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Thermostating by deterministic scattering: Heat and shear flow
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We apply a recently proposed thermostating mechanism to an interacting many-particle system where the
bulk particles are moving according to Hamiltonian dynamics. At the boundaries the system is thermalized by
deterministic and time-reversible scattering. We first show how this scattering mechanism can be related to
stochastic boundary conditions. We subsequently simulate thermal conduction and shear flow for a hard disk
fluid. By comparing the transport coefficients obtained from computer simulations to theoretical results we find
that this thermostating mechanism yields well-defined nonequilibrium steady states in the range of linear
response. Furthermore, the conjectured identity between thermodynamic entropy production and exponential
phase-space contraction rates is investigated from the standpoint of our formalism. We find that, in general,
these quantities do not agrd&1063-651X%99)05808-7

PACS numbegps): 05.70.Ln, 51.10ty, 66.20+d

[. INTRODUCTION librium into a steady state shear flow by applying special
scattering rules at the boundaries in which the particle veloc-
Driving macroscopic systems out of equilibrium requiresity is kept constant.
external forces. Now, the very existence of a nonequilibrium Numerical computations involving heat and shear flow of
steady state implies that the temperature of the system muBg@rd disks have been carried out since the 1970s by various
remain time independent. One way to prevent the systerfesearcherssee, e.g.[3,8,9,22,41-4]j, however, in their
from heating up indefinitely in nonequilibrium is the intro- Work very different thermostating mechanisms have been
duction of a thermostating algorithfi]. Starting from mo- employed than the one discussed in this paper. Here, we are
lecular dynamics simulations Evans, Hoover, Nas®d oth- especially interested in the consequences that the use of our
ers proposed deterministic thermostats to model equilibriunfi@w thermostat may have on the specific dynamical proper-
and nonequilibrium fluid§2—7). In this formalism the(av-  ties of a many-particle system. Thus, the main goal of this
eragé internal energy of the dynamical system is kept con-Work is twofold: First, we want to verify that our thermostat-
stant by subjecting the particles to fictitious frictional forces,ing mechanism yields nonequilibrium steady states for a hard
thus leading to microcanonical or canonical distributions indisk fluid which are in agreement with the linear response
phase spac@_l];l_ The major feature of this mechanism is obtained from kinetic theory. And Second, on the basis of our
its deterministic and time-reversible character, which is inmodel we want to inquire about the general validity of the
contrast to stochastic thermostfts12—18. This allows us identity between entropy production and phase-space con-
to elaborate on the connection between microscopic reverdtaction, as it has been found in other systems.
ibility and macroscopic irreversibility and has led to interest-  The model is introduced in Sec. Il where the thermaliza-
ing new links between statistical physics and dynamical systjon mechanism is tested under equilibrium conditions. In
tems theory[8,9,11,19, especially to relations between Sec. Ill we move on to the case of an imposed temperature
transport coefficients and Lyapunov expondi28—24, and  9gradient and a velocity field by adapting the scattering rules,
between entropy production and phase_space Contracticﬁﬂd we Compute the reSpeCtive transport coefficients. HaVing
[25,26,21,15,16,27—30Although used almost exclusively @ deterministic and time-reversible system at hand we pro-
in the context of nonequilibrium systems, the above-ceed in Sec. IV to investigate the relation between thermo-
mentioned thermostating mechanism presents the drawbaélynamic entropy production and phase-space contraction
that the dynamical equations themselves are altered, even fate in nonequilibrium steady states. The main conclusions
equilibrium. This raises the question of whether some of theéire drawn in Sec. V.
results are due to the special nature of this thermostating
formalism or are of gen_eral vaIiditM5316,3'1—3ﬁ o II. EQUILIBRIUM STATE
Recently, an alternative approach in which thermalization

