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DETERMINISTIC CHAOS

1. Introduction

The use of the word chaos in Dynamical systems was introduced by Li and Yorke in
[7]. In this paper Li and Yorke proved that for a map on the real line which has a point
with period three there exists an uncountable scrambled set. The existence of this
uncountable scrambled set is taken as a definition of chaos. A well-known definition
of chaos is given by Devaney in [3], whose main ingredients are topological
transitivity, denseness of periodic points and sensitive dependence on initial
conditions .It was widely understood that sensitive dependence on initial conditions
was the main ingredient in Devaney's chaos but in [1] it was proved that it was a
redundant hypothesis since it was implied from the other two conditions. Other
famous definitions of chaos are given by Wiggins and Lyapunov. Also chaos can be
characterized in terms of the metric and topological entropy. Topological entropy is
related to Li-Yorke's chaos and metric entropy to Lyapunov's chaos.

The project starts with some fundamental elementary definitions basically from point-
set topology and from dynamical systems. Section 2.2 gives the main ingredients of
chaos, namely topological transitivity, dense set of periodic points and sensitive
dependence on initial conditions. Section 2.3 provides three basic definitions of
chaos -Devaney’s chaos, Wiggins' chaos and Lyapunov's chaos. Also in the same
section some theorems and propositions are given relating these three definitions of
chaos and their ingredients. The next section examines the chaotic behaviour- with
respect to these three chaotic definitions - of some well-known maps such as the
Bernoulli shift and the Tent map. Section 3.1 introduces the topological mixing and
topological blending (strong and weak) as an alternative of topological transitivity in
Devaney’s chaos. As it will be proved both these two conditions are not equivalent to
transitivity. In the same manner section 3.2 introduces expansivity as an alternative of
sensitivity. In the next section some more crosslinks between chaotic ingredients are
given. Section 4.1 examines chaos with respect to discontinuity. As I will prove a

transitive map with a point of discontinuity implies denseness of periodic points. In



section 4.2 I introduce the scrambled sets and I define chaos in the sense of Li and
Yorke.

Section 4.3 is devoted to the important concept of topological and metric entropy. As
I mentioned in this section positivity of these two entropies implies chaos. In section
4.4 1 study the behaviour of some chaotic ingredients with respect to topological
conjugation and finally in section 4.5 I give an overview of what I have already talked
about and I give some open questions.

The standpoint of this project is mostly topologic and I don’t discuss any topic in
terms of ergodicity or measure theory. This does not imply that such matters are

without interest merely they are outside of my scope.
2. Three basic definitions of chaos

2.1 Preliminaries

In this part of my project I will give some introductory definitions that will be used
several times later. These definitions can be found in every book of Dynamical

Systems.

Definition 2.1.1 Consider the continuous function f: X—X. The Dynamical System
defined by ftakes the form x,,, = f(x,) and is written as (X, f).Such functions that

describe Dynamical Systems are called maps.

Definition 2.1.2 Let XY be subsets of a metric space Z such that X c Y. We say
that Xisdensein Y if X =Y, ie V xeY¥, Ve>0 N, (x) contains a point in X(X

is defined to be the closure of X')

Definition 2.1.3 Consider the continuous map f: X—>X. A point x € X issaidtobea
fixed point for f if f{x)=x. The set of fixed points of f is denoted by

Fix(f)= {xe X : f(x)=x}.
If f" (x)=x for some neN then x is a periodic point of f with period n. The set of

the periodic points of f with period 7 is denoted by Per, (NH= {x eX:f"(x)= x} .



The orbit of a point x is the set of the points x, f{x)f 2 ®),..... and is denoted by
O(x)= {x, f(x), 2 (x), } (in the case where fis not invertible).

If f is invertible then the orbit of x is O(x) = { fx),x, f (x),...} . The set of all these

iterations of a periodic point form a periodic orbit.

Definition 2.1.4 Let X and Y be metric spaces. We say that the metric space X is
compact if every open cover of X has a finite subcover, i.e. if {Ii }I_E ,isa collection

of open sets of X such that Xc U Ii then we have that Xc UIi .

iel i=l

Also compact spaces on the real line can be thought as closed and bounded intervals.

Definition 2.1.5 A sequence {x,} . & X ,where X is a metric space equipped witha

neN

metric d , is Cauchy if Ve >0 3 n=n(¢) such that d(x,,x,)<& Vm>n. Then X

is said to be complete if every Cauchy sequence on X converges(that is ,has a limit
which is an element of X). Also X is said to be separable if it has a countable subset

which is dense in X .

Now if ¥ with is another metric space with metric » and f© X — Y map then f is

said to be an isometry if fpreserves distances, ie. Vx,ye X y(f(x),f(¥)= d(x,y)

Definition 2.1.6 A homeomorphism / :X—> Y is a continuous and bijective map with
a continuous inverse (continuity of the inverse is automatically satisfied if X is

compact space).

Definition 2.1.7 Consider the metric spaces X and Y and let f: X—>X and g: Y>>V
be continuous maps. The maps f and g are said to be topologically conjugate if there

exists a homeomorphism % :X—Y suchthat hof(x) =g oh(x) V xeX

ie the diagram X —L—>X

nd L

Y—25Y



commutes. A homeomorphism satisfying this condition is called a topological

conjugacy.

Definition 2.1.8 Consider the continuous and differentiable map f:X —> X on a

metric space X. Then the map fis said to be expanding if |f’ (x)’ >1 V xeX.

Note: Sometimes we relax the assumptions of this definition and we only need the

map to be continuous and differentiable except for a finite number of points.
2.2 Chaos ingredients

In this section I will define and explain the main ingredients of chaos: topological
transitivity, denseness of periodic points and sensitive dependence on initial

conditions.

Definition 2.2.1 Consider the metric space X and the continuous map f: X—>X. We
say that fis topological transitive if for every pair of non-empty open sets U and V in
X there exists a positive integer & such that f YU nvz@.

Another famous definition of transitivity is the following:

Definition 2.2.2 We say that the map f is topologically transitive if Ixe X such

that its orbit { f'(x)|n= 0} isdense inX, that is, {f"(x) |n> 0} =X.

These two definitions of topological transitivity are clearly not equivalent:

Example 2.2.3 We consider the continuous map f:X > X where X=
{0}u{1/n:neN}equipped with the metric d = |x—¥ Vx,yeX. The mapf is
defined by f0)=0 and f(1/n)=1/(n+1) for n =1,23,...... Then if we choose
U={1/2} and ¥ ={1} then f does not satisfy the definition 2.2.1.
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Now we can observe that the point x =1 has a dense orbit in X so the definition 2.2.2
is satisfied and so it's not equivalent with 2.2.1.

According to [24] these two definitions are equivalent when X is a compact metric
space. Also in [22] we can find the following proposition relating these two

definitions . The proof is omitted and can be found also in [22].

Proposition 2.2.4 Consider the continuous map fX —X where X is a complete
separable space with no isolated points. Then the following are equivalent:

1) fis atopologically transitive map, that is,it has a dense orbit.

2) fhas a dense positive semiorbit.

