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Thermostating by deterministic scattering: Heat and shear flow

C. Wagner, R. Klages, and G. Nicolis
Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine Code Postal 231,

Boulevard du Triomphe, B-1050 Brussels, Belgium
~Received 19 March 1999!

We apply a recently proposed thermostating mechanism to an interacting many-particle system where the
bulk particles are moving according to Hamiltonian dynamics. At the boundaries the system is thermalized by
deterministic and time-reversible scattering. We first show how this scattering mechanism can be related to
stochastic boundary conditions. We subsequently simulate thermal conduction and shear flow for a hard disk
fluid. By comparing the transport coefficients obtained from computer simulations to theoretical results we find
that this thermostating mechanism yields well-defined nonequilibrium steady states in the range of linear
response. Furthermore, the conjectured identity between thermodynamic entropy production and exponential
phase-space contraction rates is investigated from the standpoint of our formalism. We find that, in general,
these quantities do not agree.@S1063-651X~99!05808-0#

PACS number~s!: 05.70.Ln, 51.10.1y, 66.20.1d
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I. INTRODUCTION

Driving macroscopic systems out of equilibrium requir
external forces. Now, the very existence of a nonequilibri
steady state implies that the temperature of the system m
remain time independent. One way to prevent the sys
from heating up indefinitely in nonequilibrium is the intro
duction of a thermostating algorithm@1#. Starting from mo-
lecular dynamics simulations Evans, Hoover, Nose´, and oth-
ers proposed deterministic thermostats to model equilibr
and nonequilibrium fluids@2–7#. In this formalism the~av-
erage! internal energy of the dynamical system is kept co
stant by subjecting the particles to fictitious frictional force
thus leading to microcanonical or canonical distributions
phase space@8–11#. The major feature of this mechanism
its deterministic and time-reversible character, which is
contrast to stochastic thermostats@1,12–18#. This allows us
to elaborate on the connection between microscopic rev
ibility and macroscopic irreversibility and has led to intere
ing new links between statistical physics and dynamical s
tems theory @8,9,11,19#, especially to relations betwee
transport coefficients and Lyapunov exponents@20–24#, and
between entropy production and phase-space contrac
@25,26,21,15,16,27–30#. Although used almost exclusivel
in the context of nonequilibrium systems, the abov
mentioned thermostating mechanism presents the draw
that the dynamical equations themselves are altered, eve
equilibrium. This raises the question of whether some of
results are due to the special nature of this thermosta
formalism or are of general validity@15,16,31–36#.

Recently, an alternative approach in which thermalizat
is achieved in a deterministic and time-reversible way
been put forward by Klages and co-workers@37,38# and has
been applied to a periodic Lorentz gas under an exte
field. In the present paper we apply this thermostat
method to an interacting many-particle system of hard di
subjected to nonequilibrium boundary conditions giving r
to thermal conduction and to shear flow. The model
closely related to that of Chernov and Lebow
@15,16,39,40#, who study a hard disk fluid driven out of equ
PRE 601063-651X/99/60~2!/1401~11!/$15.00
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librium into a steady state shear flow by applying spec
scattering rules at the boundaries in which the particle ve
ity is kept constant.

Numerical computations involving heat and shear flow
hard disks have been carried out since the 1970s by var
researchers~see, e.g.,@3,8,9,22,41–47#!, however, in their
work very different thermostating mechanisms have be
employed than the one discussed in this paper. Here, we
especially interested in the consequences that the use o
new thermostat may have on the specific dynamical prop
ties of a many-particle system. Thus, the main goal of t
work is twofold: First, we want to verify that our thermosta
ing mechanism yields nonequilibrium steady states for a h
disk fluid which are in agreement with the linear respon
obtained from kinetic theory. And second, on the basis of
model we want to inquire about the general validity of t
identity between entropy production and phase-space c
traction, as it has been found in other systems.

The model is introduced in Sec. II where the thermaliz
tion mechanism is tested under equilibrium conditions.
Sec. III we move on to the case of an imposed tempera
gradient and a velocity field by adapting the scattering ru
and we compute the respective transport coefficients. Hav
a deterministic and time-reversible system at hand we p
ceed in Sec. IV to investigate the relation between therm
dynamic entropy production and phase-space contrac
rate in nonequilibrium steady states. The main conclusi
are drawn in Sec. V.

