =

n∑
k=0

v(xk) . (24)

The jump function of Eq.(24) counts how many boxes an initial point is displaced by after n

iterations. Due to the sensitive dependence on initial conditions, Jn
1 (x) will be a very badly

behaved function for large n. So in order to work out D, we need to find a way to control

Jn
1 (x). Firstly, we see that a recursion relation can be derived for Jn

1 (x):

Jn
1 (x0) =

n∑
k=0

v
(
M̃k

1 (x0)
)

= v(x0) +
n∑

k=1

v
(
M̃k

1 (x0)
)

= v(x0) + Jn−1
1

(
M̃1(x0)

)
. (25)
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Where again, M̃1(x) = M1(x) mod 1. The explicit equation for M̃1(x) is given by,

M̃1(x) =

 2x̃ 0 ≤ x̃ < 1
2

2x̃− 1 1
2
≤ x̃ < 1

. (26)

In order to manipulate Jn
1 (x), we integrate it in order to obtain a cumulative function T n

1 (x)

(see [3]):

∫
Jn

1 (x) dx = T n
1 (x) . (27)

Using Eq.(25), and Eq.(27) we can derive a recursion relation for T n
1 (x):

T n
1 (x) =

∫
Jn

1 (x) dx

=
∫
v(x) + Jn−1

1

(
M̃1(x)

)
dx

= xv(x) + c+
1

2
T n−1

1

(
M̃1(x)

)
= t(x) +

1

2
T n−1

1

(
M̃1(x)

)
. (28)

Where t(x) ≡ xv(x) + c and c is a constant function on each interval that v(x) is constant.

We can define c so that T n
1 (x) is continuous on the interval [0,1] and T n

1 (0) = T n
1 (1) = 0. In

order to be able to use T n
1 (x), we need a more user friendly recursion relation. Via Eq.(22),

and Eq.(26) we see that Jn
1 (x) is satisfied by,

Jn
1 (x) =

 1 + Jn−1
1 (2x̃) 0 ≤ x̃ < 1

2

−1 + Jn−1
1 (2x̃− 1) 1

2
≤ x̃ < 1

. (29)

Integrating Eq.(29), we obtain a recursion relation for T n
1 (x),

T n
1 (x) =

 x+ 1
2
T n−1

1 (2x̃) + c1 0 ≤ x̃ < 1
2

−x+ 1
2
T n−1

1 (2x̃− 1) + c2
1
2
≤ x̃ < 1

, 0 ≤ x ≤ 1. (30)

Applying the conditions that T n
1 (0) = T n

1 (1) = 0, we see that c1 = 0 whilst c2 = 1, and

letting n→∞, we obtain the function T1(x):

T1(x) =

 x+ 1
2
T1 (2x̃) 0 ≤ x̃ < 1

2

1− x+ 1
2
T1 (2x̃− 1) 1

2
≤ x̃ < 1

, 0 ≤ x ≤ 1. (31)

13



Figure 3: The Takagi function. In this figure the Takagi function for the parameter h = 1 is depicted.

Takagi functions are characterised by being continuous but non-differentiable functions. Note the self sim-

ilarity of the regions, 0.25 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 0.75 to the entire function. The dashed lines serve as

a guide to this. (This image was created in Maple 9.5 with 1024 data points. Each point is accurate to a

value of ± 2−20 so that error bars are not visible.)

The function T1(x) is known as a Takagi Function. It is shown in Fig.(3). Using T1(x) in

Eq.(23) we get,

D =
∫ 1

0
v(x)Jn

1 (x) dx− 1

2

∫ 1

0
v2(x) dx

=
∫ 1

2

0
v(x)Jn

1 (x) dx+
∫ 1

1
2

v(x)Jn
1 (x) dx− 1

2

∫ 1

0
v2(x) dx

= [T1(x)]
1
2
0 − [T1(x)]11

2
− 1

2
[x]10

= 2T
(

1

2

)
− T1(0)− T1(1)− 1

2

=
1

2
.

This value of D corresponds to the result obtained in Eq.(8) and shows how the deterministic

system is analogous to the stochastic one of the random walk, at this value of the parameter.