3) V U,V non empty subsets of X there exists an integer n such that f"(U)N V=

4) YU,V non empty subsets of X there exists a natural number n such that

f U V3.

Comments:

1) A topologically transitive map has points which eventually move under iteration
from one arbitrary neighbourhood to any other. Consequently the Dynamical
System cannot be broken down or decomposed into two disjoint open sets
which do not interact under f, ie they ére invariant under the map f (a
set A c X is invariant under fif f(4)c 4).

2) Topological transitivity is a purely topologic condition.

3) If the orbit of every point x € X is dense in X then the map f is said to be

minimal.

Definition 2.2.5 Consider the metric space X equipped with the metric d and the
continuous map f :X—X. We say that the map f exhibits sensitive dependence on
initial conditions if 3 6>0- called the sensitivity constant of f —such that for any

xeX and any open neighbourhood N, (x)of x for some &> 0 there exists a point

y€ N,(x)and n>0 such that a(f"(x),f"(y)zo .



Comments

1) A map satisfying the property of sensitivite dependence on initial conditions
has points in N, (x) which eventually separate from x by at least a distance J
under iteration of f.

2) From definition 2.2.5 we can see that not all points in the open neighbourhood

N, (x) of x eventually separate from x under iteration, but there is at least one

such point in every open neighbourhood.
3) Sensitivity is a metric property since it depends on the metric of the space.
4) The sensitivity constant J does not depend on x,nor on & but only on the

Dynamical System (Xf).

Convention: Throughout this paper “transitivity” will always mean “topological
transitivity” and “sensitivity” will always mean “sensitive dependence on initial

conditions™.

2.3 Defining chaos

In this section of my project I am going to give some basic definitions of chaos such
as Devaney’s, Wiggins' and Lyapunov’s chaos. All the background of these

definitions and theorems mentioned here will be covered and explained precisely.

2.3.1 Devaney' s definition of chaos: Let fX—>Xbe a continuous map and X be a
metric space. Then fis said to be chaotic according to Devaney or D-chaotic if:

1) fis topologically transitive.

2) The periodic points of fare dense in X.

3) fexhibits sensitive dependence on initial conditions.

In [1] Banks et. al proved that sensitivity is a redundant hypothesis in Devaney's
chaos because it is implied by transitivity and density of periodic points. So on the

following theorem I am giving this result together with its proof:
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Theorem 2.3.2 Let /-X— X be a continuous map where X is a metric space. Then if
is topologically transitive and has dense periodic points then f exhibits sensitive

dependence on initial conditions.

Proof: We can find a positive number &, such that there exists a periodic point ge X

the orbit of which is at a distance of at least 5% from every x € X. Now we obtain

two distinct periodic orbits of two periodic points with no common points, say p, and

p, and we let the distance between these orbits be &,. 1 will prove that f exhibits

sensitive dependence on initial conditions and its sensitivity constant is & :54.
Next we take an arbitrary point xe X and choose an open neighbourhood of x, say
N_(x) .-We consider now the ball B; (x) with radius & and centre x. Because f has

dense periodic points we can find such a periodic point p that lies in the set

N,(x) N B;(x) with period we call n. Now it is clear that exists a periodic point g

such that its orbit is at least at a distance of 46 from the point x. Then the set

V=()f"Bs(f'(@)#D because geVand it is open.

i=0

By the transitivity of f 3 k eN and y €U such that ffone V.

Now letj: = LEJH where [EJ denotes the integer part of K . Then we have that
n n n

1<nj—-k<n.
Sowe canwrite £ (»)= (e [V < By(f*(¢)) - Using the triangle
inequality and the fact that f”(p)=p we get

AU () P ) =d(p, 7 (») 2d(x, f7 (@)~ d(f " (@), /" (1) —d(p,%)
>45—-8—-6 =26 because p e B,;(x) and

PO =r"o)= " (ff e ") B;,(f" () . Finally using the triangle
inequality again either d(f™ (x), f” (¥)>8 or d(f"(x),f "(p))>8 and the proof'is

completed.



Remark: In [16] it is proved that a continuous map with dense periodic points and
sensitive dependence on initial conditions doesn't need to be transitive. This is proved
by a counter example (see example 2.4.3).

Also in the same paper it is proved that a continuous and transitive map with sensitive
dependence on initial conditions does not need to have dense periodic points (see
example 2.4.2).

P. Touchey in [15] proved that a Dynamical System defined on a metric space X is D-
chaotic if and only if for every pair of open sets in X there exists a periodic orbit

which visits both sets.

Now it is interesting to see what is happening in the case where the metric space X
which the map f is defined is a finite or infinite interval on the real line. In [8] it is
proved that in this case transitivity implies Devaney’s chaos. First of all I will give a
lemma that it is used to prove this result but I will not give the proof. The proof can be
found also in [8]. The proposition clearly holds when J is a compact interval. In [4] it
is proved the same result as in proposition 2.3.4 for compact spaces but its proof

contains non trivial results.

Lemma 2.3.3 Consider the interval I (finite or infinite) and let fI—>/ be a

continuous map. Also let J I be an interval with no periodic points of f and

z, f"(z) and f"(z) € Jwith 0<m<n.Then either z< f"(z)<f"(z) or
z> f"(2)> f"(2)-

Proposition 2.3.4 Let [ be an interval and fI—>1 be a continuous map. If f is
topologically transitive then f exhibits sensitive dependence on initial conditions and

has a dense set of periodic points.

Proof- From theorem 2.3.2 we only need to prove that f has dense periodic points. If
/ has no dense periodic points it is clear that there exists an interval with no periodic

points, say J < I. Now we choose a point x in J, an open neighbourhood of x say

N, (x) for some &>0 and an open interval E c J\N,(x). Since f is transitive in /

there exists a positive integer m such that /" (N (x)) N E # @ and f"(y)eEcJ

for some y in J. Now because f is continuous we can find an open neighbourhood U



of y such that f"(U)NU =@. Also we can find a number m<n and a point z in U
with f"(z)eU. But then we have a contradiction from lemma 2.3.3 because then

0<m<n and z, f"(z)eUsince f"(z)¢U . Sothe périodic points of fare dense in /.

Remark:
1) For a map on an interval the only condition that should be checked is to be D-
chaotic is transitivity.
2) The proposition does not hold for dimension higher than one or on the unit

circle since the ordering on R is used in an essential way.

It is interesting to check if proposition 2.3.4 is valid for continuous maps on the unit

circle S' = {z e |z| = 1} . According to [24] we have the following theorem:

Theorem 2.3.5 Consider the continuous map f: S' — S'. Then if fis transitive and f

has at least one periodic point, then the periodic points of f are dense in S' and so f

is D-chaotic.

2.3.6 Wiggins' definition of chaos [28]: Let /: X—>X bea continuous map and X
be a metric space. Then the map f is said to be chaotic according to Wiggins or W-
chaotic if:

1) f is topologically transitive.

2) fexhibits sensitive dependence on initial conditions .

Before giving the third definition of chaos first I will give the definition of the
Lyapunov exponent which is a number A measuring the exponential rate at which

nearby orbits are moving apart.