II. EQUILIBRIUM STATE

Consider a two-dimensional system of hard disks c
fined in a square box of lengthL with periodic boundary
conditions along thex axis, i.e., the left and right sides atx
56L/2 are identified. At the top and bottom sides of t
box, y56L/2, we introduce rigid walls where the disks a
reflected according to certain rules to be defined later. T
disks interact among themselves via impulsive hard co
sions so that the bulk dynamics is purely conservative. In
following and in all the numerical computations we use
1401 © 1999 The American Physical Society
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1402 PRE 60C. WAGNER, R. KLAGES, AND G. NICOLIS
duced units by setting the particle massm, the disk diameter
s, and the Boltzmann constantkB equal to one.

Before proceeding to the nonequilibrium case we defi
the disk-wall collision rules in equilibrium and chec
whether the system is well behaved. Now, in equilibrium
bulk distribution is Gaussian with a temperatureT, and the
incoming and outgoing fluxes at the top and bottom w
have the form~see@12–16#!

F~vx ,vy!5~2pT3!21/2uvyuexpS 2
vx

21vy
2

2T D , ~1!

with vy,0 for the bottom wall andvy.0 for the top wall.
Imposing stochastic boundary conditions on the system
this setting would mean that for every incoming particle t
outgoing velocities are chosen randomly according to
~1!. In practice, this is usually done by drawing numbe
from two independent uniformly distributed random gene
tors z,jP@0,1# and then transforming these numbers w
the invertible mapT 21:@0,1#3@0,1#˜@0,̀ )3@0,̀ ) as

~vx ,vy!5T 21~z,j!5A2T„erf21~z!,A2 ln~j!…, ~2!

which amounts to transforming the uniform densitiesr(z)
51 andr(j)51 ontoF(vx ,vy) according to

r~z!r~j!U dzdj

dvxdvy
U5U]T ~vx ,vy!

]vx]vy
U

5~2/pT3!1/2uvyuexpS 2
vx

21vy
2

2T D .

~3!

Note that so far we have restricted Eqs.~2! and ~3! to posi-
tive velocitiesvx ,vyP@0,̀ ), which implies a normalization
factor in Eq.~3! being different from the one of Eq.~1!. In
analogy with stochastic boundaries we now define the de
ministic scattering at the walls as follows. First, take t
incoming velocities vx , vy and transform them via
T (vx ,vy)5(z,j) onto the unit square. Second, use a tw
dimensional, invertible, phase-space conserving chaotic
M:@0,1#3@0,1#˜@0,1#3@0,1# to obtain (z8,j8)5M(z,j).
Finally, transform back to the outgoing velocities v
(vx8 ,vy8)5T 21(z8,j8). In order to render the collision pro
cess time reversible, we also have to distinguish betw
particles with positive and negative tangential velocities
usingM andM21, respectively. Thus, particles going i
with positive ~negative! velocities have to go out with posi
tive ~negative! velocities and the full collision rules read

~vx8 ,vy8!5H T 21+M+T ~vx ,vy!, vx>0

T 21+M21+T ~vx ,vy!, vx,0,
~4!

whereT is meant to be applied to the modulus of the velo
ties @48#. Since both the positive and the negative side of
tangential velocity distribution of Eq.~1! are normalized to
1/2, this normalization factor has to be incorporated in E
~3! to render the full desired fluxF equivalent to the one o
Eq. ~1!. Rewriting Eq.~3! in polar coordinates yields pre
cisely the transformation used in@37,38#, in the limiting case
where it mimics a reservoir with infinitely many degrees
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freedom. It should also be realized that for obtaining t
transformationT the total number of degrees of freedom
the reservoir has been projected out onto a single velo
variable, which couples the bulk to the reservoir. Eckma
et al. @49# used a similar idea to go from a Hamiltonian re
ervoir with infinitely many degrees of freedom to a reduc
description when modeling heat transfer via a finite chain
nonlinear oscillators.

It remains to assign the form of the chaotic mapM and
we shall first adopt the choice of a baker map, as in R
@37,38#,

~z8,j8!5M~z,j!5H ~2z,j/2!, 0<z<1/2

„2z21,~j11!/2… 1/2,z<1.
~5!

