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Supplement

A. Details of a quantitative stability analysis by using Poincaré point correlations

Qualitatively, Figures 2, 6 and 7 shown in our article seem to favour the RK method: The structure of the
time-dependent dynamics of the RK exponents is simpler than the one of the established Oseledec method.
Hence, it seems worthwhile to quantitatively compare both methods. There are ways to test the complexity of
their local exponents, see Chlouverakis et al. [S1]. However, the local exponents themselves are merely tools
to analyse the chaos of a given nonlinear dynamics. The question is therefore rather: How well are the given
trajectories assessed by the local exponents? How well are the exponents correlated to the trajectories? How
can the degree of the associated complexity be evaluated? Here we discuss an approach similar to an
established method to compare the volatility of financial values is constructed, namely the evaluation of the

standard deviation of the distribution of the values.

A.1 Description of the Poincaré point correlated deviation

It seems sufficient to analyse only a typical set of points in a reduced n-/ dimensional subspace. For
Lorenz chaos, an xy-plane will be defined by z=constant, see Fig. S1. Pairs of neighbours of the points in this
plane are selected and their distance r is evaluated. Then, the absolute difference A4 of the corresponding

local exponents is evaluated as a function of the distance r of these neighbouring points i,k.

Aa(r)y=| 4 | with 72 = (x> + (-pe)? (S1)

Finally, plots of the strictly local exponents are compared to the exponents of the V and W frames which
incorporate integrals over previous times. This comparison can be performed in a quantitative way and
results in a measure of how well the V' and W frames correspond to the trajectories to be analysed. The
strength of chaotic behaviour is manifest in the ‘pseudo’-irregularity of the differences AAw(r), which is
measurable by its standard deviation, after a possible underlying regular behaviour has been eliminated (we
call it ‘pseudo’-irregular, since all data points are regularly determined by eq. (1), including the rotations of

the frames).
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The following quantitative procedure will be used to evaluate the distribution of the data depending on the
function Adix(r<r,) up to radius r,. Since there might be a systematic bias as a function of r, it seems
appropriate to first get rid of this bias. Therefore, the values Adw(r) are fitted by a linear approximation
resulting in au(r) for each point ik. Then the standard deviation Q of the resulting difference [Adix(r) — aw(r)]
is considered to be an adequate measure for the correlation of the exponent A with the trajectories, called here

‘Poincaré point correlated deviation” (PPCD),

Oreen(A) = std [Adi(r) — aw(r)] (S2)

The quantity Opecp(Aincar) Of the strictly local exponents serves as a basis to assess the strength of the chaos
of the trajectory. Then, Oppcn(Ar-fame) and Opecp(An-rame) are compared to Opecp(Aiocar). The resulting fractions

frand fy analyse quantitatively the correlation of both frames with the trajectories,

fV: QPPCD(A«V-frame) / QPPCD(j-Iocal) (83)

fW: QPPCD(/lW—frame) / QPPCD(i/ocal) . (S4)

If fiame >>1, the respective frame adds chaotic behaviour to the complexity of the trajectories, which has to
be eliminated by long-time integration. For fi.me~1, this frame could also be used to analyse short portions of

different chaotic transients.

A.2 Poincareé point correlated deviations’ for Lorenz chaos

A.2.1 A peculiar structure of the points in the Poincaré plane

For Lorenz chaos, fixing z=40 defines an xy-plane, which serves for finding Poincaré points where
trajectories cross the plane. Such Poincaré points p(f) have already been used for the previous ‘Poincaré
integrals’, defined in terms of time limits between consecutive points for decreasing z-values. Here, both
points p™(¢) and p™(¢) for increasing and decreasing z, respectively, are evaluated. However, in addition to
the times # also the positions x;y; are considered. A plot of these Poincaré points in the Poincaré xy-plane

reveals a particular structure, see Fig. S2 (top): There are two branches of p® points around the centre, one
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with y>x, denoted by c1, and the other with y<x, denoted by ¢2. The p” points have branches on the left (£)
torus and on the right (r) torus. Each branch consists of a narrow band of points with only a small scattering
around a smooth curve. It is now straightforward to determine for each point p”(#) if the corresponding
trajectory comes from £ or r and goes to £ or r by analysing the time series p™(¢.;), p”(t), p™(t+:). The
result is striking: the points cl display only the sequences {—{ or {—r plotted in Fig. A2 (bottom) as circles
o and x signs, respectively. Moreover, these two possibilities are separated in the Poincaré plane. Similarly,
the c2 points consist only of an r—r or r—{ sequences, plotted as stars * and + signs, respectively. This
symmetry allows restricting the analysis to the cl branch.