We can also set the parameter h = 0. Obviously in this system there is no diffusion, as there

is no escape between boxes. In terms of evaluating D with our method, we see that the

velocity function v(x) = 0 ∀x. Hence Eq.(23) gives a value of 0 for D. The method outlined

here, although complicated, can be employed in less trivial, more general examples (see [7]).
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4 Parameter Dependence

4.1 Takagi Function

In the previous section, it was shown that the diffusion coefficient for Mh is equal to 0 when

h = 0, and is equal to 1
2

when h = 1. One may now ask what happens to the diffusion

coefficient as h is changed? Intuitively, it seems reasonable to guess that D increases lin-

early. However, approximate calculations in different maps, but similar parameter, (see [7])

show that for small values of h, the increase is linear whereas for large values the increase

is quadratic. In addition, the diffusion coefficient is shown to be a fractal function of the

parameter. Precise results via a different method (see [4]) also display this fractal behaviour.

When evaluating the parameter dependent diffusion coefficient, there are two main obstacles.

Firstly, the Takagi function will need to be evaluated in terms of h. Secondly, the invariant

density will need to be calculated with respect to h. To evaluate the Takagi function we

need to start with the velocity function vh(x) for x ∈ [0, 1]. This is given by,

vh(x) =



bhc 0 ≤ x̃ < 1−ĥ
2

dhe 1−ĥ
2
≤ x̃ < 1

2

−dhe 1
2
≤ x̃ < 1+ĥ

2

−bhc 1+ĥ
2
≤ x̃ < 1

. (32)

The function ĥ is similar to h mod 1 except it takes the value 1 for all integer values of h

except 0 where it takes the value 0. This is in order to represent the intervals correctly as h

is varied. Eq.(32) leads to the evaluation of the parameter dependent jump function Jn
h (x):

Jn
h (x) =



bhc+ Jn−1
h

(
M̃h(x)

)
0 ≤ x̃ < 1−ĥ

2

dhe+ Jn−1
h

(
M̃h(x)

)
1−ĥ

2
≤ x̃ < 1

2

−dhe+ Jn−1
h

(
M̃h(x)

)
1
2
≤ x̃ < 1+ĥ

2

−bhc+ Jn−1
h

(
M̃h(x)

)
1+ĥ

2
≤ x̃ < 1

. (33)

Again, M̃h(x) = Mh(x) mod 1, it is given by,

M̃h(x) =



2x̃+ ĥ 0 ≤ x̃ < 1−ĥ
2

2x̃+ ĥ− 1 1−ĥ
2
≤ x̃ < 1

2

2x̃− ĥ 1
2
≤ x̃ < 1+ĥ

2

2x̃− 1− ĥ 1+ĥ
2
≤ x̃ < 1

. (34)
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By integrating Eq.(33), we can begin to evaluate the parameter dependent Takagi function,

that we need in order to find the diffusion coefficient.

T n
h (x) =



1
2
T n−1

h

(
2x̃+ ĥ

)
+ c1 + bhc x̃ 0 ≤ x̃ < 1−ĥ

2

1
2
T n−1

h

(
2x̃+ ĥ− 1

)
+ c2 + dhe x̃ 1−ĥ

2
≤ x̃ < 1

2

1
2
T n−1

h

(
2x̃− ĥ

)
+ c3 − dhe x̃ 1

2
≤ x̃ < 1+ĥ

2

1
2
T n−1

h

(
2x̃− 1− ĥ

)
+ c4 − bhc x̃ 1+ĥ

2
≤ x̃ ≤ 1

, 0 ≤ x ≤ 1. (35)

Again, we can use the conditions that T n
h (0) = T n

h (1) = 0, and also that the function should

be continuous in order to evaluate the constants of integration. We also use the symmetry

of the Takagi functions to simplify the results. If we use these conditions and let n → ∞,

the following relations are obtained:

1. Th(0) = 1
2
Th(ĥ) + c1 = 0

2. Th(1) = 1
2
Th(ĥ) + c4 − bhc = 0

3. Th

(
1−ĥ

2

)
= 1

2
Th(0) + c2 + dhe

(
1−ĥ

2

)
4. Th

(
1−ĥ

2

)
= 1

2
Th(1) + c1 + bhc

(
1−ĥ

2

)
5. Th

(
1
2

)
= 1

2
Th(ĥ) + c2 + dhe 1

2

6. Th

(
1
2

)
= 1

2
Th(1− ĥ) + c3 − bhc 1

2

7. Th

(
1+ĥ

2

)
= 1

2
Th(1) + c3 − bhc

(
1+ĥ

2

)
8. Th

(
1+ĥ

2

)
= 1

2
Th(0) + c4 − bhc

(
1+ĥ

2

)
These results furnish us with the constants of integration and we obtain the Takagi function

in terms of the parameter:

Th(x) =



1
2
Th

(
2x̃+ ĥ

)
+ bhc x̃− 1

2
Th(ĥ) 0 ≤ x̃ < 1−ĥ

2

1
2
Th

(
2x̃+ ĥ− 1

)
+ dhe x̃+ ĥ−1

2
− 1

2
Th(ĥ) 1−ĥ

2
≤ x̃ < 1

2

1
2
Th

(
2x̃− ĥ

)
+ 1+ĥ

2
− dhe x̃− 1

2
Th(ĥ) 1

2
≤ x̃ < 1+ĥ

2

1
2
Th

(
2x̃− 1− ĥ

)
− bhc x̃+ bhc − 1

2
Th(ĥ) 1+ĥ

2
≤ x̃ ≤ 1

, 0 ≤ x ≤ 1. (36)

Fig.(4) and Fig.(5) overleaf depict Eq.(36) at some particular values of h.
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Figure 4: Takagi functions for values of h < 0.5. In this figure, Takagi functions have been plotted

for the value h = 0.1 in (a), h = 0.2 in (b), h = 0.3 in (c) and h = 0.4 in (d). For each value of x, the Takagi

function sums up all of the jumps that every point ≤ x has performed when Mh(x) has been iterated an

infinite amount of times. Hence, these fantastic functions have a fractal structure, which is a consequence

of Mh(x) being chaotic. These snapshots of the function give an idea of how the Takagi function grows as

h increases. Notice how the function bifurcates as it grows. (These images were created in Maple 9.5 with

1024 data points. Each point is accurate to a value of ± 2−20 so that error bars are not visible.)
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Figure 5: Takagi functions for values of h > 0.5. In this figure, Takagi functions have been plotted

for the value h = 0.5 in (a), h = 0.525 in (b), h = 0.6 in (c), h = 0.7 in (d),h = 0.9 in (e) and h = 1 in

(f). Notice again the fractal structure. In this range of values, the snapshots make it very clear how the

Takagi function grows as h increases. The function goes through a process similar to inversion as it grows.

Note that the Takagi functions for this map have negative regions. This is typically not the case for Takagi

functions, (see [7]). (These images were created in Maple 9.5 with 1024 data points. Each point is accurate

to a value of ± 2−20 so that error bars are not visible.)
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In order to evaluate Eq.(36) numerically, we can use the recurrence relation, (see [7]),

Th(x) = lim
n→∞

T n
h (x) = th(x) +

1

2
T n−1

h

(
M̃h(x)

)
. (37)

If we continue to apply this recursion relation we obtain the following summation:

Th(x) = lim
n→∞

T n
h (x) = −Th(ĥ) +

∞∑
k=0

1

2k
th
(
M̃k

h (x)
)

. (38)

Where Th(ĥ) has been summed separately, and th(x) is as follows:

th(x) =



bhc x̃ 0 ≤ x̃ < 1−ĥ
2

ĥ−1
2

+ dhe x̃ 1−ĥ
2
≤ x̃ < 1

2
1+ĥ

2
− dhe x̃ 1

2
≤ x̃ < 1+ĥ

2

bhc − bhc x̃ 1+ĥ
2
≤ x̃ < 1

. (39)

Note that Eq.(39) is simply Eq.(36) with all the Takagi functions removed. So Eq.(38) gives

us a way to evaluate Takagi functions without using Takagi functions. Now that we have a

parameter dependent Takagi function, we need the invariant density.