is achieved in a deterministic and time-reversible way has Consider a two-dimensional system of hard disks con-
been put forward by Klages and co-workgd¥,38 and has fined in a square box of length with periodic boundary
been applied to a periodic Lorentz gas under an externaionditions along the axis, i.e., the left and right sides at
field. In the present paper we apply this thermostating= *=L/2 are identified. At the top and bottom sides of the
method to an interacting many-particle system of hard disk®ox, y= *=L/2, we introduce rigid walls where the disks are
subjected to nonequilibrium boundary conditions giving risereflected according to certain rules to be defined later. The
to thermal conduction and to shear flow. The model isdisks interact among themselves via impulsive hard colli-
closely related to that of Chernov and Lebowitz sions so that the bulk dynamics is purely conservative. In the
[15,16,39,40 who study a hard disk fluid driven out of equi- following and in all the numerical computations we use re-
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duced units by setting the particle massthe disk diameter freedom. It should also be realized that for obtaining the
o, and the Boltzmann constakg equal to one. transformation? the total number of degrees of freedom of
Before proceeding to the nonequilibrium case we definghe reservoir has been projected out onto a single velocity
the disk-wall collision rules in equilibrium and check variable, which couples the bulk to the reservoir. Eckmann
whether the system is well behaved. Now, in equilibrium theet al.[49] used a similar idea to go from a Hamiltonian res-
bulk distribution is Gaussian with a temperatdreand the ervoir with infinitely many degrees of freedom to a reduced
incoming and outgoing fluxes at the top and bottom walldescription when modeling heat transfer via a finite chain of
have the form(see[12-16) nonlinear oscillators.
It remains to assign the form of the chaotic m&p and
we shall first adopt the choice of a baker map, as in Refs.

o D 3738

VEtHV]
2T

D (v, ,vy)z(sz3)1’2|vy|exp< —

with v, <0 for the bottom wall and/,>0 for the top wall.
Imposing stochastic boundary conditions on the system in (€)= M(L.E)= (2£,¢12), 0<(<1/2 ©
this setting would mean that for every incoming particle the ' ' (2¢—-1,(&+1)/12) 1/2<(<1.
outgoing velocities are chosen randomly according to Eq.
(1). In practice, this is usually done by drawing numbers| aier on we will investigate the consequences of choosing
from two independent uniformly distributed random genera-yiner mappings like the standard méee, e.g.[50,51).
tors ¢,£<(0,1] and then transforming these numbers with since in equilibrium the incoming and outgoing fluxes have
the invertible map/”~*:[0,1]X[0,1]—[0) X[0,°) as the same form as in Ed1), the transformatiort yields a
Y _ 1 e uniform density in, ¢ on the level of the chaotic map1

(Vi vy) =T (L. 6)= \/ﬁ(erf (DN=In(€). @ and with M having a uniform invariant density the scatter-
ing prescription in Eq(4) can be viewed as a deterministic
and time-reversible counterpart of stochastic boundary con-
ditions. M being chaotic, the initial and final momentum and

which amounts to transforming the uniform densitjgg)
=1 andp(§)=1 onto®(v,,v,) according to

dedé | IT (Vy ,vy)| energy of any single particle are certainly different, but both
p(O)p(é) = guantities should be conserved on the average. The latter is
dv,dvy| | dvyedvy |

confirmed by numerical experiments in equilibrium, where,
as usual in hard disk simulations, we follow a collision-to-
collision approach1]. Keeping the volume fraction occu-
pied byN=100 hard disks equal to= 0.1 sets the length of
3 the box equal toL=28.0. After some transient behavior
] ) which depends on the temperature of the initial configuration
Note that so far we have restricted E¢®) and(3) to posi-  the pulk distribution is Gaussian with zero mean and mean
tive velocitiesv, v, €[02), which implies a normalization yinetic energyT/2 in each direction. The incoming and out-
factor in Eq.(3) being different from the one of Eq1). In  g4ing fluxes at the walls are correctly equipartitioned with
analogy with stochastic boundaries we now define the detelss well and have the desired form of @), so the system
ministic scattering at the walls as follows. First, take thereproduces the correct statistical properties.
incoming  velocities v, vy, and transform them via  ‘we close this section by a remark on how we measure the
T (vx,vy)=(¢,€) onto the unit square. Second, use & tWo-temperature of a flux to or from the boundaries. As the tem-
dimensional, invertible, phase-space conserving chaotic Magerature of the tangential component we use the variance of
M:[0,1]X[0,1]—[0,1]X[0,1] to obtain ¢",&")=M({,€).  the velocity distribution, Ty:=((vy—(Vy)) %), Where { )y
Finally, transform back to the outgoing velocities via gepnotes an average over the density,). On the other
(Vx,vy)=T “*(¢’,€'). In order to render the collision pro- hand, since in the normal direction we actually measure a
cess time reversible, we also have to distinguish betweeflux, the appropriate prescription to measure the temperature
particles with positive and negative tangential velocities bygt this component isTy=:[vy]y/[vy_1]y, where[ ], repre-
using M and M 713 respectively. Thus, particles going in sents an average over the fidxand the denominator serves
with positive (negative velocities have to go out with posi- 45 a normalization. The temperatures of the incoming and
tive (negative velocities and the full collision rules read outgoing fluxes at the wall are then defined @s,
= (Tt Ty)/2, and T, :=(T; + To) /2.