Definition 2.3.7 Let :R — R be a continuous and differentiable map. Then Vx e R

we define the (local) Lyapunov exponent of x say A(x) as

n—l

Ax)= lim lng |£'(x)| Vx R
iy ,

10



Motivation : Consider the map x,,, = f(x,) and let the points x, and x, be

originally displaced by 6 = ' —X, } Then after » iterations of the map we get

ox,=

+6)— 7 (x,)|= 5™ (1)

xﬂ _le =

in the limits & — 0 and 7 —> o .If we solve the last relation with respect to A(x,) we

get

+5) V& ("0)'—11111

n—->%s 0

LG R s ool

i=0

11111 100
n>w

log|———

Ax,)=hmlim— 1og|

n—n 60 p

n—1
= lim1210g|f’(x,.)| .
e/ i=0

2.3.8 Lyapunov's definition of chaos [21]: Consider the continuous and
differentiable map f:R — R .Then fis said to be chaotic according to Lyapunov or
L-chaotic if:

1) f istopologically transitive.

2) f has a positive Lyapunov exponent.

Remark:

In a set of positive measure the Lyapunov exponent can be found from the relation
Mx) = j 1og\ I’ (x)‘p(x)dx where p(x) is the invariant measure(note that if fis
ergodic then p(x) is unique).

In higher dimensions, for example in R” the map f will have » Lyapunov exponents,
say A,4,...4, for a system of n variables(in [19] it is explained a way how to
calculate this exponents). Then the map is L-chaotic if the maximum Lyapunov

exponent is positive i.e max {4, 4,,...4,} >O0.

Proposition 2.3.9 Consider the continuous and differentiable map £ R — R . If f has
a positive Lyapunov exponent then f has also sensitive dependence on initial

conditions.

11



Proof: Consider a point. x, € R. Now we chose a point x, close tox,. Then from the

relation (1) we have ox, = S (%, +0) _fn(xo)\ =|x;7 X = 5xoen2(.\'.,) =0

o

nA{xy) —
ox,
0

where 5x0=‘x{')—x0’ and x, =x,+8 = e O n- log
Ox, A(x,)

Choosing some & for given x, then dx, e N,(x) such that Ve>0 after m>n

iterations we get

fm(x(’))_fm(xo)l=(S-xoenll(.\'u)=5xoe(m—n)}.(,\~n> en/’.(.\'o):_e(m—n)A(.\‘o) (5>5:>f haS Sensitive

dependence on initial conditions.

Proposition 2.3.10 Every expanding map f:R >R has sensitive dependence on

initial conditions.

Proof: Since the map f is expanding from definition 2.1.8 we have that I I (x ), >1

Vx, € R. Now the Lyapunov exponent of fat the point x is given by the formula
1 n—i
A= lim— log|#" (). Since| /' (x)| >1  VxeR =
n—wn ?i 1:.0

log

n-l
f’ (x,.)l >logl=0 = > log
i=0

f’ (xi)‘ >0 = Dividing both sides of the inequality

with 7 and taking the limit for »n—> o we get A(x) . From proposition 2.3.8 we have

that fis sensitive.

2.4 Examples

In this section of my project I will examine the chaotic behaviour(with respect to the
three definitions of chaos in the last section) of some interesting and well-known

maps .

Example 2.4.1 Consider the Bernoulli shift map B(x):[0,1) > [0,1) given by

_ _J2x 0<x<0.5
B(x)=2xmodl {Zx—l 0.5<x<1 -

The graphs of B(x) and B’(x) are shown in figures 1 and 2 respectively.

12



First I will prove that B(x) is transitive using symbolic dynamics. We let ¥ be the

metric space of all infinite sequences containing 0 's and 1's equipped with the metric

p(s,r)=§17_-|si —7,| ¥V s=(855,.) and T=(5,77,...) € Y and we define o : X >

Y given by  o(s55,-.)=(55,5...). Then there exist a  point
x =(0100011011000001...) created by blocks of 0's and 1's,which has a dense orbit.

So o is transitive and then B(x) is transitive. [24]

Now I will prove that B(x) has a dense set of periodic points.
We have that Fix(B) = Per,(B) = {0} = |Per(f)|=1=2"-1.The second iterated

map B’ is given by B’(x)=4xmodl and Per,(B)= {O, %, %} = |Per,(B)|=3=
22 _1. Generalizing this result the n-th iterated map is given by B"(x) = 2"xmod1.So

2 2" -2
JELER 2 22| 4nd |Per. (B)|=2" -1
2 -1"2"-1"72"-1

PRTETS

Per,(B) = {0 >
Now lim |Per,(B)| = so vxe[0,1) and V&>0, N (x) will contains a periodic
point. Hence the periodic points of B are dense.

Also since B(x)=2xmodl then B' (x)=2 Vxe [0,1) except for x=0.5 where the
derivative is not defined = l(x)=logyB ' (x)\=log2>0 = B(x) has a positive

Lyapunov exponent.
So all the conditions for the three chaotic definitions are satisfied so the map B is D-

chaotic, W-chaotic and L-chaotic.

. 2
Figure 1 B(x) Figure2 B'(x)

13
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Example 2.4.2 Consider the continuous map 2 X — X defined by f(e”)= e’ and
2api
X=S 1\{e 7 :p,qel,q# 0} is a metric space equipped with the arclength metric

d. Now every non empty subset of X is eventually expanded under iteration to cover
X, sof istransitive. Also by defining in this way the set X we let out all the periodic

points of £, so fhas no (dense) periodic points. Finally for any given two points in X,

say €° and e” such that 0<|@—g|<z we can choose n that satisfies

2" <|9—¢‘_<_ﬂ' <2m™

9—(/5] —f is sensitive with sensitivity constant % since
d(fm (%), (")) > 7 So the map fis L-chaotic, not D-chaotic and not W-chaotic
. > p.

[16].

Example 2.4.3 Consider the continuous map /.Y — Y , where ¥ =S x [0,1] is a metric

space equipped with the “taxicab” metric d((x,, ), (x,,¥,)) =

x, = x| = |y, —y| for

every pair (x,,y,) and (x,,,)€Y .We define f by f (€?,6)=(*",1).

6

Clearly a point z =(e”,r) will be a periodic point for / when e is the root of

unity of order 2" —1 for some n.So the periodic points of f are dense in Y. On the

other hand if we take two sets 4 and B, where A=S" ><|:0, %j and B=§" x(—;—,l}

then V neN we have that f"(4)NB= AN B= = The map is not transitive.

Finally if we work in the same way as in the last example it's easy to conclude that the

map f is sensitive. So the map fis not D-chaotic and not W-chaotic [16].

Example 2.4.4 Consider the map £ R - R given by f{x)=2x . The graphs of f(x) and
f2(x) are shown in figures 3 and 4 respectively.

First I will check if the transitivity condition is satisfied. We can observe(from the
graph) that for x>0 f"(x)—> when n—>c. On the other hand for x<0
f"(x) > —0 when n—>o0 so there does not exist an orbit that goes from x<0 to

x>0 or vice versa and the map can be decomposed into two open disjoint sets. So the

14



transitivity condition is not fulfilled and the map f is not D-chaotic, not W-chaotic
and not L-chaotic.