Later on we will investigate the consequences of choos
other mappings like the standard map~see, e.g.,@50,51#!.
Since in equilibrium the incoming and outgoing fluxes ha
the same form as in Eq.~1!, the transformationT yields a
uniform density inz, j on the level of the chaotic mapM
and withM having a uniform invariant density the scatte
ing prescription in Eq.~4! can be viewed as a determinist
and time-reversible counterpart of stochastic boundary c
ditions.M being chaotic, the initial and final momentum an
energy of any single particle are certainly different, but bo
quantities should be conserved on the average. The latt
confirmed by numerical experiments in equilibrium, whe
as usual in hard disk simulations, we follow a collision-t
collision approach@1#. Keeping the volume fraction occu
pied byN5100 hard disks equal tor50.1 sets the length o
the box equal toL528.0. After some transient behavio
which depends on the temperature of the initial configurat
the bulk distribution is Gaussian with zero mean and me
kinetic energyT/2 in each direction. The incoming and ou
going fluxes at the walls are correctly equipartitioned withT
as well and have the desired form of Eq.~1!, so the system
reproduces the correct statistical properties.

We close this section by a remark on how we measure
temperature of a flux to or from the boundaries. As the te
perature of the tangential component we use the varianc
the velocity distribution,TxªŠ(vx2^vx&x)

2
‹x , where ^ &x

denotes an average over the densityr(vx). On the other
hand, since in the normal direction we actually measur
flux, the appropriate prescription to measure the tempera
of this component isTyª@vy#y /@vy

21#y , where @ #y repre-
sents an average over the fluxF and the denominator serve
as a normalization. The temperatures of the incoming
outgoing fluxes at the wall are then defined asTi /o
ª(Tx1Ty)/2, andTwª(Ti1To)/2.

III. NONEQUILIBRIUM STEADY STATE

A. Heat flow

1. The model

In the following, we explicitly indicate the dependence
the transformationT on the parameterT by writing T T . This
immediately indicates how we may drive our system to th
mal nonequilibrium: we just have to use different values
this parameter for the upper (Tu) and the lower (Td) wall.
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We deliberately avoid use of the term ‘‘temperature’’ for th
parameter, since in contrast to stochastic boundary co
tions we have generally no idea how a differentT affects the
actual temperature of the wall in the sense of the definit
given above. In a nonequilibrium situation the temperature
the incoming fluxF i generally does not match exactly th
parameterT. Therefore, we do not transform onto the un
form invariant density of the baker map anymore, and c
sequently, the outgoing flux might have all kinds of shap
or temperatures. Nevertheless, the hope is that the map
M will be chaotic enough to smooth out most of the diffe
ences and to produce a reasonable outgoing fluxFo such that
the system is correctly thermostated. And this is indeed w
we find in the numerical experiments.

2. Numerical results

We setTu52, Td51, andr50.1 and average over abou
40 000 particle-particle collisions per particle and about 60
particle-wall collisions per particle. We divide the availab
vertical heightL21 into 20 equally spaced horizontal laye
and calculate the time averages of the number densityn(y)
of the particles, the mean velocitiesux(y)5^vx&, uy(y)
5^vy&, and the varianceŝ(vx2ux)

2&, ^(vy2uy)
2&. Further-

more, we record the time average of the kinetic energy tra
fer and measure the temperatures of the incoming and
going fluxes of both walls as described in the preced
section. The temperatures at the walls are then defined a
mean value of the incoming and outgoing temperatu
Tw

u/d
ª(Ti

u/d1To
u/d)/2. Time series plots of these quantitie

confirm the existence of a nonequilibrium steady state~NSS!
induced by the temperature gradient.

Figure 1 shows the temperature profile between the up
and the lower wall. Apart from boundary effects it is a
proximately linear, and the respective kinetic energy is eq
partitioned between the two degrees of freedom. The par
eters Tu and Td are represented as(*), and we find a
‘‘temperature’’ jump, whereas the measured temperatu
Tw

u/d ~denoted in the figure by1) at the walls seem to con

FIG. 1. TemperatureŠvx
21vy

22^vx&
2
‹/2 ~solid line! and vari-

anceŠvx
22^vx&

2
‹ (2•), ^vy

2& ~- -! profiles,Tu52, Td51 ~denoted
by an asterisk!. The plus sign (1) denotes the wall temperaturesTw

as defined in the text.
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tinue the bulk profile reasonably well. The profile of th
number densityn54/pr is depicted in Fig. 2. Note again th
boundary effects. The densities of the incoming particles
the upper wall are Gaussian shaped@Figs. 3~a!, 3~c!#,
whereas the outgoing densities@Figs. 3~b!, 3~d!# show cusps
due to the folding property of the baker map. Neverthele
the baker map produces a reasonable outgoing flux wh
generates a NSS.