4.2 Invariant Density

In order to evaluate the invariant density, we need to solve the Frobenius-Perron equation,

Eq.(13). To keep the calculations simple, we need only consider the invariant density for

M̃h(x), Eq.(34). Obviously, M̃ ′
h(x) = 2,∀x except at the points of discontinuity. To construct

the Frobenius-Perron equation for M̃h(x), we need to piecewise invert the function (see

Fig.(6)). The following results are obtained for h ≤ 1
2
, a similar calculation can be made for

h ≥ 1
2
:

x3 =
x− h+ 1

2
0 ≤ M̃h(x) < h

x5 =
x+ h+ 1

2
0 ≤ M̃h(x) < h

x1 =
x− h

2
h ≤ M̃h(x) < 1− h

x6 =
x+ h+ 1

2
h ≤ M̃h(x) < 1− h

x2 =
x− h

2
1− h ≤ M̃h(x) < 1

x4 =
x+ h

2
1− h ≤ M̃h(x) < 1 (40)
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Figure 6: Piecewise inverting M̃h(x) for a given value of h. The dashed lines in this figure show

how the pre-images of M̃h(x) are obtained.

Eq.(40) gives us the following Frobenius-Perron equation:

ρn+1(x) =


1
2
ρn(x−h+1

2
) + 1

2
ρn(x+h+1

2
) 0 ≤ M̃h(x) < h

1
2
ρn(x−h

2
) + 1

2
ρn(x+h+1

2
) h ≤ M̃h(x) < 1− h

1
2
ρn(x−h

2
) + 1

2
ρn(x+h

2
) 1− h ≤ M̃h(x) < 1

(41)

We can make an educated guess that the invariant density ρ∗(x) is uniform for the map

M̃h(x). This is simply based on the fact that the invariant density is uniform for the Bernoulli

shift map (xn+1 = 2x mod 1), which is recovered when h = 0. It can be quickly verified from

Eq.(41) that the invariant density is uniform, and hence does not depend upon h. This will

greatly simplify the calculation of the Diffusion Coefficient.

4.3 Diffusion Coefficient

Now we have the Takagi function given by Eq.(36), and we know that the invariant density

is a constant function for all values of h. We can now combine these two ingredients in

the Taylor-Green-Kubo formula of Eq.(20) and evaluate the parameter dependent diffusion

coefficient:
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D(h) =
∫ 1

0
vh(x)Jn

h (x) dx− 1

2

∫ 1

0
v2

h(x) dx

=
∫ 1−ĥ

2

0
bhc Jn

h (x) dx+
∫ 1

2

1−ĥ
2

dhe Jn
h (x) dx+

∫ 1+ĥ
2

1
2

dhe Jn
h (x) dx

−
∫ 1

1+ĥ
2

bhc Jn
h (x) dx − 1

2

∫ 1−ĥ
2

0
bhc2 +

∫ 1
2

1−ĥ
2

dhe2 +
∫ 1+ĥ

2

1
2

dhe2 +
∫ 1

1+ĥ
2

bhc2


= (bhc − dhe)
(
bhc − ĥ bhc − Th

(
ĥ
))

+ dhe
(
dhe+ ĥ− 1

)
− 1

2

(
bhc2

(
1− ĥ

)
+ dhe2 ĥ

)
= (bhc − dhe)2

(
1

2
− ĥ

2

)
+
dhe2

2
+ dhe

(
ĥ− 1

)
− (bhc − dhe)Th

(
ĥ
)

=
dhe2

2
+

(
1− ĥ

2

)
(1− 2 dhe) + Th

(
ĥ
)

. (42)

Eq.(42) gives the exact, analytical expression for the diffusion coefficient, in terms of h, that

was the goal of this project. The first two terms in Eq.(42) form a piecewise linear function

that resembles h2

2
for large h. See Fig.(7) below for a plot of Eq.(42).

Figure 7: The parameter dependent diffusion coefficient. In this figure the diffusion coefficient is

plotted along with h2

2 . Note the periodic pattern. The inset also gives the piecewise linear function, it shows

how all three functions are incident at integer vales. (This image was created using Maple 9.5 ).
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Given that the piecewise function in Eq.(42), closely resembles the function h2

2
, a good

approximation of D(h) for large h is the simple formula,

D(h) ≈ h2

2
+ Th

(
ĥ
)

h >> 0 . (43)

We also know that Th(x) = 0 for integer values of x, so a formula for D(h) at integer values

of h is simply,

D(h) =
h2

2
, h ∈ Z. (44)