Vit+V]
2T

= (2/77T3)1’2|vy|exp( -

T o MeT (vy,vy), V=0 “
T oM 1oT (vy,vy), V<0, IIl. NONEQUILIBRIUM STEADY STATE

(Vi Vy) =
where7 is meant to be applied to the modulus of the veloci- A. Heat flow
ties[48]. Since both the positive and the negative side of the
tangential velocity distribution of Eq1) are normalized to
1/2, this normalization factor has to be incorporated in Eq. In the following, we explicitly indicate the dependence of
(3) to render the full desired flusb equivalent to the one of the transformatiorY on the parameter by writing 7 1. This
Eqg. (1). Rewriting Eq.(3) in polar coordinates yields pre- immediately indicates how we may drive our system to ther-
cisely the transformation used [i87,38), in the limiting case  mal nonequilibrium: we just have to use different values of
where it mimics a reservoir with infinitely many degrees of this parameter for the uppef{) and the lower T%) wall.

1. The model
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FIG. 1. Temperaturdv;+vy—(v,)?)/2 (solid ling and vari- FIG. 2. Profile of the number density,=2, T4=1.

ance(vi—(v,)?) (—-), (v}) (- -) profiles, T,=2, T4=1 (denoted
by an asterisk The plus sign ¢) denotes the wall temperatur€s  tinue the bulk profile reasonably well. The profile of the
as defined in the text. number densityn=4/mp is depicted in Fig. 2. Note again the
boundary effects. The densities of the incoming particles at
We deliberately avoid use of the term “temperature” for this the upper wall are Gaussian shapfigs. 3a), 3(c)],
parameter, since in contrast to stochastic boundary condiwhereas the outgoing densitigiigs. 3b), 3(d)] show cusps
tions we have generally no idea how a differ@rdffects the  due to the folding property of the baker map. Nevertheless,
actual temperature of the wall in the sense of the definitiorthe baker map produces a reasonable outgoing flux which
given above. In a nonequilibrium situation the temperature otjenerates a NSS.
the incoming flux®; generally does not match exactly the In order to examine the bulk behavior we now compute
parameterT. Therefore, we do not transform onto the uni- the thermal conductivity in our computer experiment and
form invariant density of the baker map anymore, and concompare it to the theoretical value. For this purpose, we mea-
sequently, the outgoing flux might have all kinds of shapesure the heat fluxQ across the boundaries and estimate the
or temperatures. Nevertheless, the hope is that the mappingmperature gradiewkT(y)/dy by a linear least squares fit to
M will be chaotic enough to smooth out most of the differ- the experimental profile. To avoid boundary effects we use
ences and to produce a reasonable outgoingdysuch that  only data in the bulk of the system, namely, from layer 3 to
the system is correctly thermostated. And this is indeed whaayer 18, i.e., excluding the top two and the bottom two

we find in the numerical experiments. layers. The experimental heat conductivity is then defined as
2. Numerical results dy
N expt™ Q ﬁ) ) (6)
We setTU=2, T9=1, andp=0.1 and average over about

