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Comment on ‘‘Analysis of chaotic motion and its shape dependence in a generalized
piecewise linear map’’

R. Klages*
Max Planck Institute for Physics of Complex Systems, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 20 September 2001; published 19 July 2002!

Rajagopalan and Sabir@Phys. Rev. E63, 057201~2001!# recently discussed deterministic diffusion in a
piecewise linear map using an approach developed by Fujisakaet al. We first show that they rederived the
random walk formula for the diffusion coefficient, which is known to be the exact result for maps of Bernoulli-
type since the work of Fujisaka and Grossmann@Z. Phys. B: Condens. Matter48, 261 ~1982!#. However, this
correct solution is at variance to the diffusion coefficient curve presented in their paper. Referring to another
existing approach based on Markov partitions, we answer the question posed by the authors regarding solutions
for more general parameter values by recalling the finding of a fractal diffusion coefficient. We finally argue
that their model is not suitable for studying intermittent behavior, in contrast to what was suggested in their
paper.
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The study of deterministic diffusion in simple chaot
maps on the line appears to have originated about twe
years ago~see, e.g., Ref.@1# and further references therein!.
Already in the seminal work by Fujisaka and Grossmann@2#,
a variety of piecewise linear models was defined and a
lyzed by means of stochastic modeling. All these maps ar
the formxn115Mh(xn), wherehPN is a control parameter
and xn is the position of a point particle at discrete timen.
Mh(x) is continued periodically beyond the interval@0,1)
onto the real line by a lift of degree one,Mh(x11)
5Mh(x)11. The map defined in Ref.@3#, which is sketched
again in Fig. 1, provides a straightforward generalization
the one introduced in Ref.@4#, which is recovered ath
51/2. For this type of maps, indeed a vast literature exists
how to obtain exact analytical results at specific cases
parameter values; Refs.@1,5# summarize some of these met
ods, with more complete lists of references therein. It is f
thermore well known that the calculations are particula
simple if the parameter is such that the map exhibits
Bernoulli property@6#.

We first wish to present a considerable shortcut to
diffusion coefficient calculations published in Ref.@3#. Based
on a theory that appears to be a precursor of what was ca
‘‘Fujisaka’s characteristic function method’’ in Ref.@3#,
Fujisaka and Grossmann have shown@2# that the diffusion
coefficient formula

D5
^ j 2~xn!&

2
~1!

provides the exact solution for types of maps as the
studied in Ref.@3#, i.e., if they share the Bernoulli property
Here j (xn) is the jump velocity defined asj (xn)ª@xn11#
2@xn# with @x# being the largest integer less thanx, and
^•••& denotes the average over the invariant probability d
sity. This expression is just identical to the familiar rando
walk formula for diffusion on a one-dimensional lattic
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where the length of jumps squared is weighted with the pr
ability to perform such jumps~see Ref.@7# and further ref-
erences therein!. Evaluating this equation for the map und
consideration leads to

D~h,r !5(
j 51

h

j 2d~ j ,r ! ~2!

with hPN,0,r ,1, where 2d( j ,r ) denotes the probability
to jump over a distance ofj steps and is easily calculated

FIG. 1. Time-dependent probability densityrn(x) for the map
sketched in the figure as it evolves starting from a uniform den
in a box situated aroundx50. The results have been obtained fro
iterating transition matrices as explained in the text. Included
Gaussian solutions from the ordinary diffusion equation cor
sponding to the exact diffusion coefficientD(h,r ) of the map,
whereh52,r 50.5. These dashed lines are almost indistinguisha
from the map densities; however, they are lacking the steplike
structure. From above to below, the time steps aren520, 50, 200.
The quantities plotted in this and in the following figures are
mensionless.
©2002 The American Physical Society01-1
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d~ j ,r !5
2

mj
, ~3!

mj being the slopes of the map. Combining the above t
equations yields Eq.~17! of Ref. @3#. We conclude that Ra
jagopalan and Sabir have confirmed again Eq.~1! of Fujisaka
and Grossmann as applied to their specific map. We n
focus on the author’s special case of the map defined by
relation for the slopes

m0531
4~12r h!

r h~12r !
~4!

with mi /mi 215r . Solutions for Eqs.~2! and ~3! under this
constraint are shown in Fig. 2 for differenth. This figure
corrects the erroneous result shown in Fig. 3 of Ref.@3#,
which only includes a few data points and appears to indic
a rather irregular curve for the diffusion coefficient ath52.
Below we will explain why all the curves shown in Fig.
must indeed be simple functions ofr.

However, first we would like to recall a second meth
that is not restricted to special cases of parameters suc
integer heights, in contrast to the one outlined in Refs.@2,3#.
The basic idea of this method is to directly solve t
Frobenius-Perron equation of the dynamical system,

rn11~x!5E dy rn~y! d„x2Mh~y!…, ~5!

wherern(x) is the probability density for points on the re
line. There exists a dense set of parameter valuesh for which
one can construct Markov partitions of the map, and for e
of these parameter values this equation can be written
matrix equation@1,8#,

rn115T~h,r !rn . ~6!