At this point an interesting question can be asked: Where on the trajectory could additional noise most
easily change the dynamical behaviour? As an example, perturb the trajectory at z=40 where the {—¢0
sequence is close to the {—r sequence, thus the circles © and x are very close, such that the trajectory jumps
from one to the other sequence. At this position a noise-induced transition as described by Gassmann [S2]
would be most easily possible

To provide an overview, the local exponents of the cl points are plotted as a function of the x component
in Fig. S3. The separation between the {—{ and {—r sequences is marked by a vertical line. The strictly
local exponents are: extreme expansion a; (top left), extreme orthogonal divergence S (top right). The
second exponent Ay of the W frame of local acceleration is also a strictly local exponent (bottom right). The
central row displays the first exponents Ay and Avw, the bottom row the second exponents Ay and Ajw of the
V frame (left) and of the W frame (right), respectively. It is interesting that all three plots on the right side
(extreme orthogonal divergence £ and W frame) share the same feature: The values of the exponents all
differ for the two sequences, the barrier is marked by a horizontal line indicating a complete correlation to the
behaviour of remaining on the same left loop, or changing the loop, which certainly implies a larger
divergence. This feature is missing for both exponents of the V frame (left centre and left bottom) showing a

large spreading.

A.2.2 Poincaré point correlated deviation analysis of Lorenz chaos

For each point of the cl branch all local exponents are stored. Then the distance to neighbouring points is

evaluated and registered for the radius »<r,,=0.4, together with the absolute difference |A/1,-k(r)| of the

corresponding local exponents 4. These values are plotted as functions of 7 in Fig. S3, arranged similarly to
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Fig. S2. The pairs ik between {—{ points are depicted as circles o, pairs between {—r as x symbol and the
rare pairs between {—{ and {—r as stars *. The straight lines in Fig. S4 represent linear approximations to
the data points. Only the differences of the acceleration |A/1||W| (bottom right) exhibit a distinct bias as a
function of the radius r, due to the strong dependence of these local exponents along the branch cl, as seen
for Ajw in Fig. S3 (bottom right). Clearly, all plots of Fig. S4 show a strongly irregular pattern of the data.
However, the magnitude of this spread is very different, see the corresponding scales, resulting in the
following QOppcp(4) values: left, from top to bottom: 0.013, 1.8, 1.8, and right, from top to bottom: 0.017,
0.015, 0.022. The average for the three strictly local exponents (0.013, 0.017, 0.022) is 0.017. The average of
the two V exponents is 1.8, and the only W exponent | Ay | subject to integration (centre right) has a value

of 0.015. Therefore, the quantitative factors f'defined by eqs. (S3) and (S4) are

fv= 100 (85)

fw= 1 . (S6)

resulting in a ‘figure of merit’ fu/ f of around 1:100 in favour of RK.

Although the heuristic PPCD analysis provides a strong oversimplification by using only a small selected
portion of the data, its outcome is surprisingly clear. In order to visualize this final result, Fig. S4 is potted
again as Fig. S5, but now with the same scale for all plots. Obviously, only the Oseledec V frame (left centre

and bottom) is adding a strong chaotic complexity to the complexity of the trajectories to be analyzed.

B. Local extreme divergence in the phase space R{x} independent from trajectories

In this section we further refine the local stability analysis of Section 6 in our article. Since the ‘constrained’
exponent f1; of true divergence is only a function of the position x in the phase space and does, therefore, not
depend on a trajectory, its value can be evaluated directly in the full phase space R{x}. These values are
shown in Fig. S6 as a mesh plot for the xy plane at z values 60 (top left) and 20 (bottom left). The strange
Lorenz attractor is about along the diagonal x =~ y where the values fi; are low, but with a higher pass
between the sections of the two loops. A yz-plot of the trajectory for this analysis is found in Fig. S1 of