40000 particle-particle collisions per particle and about 6OOQ/\/hereas the theoretical expression for the conductivity of a
particle-wall collisions per particle. We divide the available gas of hard disks with unit mass and unit diameter as pre-
vertical heightL — 1 into 20 equally spaced horizontal layers dicted by Enskog’s theory reads2,53

and calculate the time averages of the number demgiy ’
of the particles, the mean velocitias,(y) =(vy), uy(y) T
=(vy), and the variancev,—uy)?), ((v,—uy,)?). Further- N = 1.0292\/;
more, we record the time average of the kinetic energy trans-

fer and measure the temperatures of the incoming and Ouﬁere,b is the second virial coefficienh= /2, andy is the

going fluxes of both walls as described in the preceding=psyoq scaling factor, which is just the pair correlation func-
section. The temperatures at the walls are then defined as thg, i, contac54]

mean value of the incoming and outgoing temperatures,

. (7)

! 3b 0.8718bn)?
)—(+§ n+0. &n)X

T\‘,‘V’dz_=(Ti“’d+T_‘;’d)/2. Time series plots of these quantities 1- Z (m/4)n
confirm the existence of a nonequilibrium steady stat8S X=—"—"—">. (8)
induced by the temperature gradient. [1—(a/4)n]

Figure 1 shows the temperature profile between the upper. _
and the lower wall. Apart from boundary effects it is ap- >inc® EQ.(7) depends on local values dfandn we define

proximately linear, and the respective kinetic energy is equiln€ theoretical effective conductivity e, as the harmonic
partitioned between the two degrees of freedom. The paranii€@n over the layer2],

eters TY and TY are represented ag*), and we find a Niayers _1
“temperature” jump, whereas the measured temperatures Mo = (1N I\ 9
TYd (denoted in the figure by-) at the walls seem to con- theor= | (1Niayerd ;1 ' ©
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FIG. 3. Velocity distributions of the incoming and outgoing particles at the upper Wall) for the heat flow casda) vi(”, (b) v,
(©) vy, and(d) vy*".

Table | compares gy to Aneor DY showing the ratio of the purely Hamiltonian bulk and simulated the drift at the

experimental to the theoretical conductivity for different par-boundaries by rotating the particle velocity at the moment of

ticle numbers and temperature differences. The agreementtilse scattering event with the wall while keeping the absolute

quite good, so our thermostating mechanism produces a NS&lue of the velocity constant. This setting could be formu-

which is in agreement with hydrodynamics. lated in a time-reversible way and keeps the total energy of
Furthermore, going into the hydrodynamic limit by in- the system generically constant. Here we separate the ther-

creasing the number of particles we observe that the discomrostating mechanism and the drift of the walls by introduc-

tinuity in the outgoing flux of Figs. ®) and 3d) diminishes, ing the map

as expected, since both the incoming and outgoing flux come

closer to local equilibrium. Sy(Vx,Vy) = (vxt+d,vy), (10

and by applying this shift to the “thermostated” velocities.
B. Shear flow Time reversibility forces us to do the same before thermo-
Inspired by the recently proposed model of Chernov andstating. Thus, the full particle-wall interaction reagtsodel
Lebowitz[15,16 for a boundary-driven planar Couette flow )
in a nonequilibrium steady state, we now proceed to checlf
whether it is possible to combine our thermostating mecha-
nism with a positive(negative drift imposed onto the upper 1
(lower) wall, respectively. Chernov and Lebowitz chose a _ ST 7 e MeT1o84(Vievy),  vx=—d (11)
ST 7o M o T 1084(vy,vy), vx<—d, (12)

v, ,v)',)

TABLE |. Comparison of theoretical and experimental heat con-

ductivity Aexpt/ Mtheor- where shifts of different sign are used for the upflewer
wall to let the walls move in opposite directions. Other pre-
scriptions to impose a shear will be investigated in the fol-
AT=15-1 0.904 1.009 1.003 1.062  lowing section.