It is interesting to check if the other conditions are satisﬁed. It's easy to verify that the
map has only one fixed point at x = 0 so Fix(f)= {0} and also this fixed point is the
only periodic point with period n = Per,(f)={0}=/ has not a dense set of
periodic points.

Since

f (x)l =2 V xeR = A(x)=log2>0V xeR.So f has a positive Lyapunov

exponent and from proposition 2.3.9 is sensitive.

1Ay o

L &
05 n:j x ED ]

231

* 2
Figure3 f(x) Figured4 f*(x)

Example 2.4.5 Consider the tent map 7:[0,1] - [0,1] given by

| 2x 0<x<0.5
r (x)_{2—2x 0.5<x<1

The graphs of T(x) and T(x)are shown in figures 5 and 6 respectively.

First I will prove that T (x) is transitive. So we choose a positive number d such that

0<d<%and the compact  interval [ :[%d,d}Then 3 keN such that

g < -;- <2°d The k-th iteration of T (x) gives T*(1)=[2""d,2d] and the k+1-

15



th iteration gives T"'“(l):T({Z‘"]d,%}u(—;—,Z"d})=1’(|:2""‘d,%pu T(%,zkd}
=[2*a,1]u[2-2""d.1)
Continuing in the same way the k+2-th jteration of T s

() =[0,20-2"d) | LT (| 2-2"d,1 =1-2°d <+ =3 m>0 such that
2

2"(1-2Fd) > % = [o, ﬂ <[0,2"(1- 2d) |cT” ([0, 2(1-2* d)]) c T 3(I)

So 3 keN for every subinterval J of [0,1] at which T*(DNJ#Q = T is

transitive and from proposition 2.3.4 T is also sensitive and has dense periodic points

So T is D-chaotic , W-chaotic and L-chaotic. [26]

~(2x-2)  —1<x<-0.5

2x }x‘<0. 5
2-2x

Now the odd extention of T in [-1,1] is given by K(x)=

0.5=x<1

Then K is not transitive because the interval (0, 1) will never map onto any

subinterval of (~1,0). Also K is sensitive and has dense periodic points= K is not D-
chaotic, not W-chaotic and not L-chaotic.

But if we define a map F(x)= -K(x) on [-1,1] then F has dense periodic points since K
has also. Basically every periodic point of K with period 7 will be a periodic point for
F but with period 2n. Also after some iterarions of F’ we can see clearly that F is
transitive. Finally F is expanding so it is sensitive. So F is D-chaotic, W-chaotic and
L-chaotic. [2]

1

157

Figure5 T(x) Figure 6 T°(x)

16
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Example 2.4.6 In [7] it is proved that the quadratic map F: [0,1]—>[0,1] given by
F(x)=4x(1-x) is D and W-chaotic. The graph of F(x) is shown in figure 7. I will
use this result to investigate the chaotic  behaviour of the
map G(p,0) = (4p(1— p),0+1) using the polar coordinates(p,6). The map G is
defined on a disk D(0,1) = {x eR’ ||x|| < 1}. After a finite number of iterations of the
map G the image of a small disk in D(0,1) will contain an open set U c D(0,1) with
a full radius. Also the rotation of I radian will spread U totally over D(0,1) after a
finite number of iterations. So G is transitive on D(0,1).

Now since the quadratic map F is sensitive on [0,1] then G is also sensitive.

Finally G has only a fixed point in the origin and does not have any periodic orbit of
period p>1. Basically G shrinks or stretches the distance of every point of D(0,1)
from the origin while rotating by an angle of I radian. Since 1/ 7z is irrational no point

x, that belongs to the orbit of x,can come back to the same ray which contains x, .

Hence G has no dense periodic points. So G is W-chaotic but not D-chaotic [6].

1_1_

Figure 7 F(x)

051

Remark: In the last example since in the first coordinate the quadratic map F has
dense periodic points and on the second coordinate the other map has not dense set of
periodic points. From this result we can conclude that their “composition” together to

the map G does not have dense periodic points.
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3. Related definitions of chaos and crosslinks

3.1 Topological mixing and blending: An “alternative” of topological transitivity

in Devaney's definition of chaos.

In this section I will explain two new concepts: Topological mixing and blending
(strong and weak) and I will investigate if these two conditions can replace transitivity

in Devaney's definition of chaos.

Definition 3.1.1 Consider the metric space X and the continuous map f: X — X .The
map fis said to be topological mixing if for every pair of non-empty open sets U and

¥ in X there exists a positive integer » such that f "NV =D forevery k>n.
Convention: Throughout this paper “mixing” will always mean “topological mixing”.

Now I will give a condition for a map to be mixing on a compact interval. This result

can be found in [4].

Lemma 3.1.2 Consider the compact interval I =[a,b]. Then there exist a continuous

map f:I— I with flaj=a and f(b)=b suchthat f is topological mixing.

Proof First we choose numbers a,4,,a,,a, such that a,=a, a=b and
a, <a, <a, <a,.Also we choose the intervals [a),a] ,[4,,4,] and [a,,a;] to have
the same length. Now we let f to be the piecewise linear map such that
f@)=a,, fla)=a, f(a,)=a, and f(a;)=a,.

So its clearly that for any subinterval J of an interval [a;,a;,,].the length of f{J) will

be three times the length of J, hence for some n>0 we have that f"(J)=1 and f is

topological mixing.

Example 3.1.3 Let f be a continuous piecewise linear map on the compact interval

1 =[0,1] such that f(0)=0, f(%) =1 and f(1)=0. Then f is topological mixing

18



because the assumptions of lemma 3.1.2 are satisfied. It can also be proved that f'is a
topologically transitive map (for example the Tent map satisfies the assumptions of

this example).

From definition 3.1.1 clearly mixing implies transitivity. In [4] Block et al we have
an equivalence between mixing and transitivity. Again I will give this result by a
theorem but without its proof since it contains non trivial results. The proof also can

be found in [4].

Theorem 3.1.4 Consider the compact interval X and the continuous map
fiX>X

Then the following are equivalent:

1. fis transitive and there exists a periodic point with odd period greater than one

2. f? is transitive

3. f is topological mixing

Remark: Not every transitive map is mixing.

Example 3.1.5 Let S' be the unit circle and let £ S' — S' be an irrational rotation.
Then the map is transitive but its not mixing. More generally no translation (and no

circle rotation) are mixing from the fact that translations preserve the natural metric

on the torus induced by the standard Euclidian metric on R" and from the fact that

isometric are not mixing ( for this result see [22] )

In [2] Cranell suggests blending as an alternative of transitivity hypothesis in
Devaney's definition of chaos. Blending is also a purely topologic condition as

transitivity but as we will see above they are not equivalent.