If h is restricted to values in the range [0, 1] then Eq.(42) is simplified, and a precise formula

for evaluating D(h) is,

D(h) =
h

2
+ Th(h) 0 ≤ h ≤ 1 . (45)

Eqs.(42 – 45), give simple, useful formulas for evaluating the diffusion coefficient. Eq.(45) in

particular highlights the important feature of deterministic diffusion. We see that there is

an element of stochasticity that is found in a random walk, given by the term h
2
. However

the Takagi function gives the history of the initial ensemble of points, as it sums up all of the

jump velocities. This is the deterministic element in the diffusion coefficient. Furthermore

we can immediately see that by setting h = 1 or h = 0, our previous results that D = 1
2

and

D = 0 respectively are recovered.
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5 The Structure of D(h)

Globally, we observe an increase in the diffusion coefficient as h increases. This is due to the

corresponding increase in the velocity functions (Eq.(32)). However, the increase is far from

straight forward. Fig.(7) shows the periodic pattern of D(h) in which the regions where,

n ≤ h ≤ n+ 0.5, n ∈ N, (46)

show a fractal structure. Whereas, the regions where,

n+ 0.5 ≤ h ≤ n+ 1, n ∈ N, (47)

show that D(h) goes through a plateau. In order to explain these results, we can not re-

sort to the calculus to obtain the turning points of D(h). The Takagi functions are not

differentiable, and so do not warrant this approach. Instead, an approach based upon the

Markov partitions of Mh(x), will give us some information about the structure of the dif-

fusion coefficient. This follows the method used in [7]. Briefly, a partition of an interval is

called Markov, when parts of the partition are mapped onto parts, or a union of parts of the

partition (see [8]). Therefore, a Markov partition can tell us how a density of points behaves

when iterated, and tells us about the topology of the map.

Firstly, we need only consider M̃h(x), given by Eq.(34), in order to construct Markov parti-

tions for the entire map. This is due to the condition given by Eq.(11). This gives our first

explanation of one of the characteristic features of the diffusion coefficient. The periodic

scaling. Fig.(7) shows this in the pattern of the diffusion coefficient. While M̃h(x) is peri-

odic, the velocity functions given by Eq.(32) increase regularly. Hence, the only difference

in the diffusion coefficient of points that are equal modulo 1, is given by the scaling up of

the velocity function.

In order to explain the structure of D(h) more fully, we find certain classes of Markov par-

tition for particular values of h. One class gives highly diffusive behaviour, and hence gives

a local maximum. One restricts diffusion, and hence gives a local minimum.

When constructing a Markov partition for the map, we consider a point of discontinuity (e.g

x = 0.5) and look at it’s orbit. As parts of a Markov partition must get mapped onto parts

of the partition, if x = 0.5 is a partition point then Mh(0.5) must also be a partition point.
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In addition, due to the central symmetry of Mh(x), (1−Mh(0.5)) must also be a partition

point. Each iteration of the point x = 0.5 gives a partition point. Fig.(8) shows this process.

Figure 8: Generating Markov partitions. This figure shows how the orbit of the point x = 0.5 can

generate a Markov partition of the unit interval. This process ends when the orbit is mapped onto itself, so

the partitions can be very complex, depending on the periodicity of x = 0.5. Hence the partitions can have

any number of parts.
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If we restrict the values of h to 0.5 ≤ h ≤ 1, we get an explanation for the plateau regions

of D(h). We see that,

M̃h(0.5) = 2(0.5)− h

= 1− h . (48)

Eq.(48) holds for all values of h and has two consequences. One is that 1− h is a partition

point, the other is that h is a partition point. Furthermore, strictly for 0.5 ≤ h ≤ 1 we see

that,

M̃h(1− h) = 2(1− h) + h− 1, 0.5 ≤ h ≤ 1

= 1− h . (49)

In addition, we find that,

M̃h(h) = 2(h)− h, 0.5 ≤ h < 1

= h . (50)

Eqs.(49,50) show that h and 1 − h are fixed points of M̃h(x) and so for 0.5 ≤ h ≤ 1 there

are no more partition parts and the topology of M̃h(x) does not change. This results in the

plateau regions. This behaviour is also mirrored in the Takagi functions. Fig.(4) shows some

Takagi functions for 0 < h < 0.5, whilst Fig.(5) shows some Takagi functions for 0.5 ≤ h ≤ 1.