In order to examine the bulk behavior we now compu
the thermal conductivity in our computer experiment a
compare it to the theoretical value. For this purpose, we m
sure the heat fluxQ across the boundaries and estimate
temperature gradientdT(y)/dy by a linear least squares fit t
the experimental profile. To avoid boundary effects we u
only data in the bulk of the system, namely, from layer 3
layer 18, i.e., excluding the top two and the bottom tw
layers. The experimental heat conductivity is then defined

lexpt5QS dy

dTD , ~6!

whereas the theoretical expression for the conductivity o
gas of hard disks with unit mass and unit diameter as p
dicted by Enskog’s theory reads@52,53#

l l51.0292AT

p F1

x
1

3

2
bn10.8718~bn!2xG . ~7!

Here,b is the second virial coefficient,b5p/2, andx is the
Enskog scaling factor, which is just the pair correlation fun
tion in contact@54#,

x5
12 7

16 ~p/4!n

@12~p/4!n#2
. ~8!

Since Eq.~7! depends on local values ofT andn we define
the theoretical effective conductivityl theor as the harmonic
mean over the layers@52#,

l theor5S (1/Nlayers) (
l 51

Nlayers

1/l l D 21

. ~9!

FIG. 2. Profile of the number density,Tu52, Td51.
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FIG. 3. Velocity distributions of the incoming and outgoing particles at the upper wall (T52) for the heat flow case:~a! vx
in , ~b! vx

out ,
~c! vy

in , and~d! vy
out .
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Table I compareslexpt to l theor by showing the ratio of the
experimental to the theoretical conductivity for different pa
ticle numbers and temperature differences. The agreeme
quite good, so our thermostating mechanism produces a
which is in agreement with hydrodynamics.

Furthermore, going into the hydrodynamic limit by in
creasing the number of particles we observe that the dis
tinuity in the outgoing flux of Figs. 3~b! and 3~d! diminishes,
as expected, since both the incoming and outgoing flux co
closer to local equilibrium.

B. Shear flow

Inspired by the recently proposed model of Chernov a
Lebowitz @15,16# for a boundary-driven planar Couette flo
in a nonequilibrium steady state, we now proceed to ch
whether it is possible to combine our thermostating mec
nism with a positive~negative! drift imposed onto the uppe
~lower! wall, respectively. Chernov and Lebowitz chose

TABLE I. Comparison of theoretical and experimental heat co
ductivity lexpt/l theor.

N5100 N5200 N5400 N5800

DT51.521 0.904 1.009 1.003 1.062
DT52.021 0.887 0.950 1.021 1.051
-
t is
SS

n-

e

d

k
-

purely Hamiltonian bulk and simulated the drift at th
boundaries by rotating the particle velocity at the momen
the scattering event with the wall while keeping the absol
value of the velocity constant. This setting could be form
lated in a time-reversible way and keeps the total energy
the system generically constant. Here we separate the
mostating mechanism and the drift of the walls by introdu
ing the map

Sd~vx ,vy!5~vx1d,vy!, ~10!

and by applying this shift to the ‘‘thermostated’’ velocitie
Time reversibility forces us to do the same before therm
stating. Thus, the full particle-wall interaction reads~model
I!

~vx8 ,vy8!

5H Sd+T T
21+M+T T+Sd~vx,vy!, vx>2d

Sd+T T
21+M21+T T+Sd~vx,vy!, vx,2d,

~11!

~12!

where shifts of different sign are used for the upper~lower!
wall to let the walls move in opposite directions. Other pr
scriptions to impose a shear will be investigated in the f
lowing section.

In the simulations we setd560.05, T5Tu5Td51.0,
N5100, andr50.1. As we expected, we find a NSS with

-
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PRE 60 1405THERMOSTATING BY DETERMINISTIC SCATTERING: . . .
linear shear profile along thex direction ~Fig. 4!, where the
drift velocity of the walluw ~represented by the asterisk *)
defined as the average between the incoming and outg
tangential velocities. The temperature profile is shown
Fig. 5, with the wall temperaturesTw ~1! defined as above
As can be seen in the plots, none of these values corres
to the parametersT (*) or d. Nevertheless, we obtain a linea
shear profileux(y) and an almost quadratic temperature p
file T(y), as predicted by hydrodynamics@15#.

For a comparison of experimental and theoretical visc
ity we follow the same procedure as above, i.e., we estim
the experimental shear ratedux(y)/dy by a linear least
squares fitux(y)5gy, again discarding the outermost laye
In terms of the measured momentum transfer from wal
wall P the experimental viscosity is given as

hexpt5P/g, ~13!

and the theoretical value as calculated by the Enskog th
has the form@53,15#

FIG. 4. Mean velocity in thex direction ~solid line!, in the y
direction ~- -!, and at the walluw (*).