Section A above..
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A simple local indicator of the curvature of trajectories in the phase space can be found easily: For the
evaluation of the local acceleration, the new vector J f| after the time interval d is projected by the scalar
product (_fj. J f|) onto the flow direction fj. The absolute magnitude of the new vector minus the absolute
magnitude of the projection is a measure for the deviation at t+dz from the direction fj at ¢ of the local

trajectory and hence a measure of the curvature of the trajectory,

d=Jfil- | (A.IH) | (S7)

This ‘deviation’ d is shown in Fig. S6 on the right side. In more detail, the Jacobian matrix J can be
written as a sum of a symmetric matrix S and an anti-symmetric D: J=S$+D. The evaluated separate action of
these matrices onto d reveals a very different behaviour: The symmetric S causes a strongly varying peculiar
pattern in the region of the strange attractor, but its action is nearly negligible outside the attractor. In
contrast, the anti-symmetric D creates a rather smooth structure, small at the attractor, but increasingly large
with larger distance from the attractor. The combined action of these different sources are visible in Fig. S6

on the right side as a varying peculiar pattern along the diagonal (), and smooth increase outside (D).

C. Are local exponents norm-independent?

Local Lyapunov exponents are based on ratios of distances between points in phase space and their
relative angles in order to discriminate between rotation and elongation, measured in the metric of the
coordinate system chosen. Only transformations which do not change these ratios and/or relative angles
locally leave the exponents unchanged. Examples are orthogonal rotations of Cartesians or equally enlarging
all distances without changing angles. However, nonlinear transformations might change the local exponents.
Even an unequal scaling of a Cartesian changes exponents corresponding to directions with components of
unequally spaced coordinates, see the example of the scaled harmonic oscillator in [S3]. In 1993, H.R. Moser
et al. [S4] already noted that a nonlinear change of the metric for a polar angle 6; from cos 6; to 6; in the
Hamiltonian of nonlinear ferromagnetic resonance phenomena [S5] destroys the sign-symmetry of the local
exponents if the damping term is neglected. Earlier in 1990 W.G. Hoover et al. [S6] displayed different

distributions of exponents for Cartesian and polar coordinates. Since the directions of all frames used the
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same algorithm to find the corresponding exponents, all frames are only norm-independent for rather trivial
coordinate transformations.

Although local exponents are by definition not universal, for practical use this problem is easily overcome
by using the same coordinate system with the same metric for comparing local instabilities under parameter

change in the equations of motion.
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Figure Captions

Fig. S1. Lorenz model with control parameters (o, p, b)=(16, 40, 4). Trajectories are projected onto the yz
plane at equal time intervals to indicate the changes in velocity. The line indicates the position of the
Poincaré planes z=c,~const. with ¢,=40 Local exponents are integrated over each time interval between

consecutive Poincaré points.

Fig. S2. Lorenz chaos: xy plot of Poincaré points at z=40. Top: all points. Bottom: blow up of the central
sections for decreasing z values. Upper left branch cl: symbol o denotes the sequence C—£(left torus),

symbol + denotes the sequence {—r1(right torus). Lower right branch ¢2: * for r—r and x for r—¢.
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Fig. S3. Lorenz chaos: Local exponents of cl points {—{ (0) and {—r (+) of Fig. A2 vs. the x component.
Vertical lines separate o from +. Left: top extreme expansion a;, centre Ay, bottom A,.. Right: top extreme

orthogonal expansion f1,, centre A1y, bottom A|»= ¢|. Horizontal lines separate values of o from +.

Fig. S4. Lorenz chaos, PPCD analysis: Absolute difference | A7) | of the corresponding local exponents 4
vs. radius r<r,»=0.4 of pairs ik between {—1£ , denoted by the symbol o, between {—r , denoted by +, and
the rare pairs between {—{ and {—r , denoted by *. Lines: linear approximations of the data points. The

differences are of the same exponents as plotted in Fig. S3.

Fig. S5. Lorenz chaos: The same PPCD data points as shown in Fig. S4, but all plotted on the same scale to
indicate the differences of the magnitude of the V frame (left centre and bottom) to the W frame (right centre)

and to the strictly local exponents.

Fig. S6. Lorenz chaos: The ‘constrained’ exponent f1,; of true separation is only a function of the position x
(independent of any trajectory) in the phase space R{x}. Its values are plotted as a mesh on an xy plane at z
values 60 (top) and 20 (bottom) on the left side. The local measure d, eq. (S7), of the curvature along the

trajectory through x is plotted on the right side for the same z values.
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Lorenz chaos: Poincaré points z = 40
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