We see in the latter, that there is a very smooth transition as h increases, the function in-

verts itself. Whereas in the former the function experiences a series of bifurcations as it grows.

The region where 0 ≤ h < 0.5, is more complicated, a first look tells us that there are many

turning points in D(h). See Fig.(9). We can use the behaviour of the Markov partitions

to elucidate some information about these extrema. The local maximums must correspond

to values of h where points jump from one interval to the next easily, and local minimums

represent the opposite.
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Figure 9: Detail of the fractal region of D(h). This figure shows the diffusion coefficient for a lifted

Bernoulli shift map. We see that the diffusion coefficient is a fractal function of the parameter in this region.

In the process of creating Markov partitions for a given value of h, we iterate the point

x = 0.5 and the orbit of this point gives the rest of the partition points. If x = 0.5 were to

be mapped onto itself, this would give a very simple Markov partition, and also a continually

escaping orbit. Continually escaping in that at each iteration of the map it moves from one

box to the next and so keeps moving away from it’s starting point. After n iterations of the

map, it will be n boxes from it’s starting box. It would also mean that points nearby x = 0.5

would have similar trajectories to start with. Consequently, we would see a local maximum

in D(h).

M̃h(0.5) = 0.5

1− h = 0.5

h = 0.5 . (51)

Eq.(51) gives the value of h that will give us the desired topology and the desired local

maximum. If we evaluate,

M̃2
h(0.5) = 0.5 , (52)

we will obtain a value of h that will give us similar topology to when h = 0.5. Hence we

expect to obtain a value of h at which we will have a level 2 local maximum. “Level 2”
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because it corresponds to a maximum where 0.5 is periodic with period 2. When evaluating

Eq.(52), we obtain two different solutions for h. This is due to the different branches of

M̃h(x). For (0 ≤ h ≤ 1
3
) we find,

M̃2
h(0.5) = 0.5

M̃h(1− h) = 0.5

2− 2h− 1− h = 0.5

0.5 = 3h

h =
1

6
. (53)

For 1
3
≤ h ≤ 0.5, we recover the value h = 0.5 as a solution. For comparison, the orbits of

x = 0.5 at h = 0.5 and h = 1
6

are shown in Fig.(10):

Figure 10: The orbit of x = 0.5 for h = 0.5 in (a) and h = 1
6

in (b). Both orbits in (a) and (b)

move steadily away from the point x = 0.5. However, after 2n iterations, the orbit in (a) will be a distance

2n from 0.5, in (b) it will only be a distance n.
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For the minimums of D(h), we need to see the orbit of x = 0.5 hit the point x = 1+h
2

.

This results in an orbit that gets sent back, rather than continuing to travel away from it’s

starting point.

M̃h(0.5) =
1 + h

2

1− h =
1 + h

2

h =
1

3
. (54)

Eq.(54) tells us that the desired value is h = 1
3
, and Fig.(11) shows that the orbit of this

point is eventually periodic and so gets trapped very close to it’s initial starting point.

Figure 11: The orbit of x = 0.5 for h = 1
3
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To find the values of h that give us level 2 local minimums, we solve,

M̃2
h(0.5) =

1 + h

2
. (55)

We obtain two solutions to Eq.(55), for 1
3
≤ h ≤ 1

2
we get,

M̃2
h(0.5) =

1 + h

2

M̃h(1− h) =
1 + h

2

2(1− h)− h =
1 + h

2

h =
3

7
. (56)

For 0 ≤ h ≤ 1
3

we get,

M̃2
h(0.5) =

1 + h

2

M̃h(1− h) =
1 + h

2

2(1− h)− 1− h =
1 + h

2

h =
1

7
. (57)

Eqs.(56,57) tell us that there are two values of h for which we get a level 2 local minimum.