FIG. 5. Velocity variance in thex direction (2•) and in they
direction~- -!, and temperature~solid line!, measured wall tempera
ture Tw (1), and ‘‘parametrical’’ temperatureT (*).
ng
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te

.
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ry

h l51.022
1

2
AT

p F1

x
1bn10.8729~bn!2xG . ~14!

Again b5p/2 denotes the second virial coefficient,x is
given by Eq.~8!, and we use the arithmetic mean@16# of the
viscosity over layers 3–18 to compute the theoretical visc
ity, i.e., h theor5(1/Nlayers)(h l . Table II shows good agree
ment between the experimental and the theoretical values
different numbers of particles, so again the thermostat
mechanism leads to the correct macroscopic behavior. S
the discontinuities in thevx-velocity distribution of the scat-
tered particles should be noticed~see Fig. 6!. This time these
discontinuities do not diminish or disappear in the hydrod
namic limit.

IV. ENTROPY PRODUCTION AND PHASE-SPACE
CONTRACTION

Having a deterministic and reversible dynamics at ha
we can now turn to properties beyond the usual hydro
namic ones and, in particular, investigate the conjectu
identity between phase-space contraction rate and therm
namic entropy production in the light of our formalism
@25,26,21,15,16,27–30#. In an isolated macroscopic syste
the entropy is a thermodynamic potential and therefore pl
the central role in determining the time evolution and t
final equilibrium state. Yet, its microscopic interpretation o
of equilibrium remains controversial~see, e.g.,@55,56#! and
the situation is even much less clear in NSS. For the clas
models where thermostating is ensured by friction coe
cients an exact equality between entropy production
phase-space contraction rate in NSS has been inferred o
basis of a global balance between the system and the re
voir @25,8,9,11#. For the Chernov-Lebowitz model an ap
proximate equality has also been found@15,16#. Still, it is not
clear under which circumstances this relation holds in g
eral @15,16,31–36#.

A. Equilibrium state

We begin with the simplest case of equilibrium describ
in Sec. II, where the thermodynamic entropy productionR̄eq
vanishes. The bulk dynamics being Hamiltonian, pha
space contraction can only occur during collisions with
wall. Since these collisions take place ‘‘instantaneously,’’
ignore the bulk particles and restrict ourselves to a sin
collision during the time intervaldt. The phase-space con
traction is then given by the ratio of the one-particle pha
space volume after the collision (dx8dy8dvx8dvy8) to the one
before the collision (dxdydvxdvy) and can thus be obtaine
from the Jacobi determinant of the scattering process. O
easily sees thatdx85dx andudy8/dyu5uvy8dt/vydtu @15,16#.
Furthermore,

TABLE II. Comparison of theoretical and experimental visco
ity hexpt/h theor.

N5100 N5200 N5400 N5800

d50.05 0.9616 0.9904 1.0081 1.0382
d50.1 0.9702 1.001 1.0226 1.0232
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FIG. 6. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flow case~model I!: ~a! vx
in , ~b! vx

out ,
~c! vy

in , and~d! vy
out .
n

e

s

c
he

ons

ger

s in
Udvx8dvy8

dvxdvy
U5U ]T

]vx]vy

]M (21)

]x]y

]T 21

]vx8]vy8
U

5U ]T
]vx]vy

F ]T
]vx8]vy8

G21U
5Uvy

vy8
UexpS vx8

21vy8
22vx

22vy
2

2T D , ~15!

where step 2 follows from the phase-space conservatio
M/M21, and the last line is obtained from Eqs.~2! and~3!.
Hence, in a particle-wall collision the phase-space volum
changed by a factor of

Udvx8dvy8dx8dy8

dvxdvydxdy
U5expS vx8

21vy8
22vx

22vy
2

2T D . ~16!

The mean exponential rate of compression of the pha
space volume per unit time is thus given by

P̄52K lnU dvx8dvy8dx8dy8

dvxdvydxdy
U L 5^~vx

21vy
22vx8

22vy8
2!/2T&,

~17!

where the angle brackets denote a time average over all
lisions at the top and the bottom walls. In equilibrium t
of

is

e-

ol-

incoming and outgoing fluxes associated to these collisi
have the same statistical properties, soP̄eq sums up to zero
and

P̄eq5R̄eq. ~18!