AT=2.0-1 0.887 0.950 1.021 1.051 In the simulations we sel=+0.05, T=TY=TY=1.0,
N=100, andp=0.1. As we expected, we find a NSS with a

N=100 N=200 N=400 N=800
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"] TABLE Il. Comparison of theoretical and experimental viscos-
ity Yexpt! Mineor-

N=100 N=200 N=400 N=800

d=0.05 0.9616 0.9904 1.0081 1.0382
d=0.1 0.9702 1.001 1.0226 1.0232

—10221\F
m=1022;\ 7

Again b=m/2 denotes the second virial coefficieng, is
given by Eq.(8), and we use the arithmetic meft6] of the
viscosity over layers 3—18 to compute the theoretical viscos-
. . . . ity, i.€., Dtheor= (UNjayerd = 77 . Table Il shows good agree-
-04  -083 02  -01 0 o1 02 0.3 0.4 ment between the experimental and the theoretical values for
mean velocities . . . .
different numbers of particles, so again the thermostating
FIG. 4. Mean velocity in thex direction (solid line), in they =~ mechanism leads to the correct macroscopic behavior. Still,
direction(- -), and at the wall,, (*). the discontinuities in the,-velocity distribution of the scat-
tered particles should be noticéske Fig. 6. This time these

linear shear profile along thedirection (Fig. 4), where the  discontinuities do not diminish or disappear in the hydrody-
drift velocity of the wallu,, (represented by the asterisk *) is namic limit.

defined as the average between the incoming and outgoing

tqngentigl velocities. The temperature prc_)file is shown in |y ENTROPY PRODUCTION AND PHASE-SPACE

Fig. 5, with the wall temperatureg,, (+) defined as above. CONTRACTION

As can be seen in the plots, none of these values correspond

to the parameterE (*) or d. Nevertheless, we obtain a linear ~ Having a deterministic and reversible dynamics at hand

shear profilau,(y) and an almost quadratic temperature pro-We can now turn to properties beyond the usual hydrody-

file T(y), as predicted by hydrodynamis5]. namic ones and, in particular, investigate the conjectured
For a comparison of experimental and theoretical viscosidentity between phase-space contraction rate and thermody-

ity we follow the same procedure as above, i.e., we estimatBamic entropy production in the light of our formalism

the experimental shear rawu,(y)/dy by a linear least [25,26,21,15,16,27-30In an isolated macroscopic system

squares fiti, (y) = yy, again discarding the outermost layers. the entropy is a thermodynamic potential and therefore plays

In terms of the measured momentum transfer from wall tdhe central role in determining the time evolution and the

-
'S
T

py
N
T

y (layer number)

e
(=]
T

1
;+bn+ 0.8729bn)%x|. (14

wall I1 the experimental viscosity is given as final equilibrium state. Yet, its microscopic interpretation out
of equilibrium remains controversigee, e.g.[55,56]) and
Nexpr= 111y, (13 the situation is even much less clear in NSS. For the class of

) models where thermostating is ensured by friction coeffi-
and the theoretical value as calculated by the Enskog theokyients an exact equality between entropy production and
has the forn{53,15) phase-space contraction rate in NSS has been inferred on the
. , , . basis of a global balance between the system and the reser-
e voir [25,8,9,11. For the Chernov-Lebowitz model an ap-
L proximate equality has also been foyi&,16. Still, it is not
— clear under which circumstances this relation holds in gen-
e 1 eral[15,16,31-36

%

20

@©
T

[
T

IS
T

s A. Equilibrium state

y (layer number)
N
T

We begin with the simplest case of equilibrium described

in Sec. I, where the thermodynamic entropy producfyg

5 ] vanishes. The bulk dynamics being Hamiltonian, phase-

space contraction can only occur during collisions with a

N wall. Since these collisions take place “instantaneously,” we
~. ignore the bulk particles and restrict ourselves to a single

N~ i collision during the time intervatit. The phase-space con-

« "~ traction is then given by the ratio of the one-particle phase-
85 0% oo o o9 1 102 104 108 108 11 space volume after the collisionlX’dy’dv,dvy) to the one

variances and tomperature before the collision dxdydv,dv,) and can thus be obtained