See Fig.(12) for the corresponding orbits of x = 0.5. The reason that the level 2 local

minimums represent less distinctive minimums than the one at h = 1
3

is due to the sensitive

dependence on initial conditions of the map Mh(x). Due to this, nearby orbits move apart

at each iteration. We see that the periodic orbit at h = 1
3

contains 4 iterations whilst the

orbit at h = 3
7

and h = 1
7

contain 6 iterations. Therefore, more points will stay closer to

the periodic orbit at h = 1
3

for longer than at the values h = 3
7

and h = 1
7
. Hence the

periodic orbit displayed in Fig.(11) creates a more dramatic, distinctive local minimum than

the ones depicted in Fig.(12). See Fig.(13) for an illustration. The same analysis is also true

for the nature of the local maximums. For h = 0.5, the point x = 0.5 needs n iterations

in order to get n boxes away from it’s starting box, whilst for h = 1
6
, the point x = 0.5

needs 2n iterations. With more iterations comes more spreading out of an initial interval,

so less points will travel along with the point x = 0.5. Hence the local maximums are less

distinctive.
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Figure 12: Periodic orbits. The orbits of x = 0.5 for h = 1
7 in (a), and for h = 3

7 in (b).

In general, the local maximums in the fractal region of the diffusion coefficient, are the

solutions of,

M̃n
h (0.5) = 0.5 , n ∈ N. (58)

Similarly, the local minimums in the fractal region of the diffusion coefficient, are the solu-

tions of,

M̃n
h (0.5) =

1 + h

2
, n ∈ N. (59)

Where we solve for h. In general, if we evaluate M̃h(x) where x is rational, we obtain a

rational value. In addition, we know that for n = 1 the solutions of Eq.(58) and Eq.(59) are

rational. If we assume that ∀m < n, the solutions of Eq.(58) and Eq.(59) are rational, we

can construct a simple inductive proof that all the solutions are rational values,

M̃n
h (0.5) = M̃h

(
M̃n−1

h (0.5)
)

= M̃h

(
a

b

)
, a, b ∈ N.

=
c

d
c, d ∈ N. (60)
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Figure 13: Some of the very distinctive turning points in the fractal region of D(h). In this

figure, the fractal region of D(h) is depicted with some of the very distinctive turning points highlighted.

These values of h have been calculated by defining different classes of Markov partition that give either

highly diffusive behaviour for the local maximums, or restrict diffusion for the local minimums. (This image

was created in Maple 9.5 ).

The result obtained in Eq.(60), means that the calculation of the extreme points is relatively

simple. In other diffusive maps, the same method requires high order functions to be solved,

and this quickly leads to irrational values as solutions, (see[7]). In addition Eq.(58) and

Eq.(59), have another important consequence. A local extreme point can be defined for each

value of n, hence there are an infinite amount of extreme points. This gives the diffusion

coefficient it’s fractal quality.
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6 Conclusion

Deterministic diffusion has been studied in a lifted Bernoulli shift map. Starting from Ein-

stein’s formula for diffusion, the Taylor-Green-Kubo formula was derived. Using this formula,

an exact, analytical expression has been found for the diffusion coefficient, in terms of the

lift parameter, and Takagi functions. The method used required the use of an invariant

density. In other cases, (see [7]), the invariant density is found to be parameter dependent.

However, in our case, the invariant density was found to be a constant function. This helped

simplify the analysis, and focused the dependence that the diffusion coefficient has on Tak-

agi functions. The expression obtained for the diffusion coefficient is illuminating as it can

be simplified to illustrate the global behaviour for small and large values of the parameter.

For small values, the diffusion coefficient is composed of a linear part and a fractal Takagi

function. For large values it is composed of a quadratic part, and a Takagi function. In order

to explain the fractal nature of the diffusion coefficient, a method to evaluate the extrema,

based on Markov partitions was used. It was found that all of these extrema are rational val-

ues. This makes their calculation simple relative to similar parameter dependent maps, (see

[7]), in which irrational values are quickly encountered when employing the same method.

Hence, this particular map is a very good example for studying deterministic diffusion and

the diffusion coefficient.

For further study, one could introduce a bias parameter into the map, which would induce

a current and we could study diffusion in this system. Due to the bias, the Takagi functions

would no longer converge, and appropriate corrections would be needed. Theoretically,

by moving the Taylor-Green-Kubo formula into the co-moving coordinate system of the

ensemble, exactly the same diffusion coefficient should be recovered. The difficulty would

be in finding the appropriate way to make the Takagi functions converge, so as to make the

Taylor-Green-Kubo formula converge.
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