Definition 3.1.6 Consider the continuous map f: X — X on a metric space X. Then

fis said to be a strongly blending map if for every non-empty open sets U,V < X

dn >0 suchthat f"(U)N f" (V) contains an open set.
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Also f is said to be a weakly blending map if for every non-empty open sets
UVcX 3n>0 suchthat f"U)nf"(V)=9.
Now I will give two main theorems that give a relation between blending ( strong and

weak ) with topological transitivity. The first theorem is valid for any subset of R”
and its proof will be given. On the other hand the second theorem is valid only for

compact spaces in the real line. Its proof is omitted and can be found in [2].

Theorem 3.1.7 Consider the continuous map f: X cR" — X and let f has dense

periodic points. Then if f is strongly blending then f is transitive.

Proof : Consider two non empty open subsets U,V < X. Then 3In>0 such that
Mc f"(U)n f"(V) , where M is an open set in X. Now let Y'= f"(M)nV.
Then since fis a continuous map and Y is also open ( as intersection of two open sets )

we can choose a periodic point ¢ in ¥ with period m>n.But then f"(q) e M and
there exist y eU such that f"(g) = f"(»).
Finally we have f"(»)= f""(f"(@))=f"(¢)=q andsoq € f"U)NV #D and

the theorem is proved.
Before giving the second theorem I will define the repelling fixed point.

Definition 3.1.8 Consider the continuous and differentiable map £ X — X and let
p € X to be a fixed point for the map /. Then p is said to be a repelling fixed point

for the map f if |f'(p)|>l.

Theorem 3.1.9 Let £ I — I be a continuous map on the compact interval I. Then if

1 has a repelling fixed point and fis also transitive then fis weakly blending.

Remark: The converse of theorem 3.1.7 does not hold since there exist transitive maps

without being strongly blending.
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Example 3.1.10 Consider the map £ S' - S' defined by f(6) =6 + k ,Wherek is an
T

irrational number. Thenf is transitive but not strongly blending ( also f'is not weakly
blending ).

Remark : The converse of theorem 3.1.9 also is not true since there exist weakly

blending maps without being transitive.

Example 3.1.11 The map F defined on example 2.4.5 as we have seen is not
transitive but it is weakly blending since every open subinterval of [-1,1] eventually

maps onto another subinterval which contains the fixed point of F which is located at

the origin.
3.2 Expansivity: an alternative of sensitivity on Wiggins' chaos

Expansivity is a condition related directly with sensitive dependence on initial
conditions but these two conditions are clearly not equivalent as I will explain later

on.

Definition 3.2.1 Consider the metric space X equipped with the metric d and the map

f:X—>X.Thenf is said to be expansive if there exists a positive number ¢>0

such that if x,y € X and x # y then 3n >0 such that d(f"(x), f"(y)=zc.

This positive number c is called an expansive constant for f

Remark: Clearly from the definition 3.2.1 expansivity implies sensitivity because in
expansivity all nearby points of x separate by at least ¢ (in sensitivity condition we
need only one point to have this property ). If a map is expansive then any two orbits
become at least a fixed distance apart. On the other hand trivially sensitivity does not

imply expansivity.
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3.3 Some more crosslinks between chaotic ingredients

In this section I will try to explain how all these chaotic ingredients ( transitivity,
mixing, denseness, expanding maps, positive Lyapunov exponents et.c ) are

interrelated. Some of these relations I have already talked about are:

fis expanding —» fhas A(x)>0 —> fis sensitive
mixing —> transitivity

transitivity + dense periodic points —> sensitivity
On the following I will prove that:
fis expanding —> fis mixing —> f'is sensitive

Proposition 3.3.1 Consider the unit circle S'.Then every expanding map f:S' — S'

is topologically mixing [22].

Proof: First we suppose that there exists a positive number k£ such that

lf’ (x)\ >k>1. VxeR.Consider now the map F: R —> R suchthat fomx=moF(
here misthe map 7z :R — R/Z given by 7(x)=xmodlI). Then clearly we have that
‘F ' (x)l >k VxeR Now we consider the compact interval [a,b]. From the mean

F(b)-F(a)

—a

value theorem we know there exists c [a,b] such that \F ! (c)l :|

|F(b)-F(a)|=

F’ (c)| |p—a|=k|p—al. According to the last relation the length of any

interval will be increased under F" at least by a factor £" so for every interval /

there will exist a natural number 7 such that the length of F(J) will be bigger than

one. Then the image of the projection of the interval 7 toS' under f” will contain

S'. Finally every open set has an image under an iterate of fthat contains S' because

every open set of S' contains an interval. Hence the theorem is proved.
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In example 2.4.1 I studied the Bernoulli shift map B(x) in the unit interval given by
B(x)=2xmodI. As we have seen this map can be represented on the unit circle. This

map belongs to the family of linear expanding maps E, : s! - s' given by
E, (x)=mxmod]. Before I give a corollary on the chaotic behaviour of these maps I

will define the linear map.

Definition 3.3.2 Consider the map £ X— X. Then f is said to be a linear map if
f(ax+by)=af (x)+bf (y) Vx,ye X and Va,beR.

Corollary 3.3.3 Linear expanding maps are D-chaotic, W-chaotic and L-chaotic.

Proof : From proposition 3.3.1 E, is mixing and hence is transitive. On the other
hand E, has m"—1 periodic points of period n (generalizing the result for the
Bernoulli shift), i.e lPer" (E",)| =m"—1 .So as n—> o then Per,(E,) — o hence the

periodic points of E,_ are dense. From theorem 232 E_ is also sensitive and the

theorem is proved.

Proposition 3.3.4 Consider the metric space X equipped with the metric d and the

continuous map 2 X — X .Then if fis a mixing map then itis sensitive.

Proof: Consider a positive number d and two points say p, ge X such that

d(p,q) >4d . Consider also the balls B,(p) and B,(g) both with radius d and

centres p and g respectively. Now we take a point x€ X and we choose an open

neighbourhood of x say N,(x) for some &>0.Now since fis a mixing map then
3n,n, e N such that f"(N,(x))nB,(p)#D Vn>n and f"(N.(x)NB,(q)#D
Vn>n, . If we choose n>max{nm,n,} then 3y,y,eN,(x) such that
f")eB,(p) and f"(y,) € B,(9)-

Then we have d(f"(3),f"(¥,)) 226 . Also from the triangular inequality we get

F"3,), 1) 26 or d(f"(»),f"(x))=8. So f is sensitive with sensitivity

constant 46.
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4. Further details and further definitions

4.1 Discontinuity and chaos

In section 2.4 1 studied some examples of linear maps, such as the Bernoulli shift
map. This map is discontinuous x =0.5 but it is chaotic. Here I will study chaotic
behaviour with respect of discontinuity. But first of all I will give some preliminaries

that will be used in this section. .

Definition 4.1.1 Consider the metric X , a nonempty subset Mc X and a point x; €

M. Then a point x, € M is said to be an interior point of M if 3 & >0 such that

B,(x,) M. The set M is said to be rare(or nowhere dense) in X if its closure M has

no interior points.

Definition 4.1.2 A topologic space X is said to be a Baire space if the countable
union of any collection of closed sets with empty interior has empty interior

(equivalently the interior of every union of countably many nowhere dense sets is

empty).