FIG. 5. Velocity variance in the direction (- -) and in they ~ from the Jacobi determinant of the scattering process. One

direction(- -), and temperatursolid line), measured wall tempera- €asily sees thatx’ =dx and|dy’/dy| = |vydt/v,dt| [15,16].

ture T,, (+), and “parametrical” temperaturé (*). Furthermore,

o
T
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FIG. 6. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flowrozda )): (a) vin (b) v,
(©) vy', and(d) vy™.

dv,dv, 9T oMY g7 1 ‘ incoming and outgoing fluxes associated to these collisions
dvxdvy| = NV, oXdy avr(?v,‘ have the same statistical properties,Psg sums up to zero
xVy
and
T o7 17t _
| avyavy| avyav, Peq=Req (18
vy v)’(2+v)’,2—v>2(—v)2, This is fully confirmed by the simulations.
=|=7le 5T : (15
Vy B. NSS

where step 2 follows from the phase-space conservation of The thermodynamic entropy productien per unit vol-
MIM L, and the last line is obtained from Edg) and(3). ume of our system in NSS is given by the Gibbs-Onsager

Hence, in a particle-wall collision the phase-space volume i€0rm [15,8]

changed by a factor of 11 du d /1
a(y)== X+J<y>—(—), (19

dvydvydx'dy’| v>’<2+v;2—vf—v§ " T dy dy\T
dv,dv,dxdy —¢ 2T - (16 wherell is thex-momentum flux in the negatiwedirection,

andJ(y) is the heat flux in the positive direction.
The mean exponential rate of compression of the phase-
space volume per unit time is thus given by 1. Heat flow
Imposing only a temperature gradient on our system as in
Sec. Il A, the first term in Eq(19) is identical to zero and

_ dvydvydx'dy’
the total entropy productioR in the steady state is then

B dv,dv,dxdy

> =((Vi+Vvi—vi2=v 2)/2T),

, R= J odr= J (JIT)ds=3%/TY + 3979 .
where the angle brackets denote a time average over all col- volume surface
lisions at the top and the bottom walls. In equilibrium the (20
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TABLE Ill. Comparison of entropy production and experimen-  TABLE IV. Comparison of entropy production and experimen-

tal phase-space contraction r&eP, heat flow. tal phase-space contraction r&éP, shear flow, model I.
N=100 N=200 N=400 N=800 N=100 N=200 N=400 N=800
T,=15 1.0814 1.0762 1.0614 1.0508 d=0.05 L2[Iy/J, 0.9816 0.9669 0.9765 0.9962
Tg=1 0.8948 0.9170 0.9273 0.9439  Baker map RIP 0.6761 0.5882 0.5023 0.4230
T,=2 1.1313 1.1110 1.0985 1.0765 d=0.1 L2ITy/J, 0.9829 0.9664 0.9497 0.9588
Tg=1 0.8122 0.8412 0.8633 0.8886  Baker map R/P  0.6457 05761 0.4934 0.4275
d=0.1 L2y/J, 1.0255 1.0424 1.0435 1.0833

The right hand side of Eq20) is the outward entropy flux Standardmap R/p 04622 0.3873 0.3008 0.2417
Jw /T, across the walls of the container. Note that there is no

temperature slip at the walls with respect to the correctly, . C
defined temperature values, as indicated by the simulatio rmed at thgse walls counteracts the viscous d|SS|pat|on in
results in Figs. 1 and 5 the bulk and is eventually absorbed by the walls which now

On the other hand, the exponential phase-space contrafCt as infinite thermal reservoirs. By imagining that the walls

tion rate now reads act as a thermal bath at temperatliyg, R can be interpreted
as their entropy increase rate.
5=((v>2<+v§—v;2—v)’,2)/2Tu)u For model I[Egs. (11) and (12)] the mean exponential
. phase-space contraction rate takes the forsi(dvydvy
(vt vy—v, 2=V ?)2Tg)q, )  =1)
where we averaged over the upper and the lower wall sepa- P= —([v)’(2+v§2—v§—v§—2d(v)’(+vx)]/2T>, (25)

rately. Since in NSSJy,=((vi+vi—v)?—v/?)/2),=—J5
= —((Vi+Vi—v;2=v,?)2)4, the ratios of entropy produc- whereas the entropy production is given by
tion to exponential phase space contraction rate reduce to v 2 - ,