This is fully confirmed by the simulations.

B. NSS

The thermodynamic entropy productions per unit vol-
ume of our system in NSS is given by the Gibbs-Onsa
form @15,8#

s~y!5
P

T

dux

dy
1J~y!

d

dy S 1

TD , ~19!

whereP is thex-momentum flux in the negativey direction,
andJ(y) is the heat flux in the positivey direction.

1. Heat flow

Imposing only a temperature gradient on our system a
Sec. III A, the first term in Eq.~19! is identical to zero and
the total entropy productionR̄ in the steady state is then

R̄5E
volume

sdr5E
surface

~J/T!ds5Jw
u /Tw

u 1Jw
d /Tw

d .

~20!
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The right hand side of Eq.~20! is the outward entropy flux
Jw /Tw across the walls of the container. Note that there is
temperature slip at the walls with respect to the correc
defined temperature values, as indicated by the simula
results in Figs. 1 and 5.

On the other hand, the exponential phase-space con
tion rate now reads

P̄5^~vx
21vy

22vx8
22vy8

2!/2Tu&u

1^~vx
21vy

22vx8
22vy8

2!/2Td&d , ~21!

where we averaged over the upper and the lower wall se
rately. Since in NSSJw

u 5^(vx
21vy

22vx8
22vy8

2)/2&u52Jw
d

52^(vx
21vy

22vx8
22vy8

2)/2&d , the ratios of entropy produc
tion to exponential phase space contraction rate reduce

R̄u/d

P̄u/d
5

Tu/d

Tw
u/d

. ~22!

In the hydrodynamic limit the incoming and the outgoin
fluxes approach local equilibrium, implyingTi

u/d.To
u/d

.Tw
u/d.Tu/d for both walls. Therefore, the ratios in Eq.~22!

should go to unity. The numerical results in Table III confir
this expectation, leading to a good agreement between
tropy production and exponential phase-space contrac
rate.

2. Shear flow

We follow the same procedure as in the preceding sect
For a stationary shear flow the hydrodynamic entropy p
duction s per unit volume in Eq.~19! can be written as
@15,8#

s~y!5
P

T

dux

dy
1J~y!

d

dy S 1

TD5P
d

dy S ux

T D , ~23!

where the second step follows from the fact that in N
ldT/dy5J(y)5Pux(y). The total entropy productionR̄ in
the steady shear flow state is then@15,16#

R̄5E
volume

sdr5E
surface

~Pu/T!ds5Jw /Tw

52L2P~uw /L !/Tw5L2Pg/Tw . ~24!

In the macroscopic formulation of irreversible thermod
namics Eq.~24! is interpreted as an equality, in the stationa
state, between the entropy produced in the interior and
entropy flow carried across the walls. Our shift mapSd mim-
ics moving walls with drift velocities6uw . The work per-

TABLE III. Comparison of entropy production and experime

tal phase-space contraction rateR̄/ P̄, heat flow.

N5100 N5200 N5400 N5800

Tu51.5 1.0814 1.0762 1.0614 1.0508
Td51 0.8948 0.9170 0.9273 0.9439
Tu52 1.1313 1.1110 1.0985 1.0765
Td51 0.8122 0.8412 0.8633 0.8886
o
y
n

c-

a-

n-
n

n.
-

e

formed at these walls counteracts the viscous dissipatio
the bulk and is eventually absorbed by the walls which n
act as infinite thermal reservoirs. By imagining that the wa
act as a thermal bath at temperatureTw , R̄ can be interpreted
as their entropy increase rate.

For model I @Eqs. ~11! and ~12!# the mean exponentia
phase-space contraction rate takes the form (]Sd /]vx]vy
[1)

P̄52^@vx8
21vy8

22vx
22vy

222d~vx81vx!#/2T&, ~25!

whereas the entropy production is given by

Jw /Tw52Š@vx8
21vy8

22vx
22vy

22^vx8&
21^vx&

2#/2Tw‹.
~26!