The Baire category theorem gives sufficient conditions for a topological space to be a

Baire space.

4.1.3 Baire category theorem Every non-empty complete metric space is a Baire
space. More generally, every topological space which is homeomorphic to an open
subset of a complete metric space is a Baire space. In particular, every topologically

complete space is a Baire space.
In proposition 4.1.4 I will show that for maps defined on a Baire separable metric

space which has at most one point of discontinuity(for more than one point this is

false) transitivity implies the existence of dense periodic orbits.
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Proposition 4.1.4 Let f : X—>X be a transitive map ona Baire seperable space X
equipped with the metric d. Then if f has only one point of discontinuity ,say p then

there exists a point x such that its orbit is dense in X.

Proof : If {f "( p)}nEN =X then we finished. So we suppose that { f( p)}nEN is not

dense in X . First I will prove that { f( p)} is rare and I suppose that this is false.

neN

So there exist open sets UV < X such that V m{f"(p)} o & and

Uc {f" ( p)}ﬂd\J . Since fis transitive then f™(g)eV for some natural number m and

for some g€U. Also f"is continuous at the point g because f"(q@)#f"(p) for each
n. But then there exists an open subset W of ¥ such that /(W) < V. Then by choosing
a natural number & such that f*( p)eW, then we have f km ( pyeV hence we have a

contradiction. Now we choose a (countable) basis {A,, }"EN of open sets in

X\{f"(p)} y and we define F,={xeX: f"(x) € A, for some m}. So we fixn € N

nely

and then if xe F, then 3 me N with f™x) € A, and also ™ is continuous at the
point x. As a consequence of this there exists an open neighbourhood U of x with the

property f "(U) c A, and hence F, is open. Now for any open set Yc X because of

the transitivity of f we can find meN and yeY suchthat f"(y)€4,.So yeF,

and F,, is dense . Finally we define F = ﬂ F, and because X is a Baire space then F

neN

is dense in X and thus { f "(x)} . X V xeF and the proposition is proved.

Remark: This proposition does not hold if the map has more than one point of

discontinuity. In example 2.4.6 I defined the Tent map 7(x). As we have seen it is a

continuous map on the unit interval. Now we fix y, €(0,1) such that {T " )}

neN

is dense in [0,1] and we let y, =y, +1
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We define f: [0,2] > [0,2] given by

Ix) x €[0,1]
Vo x=1

Fix)= 1+ T(x-1) xe(l,2)
Y x=2

In [13] it can be found the proof that F(x) does not have a dense orbit but it is

transitive. I will only prove that F does not have a dense orbit.

Proof. First we have that {T"(y,)} . ={ f "(yl)} . is dense in (0,1). Now this

ne. ne

sequence agrees with {T "V —1)}”EN SO {xn }neN = {T" (¥ —1)}"eN is dense in (1,2).

Also we have that £ (3,) =1+T(3, —1) and £(x) =1+T(q, =D = 1+T*(3 D =x,.

By induction we have x,,; = f(x,) and hence { f( yo)} . is dense in (1,2).

ne

Now if x=k/2" x=2/k", where k,neN then 3 meN with f"(x)=y, when

x=2/k" and f™(x)=y, when x€(0,1] and f"(x)=y when x€(0,1]. From the
map T(x) we have T(—12—)=1,T(%):1,...T"(2l%)=1 Vk/2"€(0,1). So for

x=k/2"€(0,1) AmeN with f"(x)=f1)=y,.

For xe(1,2) and f{x)>1 then either f{x)=2 we get f *(x)=1y, or we have f{x) €(1,2).
So for fx) €(1,2) we iterate the map until we find m e Nsuch that T"(x-1)=1.
Since f*(x)=1+T*(x—1)= f(1)= y, where 1S A<m then we get ™" (x)=y, . So

the map f has not a dense orbit.

The proof that 1 is transitive is omitted and can be found also in[13].

Remark: In [14 ] it is proved for a map that is one to one in an interval, chaotic
behaviour cannot occur when f is continuous but can occur if f has even one
discontinuity (of course there are some maps that are not one to one and exhibits

chaotic behaviour).
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4.2 Li-Yorke's chaos and scrambled sets

In this section I will try to explain chaos in a different view than in section 2.4. Here 1

will explain the meaning of the scrambled sets and I will define Li-Yorke's chaos.

Definition 4.2.1 Consider an interval I and the continuous map f: I—I. Then an
uncountable subset S of I containing no periodic points of f is said to be scrambled
if:

1. Any periodic point p of f and any point xel satisfies
1= 1"(p)|>0.

lim sup
n—e

=0.

2. Vx,ye X limsup‘f"(x)—f”(y)$>0 and liminf|/"(x)—f"(¥)

Clearly condition 1 requires that for an orbit starting from a point in S does not

approach asymptotically any periodic orbit (Generally two orbits {x, f(x),f (x)} and

{ 7, O, F( y)} approach asymptotically if ]171_r)r,1} fH(x)-f7( y)l =0). The second

condition requires that two arbitrary orbits starting from two different points in S can
be close to each other but cannot approach each other asymptotically. Both conditions

are certainly related with sensitivity of f.

4.2.2 Li-Yorke's definition of chaos Let I be an interval and let f: I—>1 be a
continuous map with a periodic point of period three. Then f is said to be chaotic in

the sense of Li-Yorke or L-Y chaotic if f has an uncountable scrambled set.

In the original paper [7] Li and Yorke prove the following theorem (The proof can be

found also in the same paper):

Theorem 4.2.3 Let I be an interval and let f: I—1 be a continuous map. If there
exists a point xe I such that y = f{x), z= f(x) and w= f>(x) satisfying w<x<y<z
(or w>x >y>z) then

1. V n=1,2,3,..... there exists a periodic point in I with period ».

2. There exists an uncountable scrambled set S < I with no periodic points.
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Note: The hypothesis of theorem 3.5.3 is also satisfied if ' has a periodic point with
period three.

Li —Yorke's chaos has two important disadvantages in contrast with the other three

definitions on section 2.4. The first is that it can only be used on intervals on the real

line and not in higher dimensional spaces. For example the rotation on R? of 120" has
a periodic point with period three but it does not have an uncountable scrambled set.
The second disadvantage is that it cannot be applied to maps even with one

discontinuity since discontinuity is critical to L -Y chaos.

Now I will examine the chaotic behaviour of same maps with respect to Li —Yorke

chaos.

Example 4.2.4 Consider the map f: [-1,1] — [-1,1] given by f{x)=2|x|-1. The figure

of f{x) is shown in figure 8. Now we can observe that f(%) =§, f(—g—) =é and

f(é) = _% so f has a periodic point of period 3 and f is L-Y chaotic [27].

051

Figure 8 f(x)

Example 4.2.5 Consider the map f: [0,1] —[0,1] given by

x+1/3 0=c<2/3
fx)= 1-7(-2/3)  2/3<k<2/3+1/8
x-2/3 2/3+1/8c<I
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The figure of f(x) is shown in figure 9. Choosing the interval /=[1/8,1/3] we can see
that it is transported to the interval J=[1/3+1/8,2/3]. Continuing in the same way J is
transported to K=[2/3+1/8,1] and finally K to I So because of this all points in these
intervals are period three points, hence the hypothesis of definition 3.5.2 is satisfied

and there exists an uncountable scrambled set, hence exhibits Li —Yorke chaos.