FIG. 2. The diffusion coefficientD(h,r ) for the map shown in
Fig. 1 according to Eqs.~2! and ~3!. Solutions are shown for the
values of the heighth52,3,4,5 starting from below. The caseh
52 corrects the erroneous result in Fig. 3 of Ref.@3#.
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rn represents a column vector of the probability densit
defined on each part of the Markov partition at timen, and
T(h,r ) is a topological transition matrix that can be co
structed from the Markov partition. This setup provides tw
ways of solution: one way is to solve the eigenvalue probl
of T(h,r ) and to relate the diffusion coefficient to its eige
values. As is shown in detail in Refs.@8#, in special cases al
calculations can be performed analytically. For the sim
map defined in Ref.@3# these calculations are straightforwa
and confirm again Eqs.~2! and ~3!. For more general cases
the matrix equation can simply be iterated@1,7# yielding nu-
merically exact solutions for the probability density vect
rn at any time stepn, as well as for any other dynamica
quantity based on probability density averages. Both s
methods were previously applied to various examples
piecewise linear maps@1,7,8#. Figure 1 presents analogou
results for the map studied in Ref.@3# at h52 andr 50.5, cf.
to Fig. 3.1 on p. 54 of Ref.@1#. The probability density is a
Gaussian on a coarse scale, whereas the fine scale is d
mined by the invariant density of the map on the unit int
val. These deviations from an exact Gaussian can quan
tively be evaluated, e.g., by calculating the curtosis of
respective map density; for a more detailed discussion
such aspects we refer to Chap. 3 of Ref.@1#. This interplay
between fine and coarse structure of the probability dens
was furthermore discussed in terms of the spectrum of eig
modes of the Frobenius-Perron operator, see Refs.@1,8#.
These known results appear to be recovered in Ref.@3# by a
respective analysis of the fluctuation spectrum, which p
vides an alternative way to look at the probability density
the map.

In their outlook to further work, the authors of Ref.@3#
raised the question of how to compute the diffusion coe
cient for maps with fractional heightsh, and how it may look
like. The application of the arsenal of methods outlin
above has already given a full answer to this problem. A
central result, it was found that the diffusion coefficient f
these maps is a fractal function of the parameterh. To
present an example, Fig. 3 depicts the result for a mirro
zigzag map with uniform slope, which has some similarit

FIG. 3. Fractal diffusion coefficientD(h) for the mirrored zig-
zag map sketched in the figure as a function of the heighth. Shown
are 13 376 data points. The data are from Refs.@1,5#.
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with the one studied in Ref.@3#; for details see Refs.@1,7#.
Knowing these results, it is straightforward to conclude th
for arbitrary heighth, the map studied in Ref.@3# will just
yield another fractal diffusion coefficient; further eviden
for that statement is provided by the numerical and analyt
data presented in Ref.@9#.

So why can the diffusion coefficient of the map in Ref.@3#
not be fractal as a function ofr at integer values of the
height? One way to look at this problem is to inquire how t
topology of the map is affected by parameter variation
fundamental tool providing detailed information about t
topology of a dynamical system are Markov partitions. Va
ing r at integer heights does not change the Markov partiti
thus the topology of the map does not change, and any q
tity resulting from an average over the invariant density i
simple function of the parameter@10#. However, changing
the height changes the Markov partition in a complica
way and reflects the topological instability of the map und
this type of parameter variation. This topological instabil
results in fractal transport coefficients.

Finally, we comment on the conclusion of Rajagopa
and Sabir that the map studied in their paper is ‘‘suited
describing diffusion systems showing intermittency.’’ In th
aspect the authors appear to follow Ref.@4#, where the map
shown in Fig. 1 ath51/2 was introduced for the purpose
modeling ‘‘strong correlations between successive steps . . .
as realized in Brownian motion with directional persistenc
Indeed, Grossmann and Thomae revealed a persisten
namics that they characterized as ‘‘intermittentlike’’ beha
ior. They linked these correlations to deviations from a p
Gaussian probability density such as the ones discu
above.

In the following we use the term ‘‘intermittency’’ in the
sense of Pomeau and Manneville~see, e.g., Ref.@6# for a
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tutorial about their results!. Particularly, we wish to distin-
guish it from the denotation ‘‘intermittencylike’’ in the sens
of Grossmann and Thomae. Extensive studies of diffusion
one-dimensional intermittent maps led to the conclusion th
generally, in this case a diffusion coefficient does not ex
@11#. Furthermore, all maps studied in these references
inherently nonlinear. For piecewise linear expanding ma
that are uniquely ergodic if restricted to compact spac
such as the one of Refs.@3,4#, there is no evidence for inter
mittency nor for anomalous diffusion@1#. Applying the con-
cept of conjugacy enables to transform piecewise linear m
onto nonlinear ones. However, the diffusive dynamics is
variant under conjugacy@4#, thus the corresponding nonlin
ear map is again nonintermittent and normal diffusive.
our knowledge the only piecewise linear map exhibiting
termittency was introduced in Ref.@12#, and it belongs to a
very different class than the one of Refs.@3,4#.

In summary, by relating the piecewise linear map stud
in Ref. @3# to intermittent behavior the authors confuse t
meaning of intermittency, in the sense of Pomeau and M
neville, with the existence of intermittentlike behavior, in th
sense of persistence in the diffusive motion. Intermitten
generally leads to anomalous diffusion, whereas persiste
in piecewise linear maps shows up in form of local extre
of the fractal diffusion coefficient at integer and half-integ
heights, see Fig. 3. We conclude that the analysis of cha
motion and its shape dependence as performed in Ref@3#
has nothing to do with intermittency, but instead recov
features of the parameter-dependent normal diffusion co
cient as studied in Refs.@1,2,4–10#.

The author thanks N. Korabel and J.R. Dorfman for he
ful remarks.
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