In Table IV the ratios ofL2Pg/Jw as obtained from the
simulations are reported and the relation of phase-space
traction rate to entropy production is subsequently check
Whereas the equality between entropy production and
tropy flow via heat transfer is confirmed, we observe a s
nificant difference between entropy production and pha
space contraction which subsists in the hydrodynamic lim
This mismatch is perhaps not so unexpected in view of
distorted outgoing fluxes~see Fig. 6!. Nevertheless, one
could argue that the fine structure of these distributions m
depend on the specific characteristics of the baker map
sen to model the collision process. We therefore also con
ered the standard map

M̃:H j85j2
k

2p
sin~2pz!

z85z1j8,

~27!

with the parameterk5100 to ensure that we are in the h
perbolic regime@50,51#. We found that the discrepancy be
tween entropy production and phase-space contraction
remains: although the deterministic map now seems to
chaotic enough to smooth out the fine structure of the out
ing densities, the discontinuity atd survives. Actually, as
long as model I is adopted it becomes clear that in NSS th
will always be more outgoing than incoming particles wi
vx>d at the upper wall~and withvx<d at the lower wall!.
Thus, the Gaussian halves in Fig. 7~b! will never match to a
full Gaussian even in the hydrodynamic limit, andF i and
Fo will never come close to a local equilibrium. To circum
vent this problem we modify the mapT and investigate the
following model, model II:

TABLE IV. Comparison of entropy production and experime

tal phase-space contraction rateR̄/ P̄, shear flow, model I.

N5100 N5200 N5400 N5800

d50.05 L2Pg/Jw 0.9816 0.9669 0.9765 0.9962
Baker map R̄/ P̄ 0.6761 0.5882 0.5023 0.4230

d50.1 L2Pg/Jw 0.9829 0.9664 0.9497 0.9588
Baker map R̄/ P̄ 0.6457 0.5761 0.4934 0.4275

d50.1 L2Pg/Jw 1.0255 1.0424 1.0435 1.0833
Standard map R̄/ P̄ 0.4622 0.3873 0.3008 0.2417
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FIG. 7. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flow case~model I, standard map!:
~a! vx

in , ~b! vx
out , ~c! vy

in , and~d! vy
out .
he
ing
ion
p-

ng
.
ive
T 6~vx ,vy!5S erf @~ uvxu7d!/A2T#6erf~d/A2T!

16erf~d/A2T!
,

3exp~2vy
2/2T!D , ~28!

~vx8 ,vy8!5H T 1
21+M̃+T 2~vx ,vy!, vx>0

T 2
21+M̃21+T 1~vx ,vy!, vx,0.

~29!
This model is also time reversible, but in contrast to t
former one no particle changes its tangential direction dur
the scattering. There is still a gap in the outgoing distribut
of Fig. 8~b!, however, simulations show that this gap disa
pears in the hydrodynamic limit thus bringing the incomi
and the outgoing distributions close to local equilibrium
Furthermore, we note that whereas we were not able to g
a relation between the parameterd and the actual wall veloc-
ity uw for model I, in the case of model IIuw converges tod
in the hydrodynamic limit. For this reason we choosed
FIG. 8. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flow case~model II!: ~a! vx
in , and

~b! vx
out .
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50.5 in the following, since this value yields the same ord
of the wall velocity asd50.1 for model I. We note that a
comparison between the theoretical and experimental
cosities for different particle numbers leads to an agreem
analogous to the one obtained for model I in Table II. P
ceeding now to the phase-space contraction rate we find
it takes the form

P̄u/d52~n12n2!ln
16erf~d/A2T!

17erf~d/A2T!

2^@vx8
21vy8

22vx
22vy

222d~vx81vx!#/2T&u/d ,

~30!

where n6 are the collision rates for positive and negati
tangential velocities, and the additional term@cf. Eq. ~25!#
results from the different denominators in Eq.~28!. Note that
one has to average over the upper and the lower wall s
rately. Again we compareR̄ and P̄ ~Table V!, but although
the outgoing flux now approaches a Gaussian in the hy
dynamic limit the two quantities still do not match. Th
result can be understood in more detail by rearranging
terms in Eq.~30! as

P̄u/d52Š@vx8
21vy8

22vx
22vy

22^vx8&
21^vx&

2#/2T‹u/d

2Š@^vx8&
22^vx&

222d~vx81vx!#/2T‹u/d

2~n12n2!ln
16erf~d/A2T!

17erf~d/A2T!
. ~31!

TABLE V. Comparison of entropy production and experimen

phase-space contraction rateR̄/ P̄, shear flow, models II and III.