RUd  Tuld Il Tu= = (Vv 2= Vi vy = (V) (v ]/2TW>(.26)

Swa - ui (22)

P Tw In Table IV the ratios ofL2I1y/J, as obtained from the
simulations are reported and the relation of phase-space con-
traction rate to entropy production is subsequently checked.
Whereas the equality between entropy production and en-
. . . . tropy flow via heat transfer is confirmed, we observe a sig-
should go to unity. The numerical results in Table Il confirm pigeant difference between entropy production and phase-
this expectation, leading to a good agreement between €l e contraction which subsists in the hydrodynamic limit.
tropy production and exponential phase-space contractiofhis mismatch is perhaps not so unexpected in view of the
rate. distorted outgoing fluxegsee Fig. 6. Nevertheless, one
could argue that the fine structure of these distributions may
depend on the specific characteristics of the baker map cho-

We follow the same procedure as in the preceding sectiorsen to model the collision process. We therefore also consid-
For a stationary shear flow the hydrodynamic entropy proered the standard map
duction ¢ per unit volume in Eq.(19) can be written as
[15,8]

In the hydrodynamic limit the incoming and the outgoing
fluxes approach local equilibrium, implying/¢=Td

=TWd=TUd for hoth walls. Therefore, the ratios in E@2)

2. Shear flow

k

~ | & =& 5—sin(27{)
_Mdy, d (1) d 2y M 2,77
U(Y)—7d—y+ (Y)E 7 =Uayl 7 (23 U=+ ¢,

where the second step follows from the fact that in NSSWith the parametek=100 to ensure that we are in the hy-

AdT/dy=J(y)=TTu,(y). The total entropy productioR in perbolic regimg50,51. We found that the discrepancy be-

. tween entropy production and phase-space contraction rate
the steady shear flow state is thers, 16 remains: although the deterministic map now seems to be

(27)

_ chaotic enough to smooth out the fine structure of the outgo-
R:f adrzf (IMMu/T)ds=3,,/T,, ing densities, the discontinuity at survives. Actually, as
volume surface long as model | is adopted it becomes clear that in NSS there
=2L2[1(u,, /L)/T,,=L2TTy/T,,. (24) will always be more outgoing than incoming particles with

v,=d at the upper walland withv,=<d at the lower wall.
In the macroscopic formulation of irreversible thermody- Thus, the Gaussian halves in Fig(j will never match to a
namics Eq(24) is interpreted as an equality, in the stationaryfull Gaussian even in the hydrodynamic limit, adg and
state, between the entropy produced in the interior and thé, will never come close to a local equilibrium. To circum-
entropy flow carried across the walls. Our shift n&pmim-  vent this problem we modify the m&gpand investigate the
ics moving walls with drift velocities-u,,. The work per- following model, model II:
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FIG. 7. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flomada |, standard map
@ v, (b) v2™, (o) vy, and(d) v§’”‘.

This model is also time reversible, but in contrast to the
former one no particle changes its tangential direction during
the scattering. There is still a gap in the outgoing distribution
of Fig. 8b), however, simulations show that this gap disap-
pears in the hydrodynamic limit thus bringing the incoming
and the outgoing distributions close to local equilibrium.
Furthermore, we note that whereas we were not able to give

erf[(|vy| Td)/\2T] = erf(d/\2T)
1+erf(d//2T)

Tt(vx vvy)_(

X exp(—vZi2T) |, (28)

TlloMoTi(vx Vy), V=0 a relation between the parameteand the actual wall veloc-
(Vi Vy) =Y, . (29 ity u,, for model I, in the case of model U,, converges tal
T o M™7T ((vy,vy), Vx<0. in the hydrodynamic limit. For this reason we choode
0.4 T T T T T T T T T 0.4
0.4 0.4
0.35- 0.35-
0.3( 0.3
> >
.25 .25
& &
© ozt T o2
0.15- 0.15-
0.1 o
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FIG. 8. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flownuadel 1): (a) viX”, and

(b) Vo,
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TABLE V. Comparison of entropy production and experimental SinceT— T,, in the hydrodynamic limit, the first term clearly

phase-space contraction rzi_téa, shear flow, models Il and IlI.