1

Figure 9 f(x)
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Example 4.2.6 Consider the map f,:[0,1)—>[0,1) given by f,(x)= frac(x—a),
where frac(x) denotes the fractional part of x and a is an irrational number. First we

choose two arbitrary points x and y in [0,1) such that x<y. Then we have

I-x—y| x<frac(na)
fm(x)—fm()’)| | -y otherwise

=17 )

,1—|x—y|}> 0 and from

So from these we have liminf

J7)= £()|= minfx—y

these there cannot exist an uncountable scrambled set so the map is not L-Y chaotic.

Example 4.2.7 Another map that is L-Y chaotic is the generalised logistic map
fx)=ax(1-x/b) with ae (3.84,4) and fx)=max{ax(/-x/b),0} for a>4 both defined in
the interval I=[0,K]. The analysis of this example can be found in [7].

Remark : In [11] it is proved that for a continuous and transitive map f: X— X, where
X is a compact metric space(in the real line) containing a fixed point or a periodic
point there exists an uncountable scrambled set, and hence Devaney's chaos implies

Li-Yorke's chaos.
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4.3 Topological and metric entropy: A chaos criterion

In this section I will give a slightly different sense of chaos explaining the
topological and metric entropy with respect to chaos. As I will explain later
topological entropy is related to Li-Yorke's chaos and metric entropy with the
Lyapunov's chaos. In particular a Dynamical System is said to be chaotic if it has a
positive topological or metric entropy. The determination of these two entropies is
very difficult and that’s why we prefer to calculate the Lyapunov exponent of the

system to study its chaotic behaviour.
4.3.1 Topological entropy

I will define the topological entropy for a continuous map f: /-1 where I =[ab] isa
compact interval of the real line. So let o and B be two open covers for the compact
interval I . Then their join ovp will be also an open cover for I(see [25] for the
proof) consisting of all sets AUB with Aca and Bef. Also when the inverse of f

exists and it is continuous, f'a is an open cover for I consisting of all the sets
f'o. where A eo(again see [25] for the proof).

So if a is an open cover for I, since I is compact there exists an open subcover y of a.
for the interval I. The entropy H(a) of an open cover a is defined as
H(a)=logN(x)>0 where N(at) is the minimum number of open sets in any finite

subcover. Clearly H(a)=0 when Iea.

Definition 4.3.2 Consider the continuous map f: I—I where is a compact interval
on the real line. Let A(f,o)=lim, H(avf ' a...vf " a)/n be the entropy of f
related to the cover o.We define the topological entropy of the map f as

h(f)y=sup h(f,0) where the supremum is taken over all covers .

Clearly we can see that 0= A(f,a) )< H(a) and 0< A(f) <.
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Remark :
1) The number H(av /" av...v f ! o) is the smallest number of open sets in [

that is necessary to cover 7, i.e is the most efficient open cover of L

2) It can be proved that when f is a homeomorphism then A(f)=h(f™")
(see [4]).

3) If we consider the map f, as defined in example 3.5.6 where g is an irrational
number then f, is discontinuous at a so we cannot define the topological
entropy. But if £, be taken as rotation in the circle group then any such

rotation has A(fy=0 [14].
4) A map can have A(fy>0 but can have no periodic points. This can be indicated

with the following counter example:

Example 4.3.3 First we choose a map with A(f)>0 and we consider the direct product

of this map with an irrational rotation R, (a is the irrational number). Then we use the
following formula (it can be found in [22] together with its proof)
Prop (f X R,) = By () + By (R,) and we get h,, (f xR,)= h,,(f)>0.

The map f xR, has positive topological entropy but has no periodic points.

4.3.4 Topological entropy for piecewise maps

In the case when the map f is piecewise monotonic over the interval I then the

topological entropy of f is given by A(f) =limloglap(f”)/n, where lap(f") is the

lap number of the iterated map ", i.e the number of monotonic pieces of f”" onthe

interval L
For example if we consider the tent map 7(x) on the unit interval then lap(7)=2 since

T(x) has two monotonic pieces in [0,1]. Also for the second iterated Tent map we

have lap(T>)= 4.
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4.3.5 Topological entropy and chaos

Proposition 4.3.6 Consider the compact interval J and the continuous map fI->L

Then fis said to be chaotic if and only if Ah()>0

As I said before topological entropy is related to Li-Yorke chaos. According to [25]
for a continuous map on a compact interval positivity of topological entropy implies

Li-Yorke's chaos. The converse is clearly not true according again to [25].

Remark: According to [24] for a continuous map f defined on an interval I f has a
positive topological entropy if and only if there exists a closed invariant set J c I
such that f|J is chaotic in the sense of Devaney.

In the same paper is discussed the relation between transitivity and positivity of
topological entropy. So in [24] the case that transitivity implies positive topological
entropy is challenging since there exist metric spaces which a transitive map can have
zero topological entropy. On the other hand the problem if positivity of topological
entropy implies transitivity does not have a very good sense. We know that a map
having two invariants sets /, J cannot be transitive but positivity of topological

entropy can be caused by the fact that f| I has positive entropy ( ( N=h(f|I)).

4.3.7 Metric-Kolmogorov entropy(K-entropy)

The metric (Kolmogorov) entropy is one of the most important measures by which
chaotic motions can be characterised but it is very difficult to calculate its value . I

will denote this metric entropy as A(u). I will define the K-entropy for a continuous

map f: I — Ion a compact interval I.A Dynamical System that has a positive K-
entropy is said to be a K-system [20].

4.3.8 Derivation of K-entropy

The definition of K-entropy is based on Shannon's formulation of degree of

uncertainty in being able to predict the outcome of a probabilistic event. So we
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consider an experiment with r possible outcomes with the probabilities of each

outcome be p,, p,,..., P, -

First of all we define the Shannon's entropy S to be a number that characterizes the

amount of uncertainty that we have concerning which outcome will result and is given

by S= —Z p, In(p,) .-We define pln(p)=0 when p=0.

i=1
Now I will define the K-entropy. To do this we let I to be a compact interval
containing the probability measure x which is invariant under the map f. Now we

partitioning the interval I into r disjoint subintervals, say I,,I,,...,1, such that
I=ILvl,u..Ul.

We define the entropy function H({I}) for the partition {I} to be
H{IL)H= z w(I)In[pd, )]_1 . Then we construct a succession of partitions {I,.(")} of
i=1

smaller and smaller size. Let now h(u,{I,}) =lim Ly ({,}"), so we define the K-
rkee 224 n

entropy to be the number A(u) = sup,, h(u, {I ; }) where the supremum is taken over

all possible initial partitions {7,}. [20]

Example 4.3.9 We consider the map :[0,1] - [0,1] defined by f(x)=x+ax"modl,

where z>1.In[29] it is proved that A(u)=0 for z>2 and h(u)>0 for z<2 but

the analysis of this example contains non trivial results.