N5100 N5200 N5400 N5800

Model II L2Pg/Jw 0.9842 1.0154 1.0002 1.0255
d50.5 R̄/ P̄ 0.1858 0.1682 0.1398 0.1127

Model III L2Pg/Jw 1.0164 1.0046 1.0005 1.0039
d50.5 R̄/ P̄ 0.8452 0.8785 0.9051 0.9619
r

s-
nt
-
at

a-

o-

e

SinceT˜Tw in the hydrodynamic limit, the first term clearl
corresponds to the entropy production Eq.~26!. However,
the second and the third terms provide additional contri
tions. Foruw˜d andd˜0 they are both of orderd2 and can
be interpreted as a phase-space contraction due to a fric
parallel to the walls @32,33#. These two terms apparentl
depend on the specific modeling of the collision process
the wall. They may physically be interpreted as represen
certain properties of a wall, like roughness, or anisotro
Actually, the second term already appeared in model I,
Eq. ~25!. The price we had to pay in model II for the fluxe
getting close to local equilibrium is the additional third ter
in Eq. ~31!, which does not compensate the second one.

The foregoing analysis shows clearly what to do to get
of the additional term in Eq.~30!: we have to use the sam
forward and backward transformationsT 6 in Eqs.~28! and
~29!. If one still wants to transform onto a full Gaussian
the hydrodynamic limit time reversibility has thus to b
given up. This leads us to propose model III:

T * ~vx ,vy!5S erf @~vx2d!/A2T#11

2
, exp~2vy

2/2T! D ,

~32!

~vx8 ,vy8!5T
*
21+M̃+T * ~vx ,vy!, ~33!

which is still deterministic, but no longer time reversibl
Again, a comparison between the theoretical and experim
tal viscosities for different particle numbers yields an agr
ment analogous to the one obtained in the case of mode
and II. The phase-space contraction is now given as

P̄5^@vx8
21vy8

22vx
22vy

222d~vx82vx!#/2T&. ~34!

Figure 9 shows that the incoming and the outgoing fluxes
getting close to local equilibrium, implying that the veloci
of the walluw goes tod and the wall temperatureTw goes to
T. Consequently, Eq.~34! should converge to the correc
thermodynamic entropy production of Eq.~26! in the hydro-
dynamic limit, and this is indeed what we observe in Tab
V. This implies that time reversibility does not appear to
an essential ingredient for having a relation between pha
space contraction and entropy production, as was alre

l

FIG. 9. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flow case~model III!: ~a! vx
in ,vx

out and
~b! vy

in ,vy
out .
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stated in Refs.@15,16,32,33#, but which seems to be at var
ance with the conclusions in Ref.@30#. We remark that we
consider the lack of time reversibility in model III as a tec
nical difficulty of how we define our scattering rules rath
than as a necessary property to obtain an identity betw
entropy production and phase-space contraction.

V. CONCLUSION

We have applied a thermostating mechanism to an in
acting many-particle system. Under this formalism the s
tem is thermalized through scattering at the boundaries w
the bulk is left Hamiltonian. We have shown how this det
ministic and time-reversible thermostating mechanism is
lated to conventional stochastic boundary conditions. Fo
two-dimensional system of hard disks, this thermostat yie
a stationary nonequilibrium heat or shear flow state. Tra
port coefficients obtained from computer simulations, su
as thermal conductivity and viscosity, agree with the valu
obtained from Enskog’s theory.

Having a time-reversible and deterministic system
also examined the relation between microscopic reversib
and macroscopic irreversibility in terms of entropy produ
tion. We find that entropy production and exponential pha
space contraction rate in general do not agree. When the
is created by a temperature gradient both quantities conv
in the hydrodynamic limit. By subjecting the system to
shear we examined three different versions of scatte
rules, of which one~model III! produced an agreement.

Our results indicate that neither time reversibility nor t
existence of a local thermodynamic equilibrium at the wa
i-
en

r-
-
le
-
-
a
s
s-
h
s

e
y
-
-

SS
ge

g

s

are sufficient conditions for obtaining an identity betwe
phase-space contraction and entropy production. A clas
systems where such an identity is guaranteed by default
the ones thermostated by velocity-dependent friction coe
cients@8,9,11#. We suggest that in general, that is, by usi
other ways of deterministic and time-reversible thermos
ing, such an identity may not necessarily exist. We wo
expect the same to hold for any system where the interac
between bulk and reservoir depends on the details of
microscopic scattering rules.

As a next step it would be important to compute the sp
trum of Lyapunov exponents for the models considered
this paper. This would enable us to check, for example,
validity of formulas which express transport coefficients
terms of sums of Lyapunov exponents@21,22#, and the exis-
tence of a so-called conjugate pairing rule of Lyapunov
ponents@22,39#. Moreover, it would be interesting to verify
the fluctuation theorem, as has been done recently for
Chernov-Lebowitz model@40#.
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