Remark In [23] we have a relation that connects the topological and metric entropy of

amap f whichis A(u) <h(f) with respect to the probability measure 1 .

4.3.10 Chaos and connection to Lyapunov exponent

Theorem 4.3.11 Consider the compact interval I and the continuous map f: I—> 1.

Then the map fis said to be chaotic if f has a positive K-entropy.

The K-entropy for a continuous map is related to the Lyapunov exponent. For one

dimensional maps the K-entropy is equal to the Lyapunov exponent.
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In higher dimensions, say in R”the map will have n Lyapunov exponents say

A, A,..4, and the K-entropy is given by the averaged sum of positive Lyapunov

exponents in the following integral form:
h(u) = Id"xp(;)z/l,." (x) where p(x) is the invariant density and lf(?c) the

positive Lyapunov exponents.

According to [20] Pesin (1976 ) proved that the metric entropy is given by

h(p)= Z h., where b, are the Lyapunov exponents of the map f* with respect to the
h>0

measure 4 .

4.4 Chaotic ingredients under topological conjugation

In this section I will study the behaviour of some chaotic ingredients under
topological conjugation. As I mentioned in section 4 transitivity and denseness of
periodic points are topological properties and sensitivity is a metric property except if
the space is compact. So clearly transitivity and denseness of periodic points are
preserved under topological conjugation.

I will give now a counter example that proves that sensitivity (respectively

expansivity) is not preserved under topological conjugation.

Example 4.4.1 Consider the spacesX =(Lw) <R and Y =(0,00)cR,both
equipped with the standard metric of the real line d = |x— y| Welet f: X —> Y given

by AAx)=2x and h:X — Y given by A(x)=logr. So(considering the diagram in definition
2.1.7) the map f is clearly sensitive but the map g is not sensitive since g is just a

translation.

In this example the metric spaces X and Y are not compact. In the case where they
are compact sensitivity and expansivity are preserved under topological conjugation.
In the following theorem I will prove this result for a compact space in the real line
for sensitivityy. For expansivity I will not prove this result since the proof is almost

the same.
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Theorem 4.4.2 Consider the compact metric spaces X and Y on the real line and the
maps f: X - Xand g:Y — Ysuchthat f is conjugate to g. Then if g is sensitive

(expansive) on ¥ then f is sensitive(expansive) on X.

Proof: Let h: X — Y be the topological conjugacy for the two maps and let r>0 be

the sensitivity constant of g. I will denote the metric of the space X by d, and the
metric of ¥ by d,. Since the spaces are compact then h is clearly uniformly
continuous so for the same r>0, 35>0 such that if d, (p,q)<d then d, (h(p),h(g))<
r. So if d,(h(p),h(q))=r then d,(p,q)=5 ot equivalently if d,(p,q) =r then
d,(W'(p),h"'(¢))2 5. Now if we choose a point xe X and take an >0 then
dg, >0 so that if geY is within & of y = h(x) then p=h"'(g) is within ¢ of x.
Since g is sensitive at y then we take a k>0 and also we takea g€ ¥ that is within &,
of y. So if p=h'(g) then we have d,((g°(»).g"(g)H2r and
d, (K (g ON.H ' (g"(@)=5. Also since h'(g*WM=f'E"ON=S “(x) and

K (g% (q) = FE(h(g)) = f*(g) hence p is within & of x and d (f* (x)f*(¢))=6 and
the proofis finished.

Now it is left to check if topological entropy of a map fis preserved under topologic
conjugation. In [22] it is proved that topologic entropy is preserved under conjugation
for a general metric space. I will give a more specified result about compact metric

spaces on the real line. This result can be found in [4].

Proposition 4.4.3 Consider the compact metric spaces X and X and the maps the
continuous maps f:X—>X and g:Y—>Y. If there exists a homeomorphism 6:X—Y
suchabat 0o f(x)=go0(x) VxelX then h(f)=h(g) ie topological entropy is

preserved under conjugacy.

Proof: Let ho@=go@. Then by induction we obtain@o f* =g*o6 V k>0.Soif

we consider an open cover o of ¥ then 6 ' is an open cover of X. The
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topological entropy of g related to the cover a will be h(g,a)=
imH(avg'lav..vg™a)/ n=lmH@ (av g 'av..vg™a)/n

n—0

—n+l

=limH@ 'av0'glav..v0 g a)/n

n—

=limH@'av [0 av..v f0'a)/ n=h(f,0"'a) = So we have that h(g) <h(f)

n—»w

On the other hand since @ is a homeomorphism we have that 8" og= fo6" and

hence A(f) <h(g). So A(f) =h(g) and the proposition is proved.

Remark:
1) It can be proved that the Lyapunov exponent is preserved under topological
conjugation.
2) The metric entropy of a map is preserved under isomorphism (a bijective

isometry between two spaces).
4.5 Overview and open questions
In this section I will give an overview of what I have already talked about and I will
give some open questions that are still uncovered in this project. Finally I will give

my own definition of chaos and I will explain the reason why I choose this definition.

In the following diagram I revise my project:
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Although I obtain these interesting results some questions are still not answered. The
unknown answers are the following:

W-chaos = L-chaos <> mixing

mixing = expanding

mixing < D-chaos
Finally I will give my definition of chaos which is the following:

A continuous map f: X — X the metric space X is said to be chaotic if:
1. fis topologically transitive.

2. fexhibits sensitive dependence on initial conditions.

I prefer this definition of chaos since the sensitivity of the map can be checked very
casily numerically and also I believe that transitivity is an essential ingredient of
chaos. Furthermore an advantage of this definition of chaos is that it can be studied

in dimensions higher than one.

5 Conclusion

This project provides an overview around the existing definitions of chaos. It
introduces chaos in the sense of Devaney, Wiggins, Lyapunov and Li and Yorke. Also
chaos is studied in terms of topological and metric entropy. Devaney's chaos is easy
to be checked but contains the redundant hypothesis of sensitivity as I have already
mentioned. As well Li-Yorke's chaos can be checked easily but it can only be used for
maps on the real line and furthermore discontinuity (even and in one point) is critical.
On the other hand Wiggins’ chaos and Lyapunov's chaos can be checked more easily
since sensitivity and the Lyapunov exponent of the rhap can be calculated numerically
with an easy way. Nevertheless this advantage of these two definitions of chaos are
not suitable since a map can be W-chaotic or L-chaotic without being D-chaotic.
Additionally Devaney's chaos implies Wiggins' chaos , Lyapunov's chaos and Li-

Yorke's chaos.
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Finally the positivity of topological and metric entropy can be used as a chaos
criterion but both these two entropies are very complicated to calculate numerically
and it is preferred to determinine the Lyapunov exponent of the map to study chaos
which is much more easier to be calculated.

Working on this project gave me the prospect to learn how to read and search
specialised articles and books on Dynamical Systems although the results I obtained
were not as interesting as could have been expected.

I wish to thank my supervisor Dr R. Klages for his advice and his unlimited help
for writing and advising me in this project and also for introducing me to Chaotic

Dynamical Systems.
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