N=100 N=200 N=400 N=800
Model II L2[Iy/J, 0.9842 1.0154 1.0002 1.0255
d=0.5 RIP 0.1858 0.1682 0.1398 0.1127
Model Il L2My/J, 1.0164 1.0046 1.0005 1.0039
d=0.5 RIP 0.8452 0.8785 0.9051 0.9619

corresponds to the entropy production Eg6). However,

the second and the third terms provide additional contribu-
tions. Foru,—d andd— 0 they are both of ordet? and can

be interpreted as a phase-space contraction due to a friction
parallel to the walls[32,33. These two terms apparently
depend on the specific modeling of the collision process at
the wall. They may physically be interpreted as representing
certain properties of a wall, like roughness, or anisotropy.
Actually, the second term already appeared in model I, see
Eq. (25). The price we had to pay in model Il for the fluxes

=0.5 in the following, since this value yields the same ordergetting close to local equilibrium is the additional third term
of the wall velocity asd=0.1 for model I. We note that a in Eq. (31), which does not compensate the second one.
comparison between the theoretical and experimental vis- The foregoing analysis shows clearly what to do to get rid
cosities for different particle numbers leads to an agreemerdf the additional term in Eq(30): we have to use the same
analogous to the one obtained for model | in Table Il. Proforward and backward transformatioffs, in Eqgs.(28) and
ceeding now to the phase-space contraction rate we find th&29). If one still wants to transform onto a full Gaussian in

it takes the form

1+erf(d/\/2T)
17 erf(d//2T)
(Vi 2+ V2= VE= V= 2d (v, + V) 1/2T) .

(30

PYd=_(n,—n_)In

the hydrodynamic limit time reversibility has thus to be
given up. This leads us to propose model Il

erf[(vy—d)/\2T]+1
2

T o (Vx,Vy) = . exp(—Vvi/2T) |,

(32)

(Vi V) =T o MoT , (Vi ,Vy), (33

wheren.. are the collision rates for positive and negativeWhiCh is still deterministic, but no longer time reversible.

tangential velocities, and the additional tefof. Eq. (25)]
results from the different denominators in E&8). Note that

Again, a comparison between the theoretical and experimen-
tal viscosities for different particle numbers yields an agree-

one has to average over the upper and the lower wall sep&€ent analogous to the one obtained in the case of models |

rately. Again we compar® andP (Table V), but although

the outgoing flux now approaches a Gaussian in the hydro-
dynamic limit the two quantities still do not match. This
result can be understood in more detail by rearranging th

terms in Eq.(30) as

Eu/d: - ([V>,<2+ V;/2_V>2<_ Vi_ <V>,<>2+ <Vx>2]/2T>u/d
— (V2= (V)2 = 2d (v}, +V,) 12T )y

1+erf(d/\/2T)

—(ny—n_)In —/——M—.
(n,—n )nlxerf(d/ﬁ)

(31

0 " -

and Il. The phase-space contraction is nhow given as

P=([vi2+vy2—vi—vi—2d(v—v,)]/2T). (34
Eigure 9 shows that the incoming and the outgoing fluxes are
getting close to local equilibrium, implying that the velocity
of the wallu,, goes tod and the wall temperaturg,, goes to

T. Consequently, Eq(34) should converge to the correct
thermodynamic entropy production of E&6) in the hydro-
dynamic limit, and this is indeed what we observe in Table
V. This implies that time reversibility does not appear to be
an essential ingredient for having a relation between phase-
space contraction and entropy production, as was already

1

0.9

0.8

0.7]

0.4r

0.3r

0.2r

0.1

-5 -4 -3 -2 -1 0 1 2 3 4 5
Vx

25 3
Vy

FIG. 9. Velocity distributions of the incoming and outgoing particles at the upper wall for the shear flogmzzds 111): (a) vixn vand

in  out
(b) vy vy
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stated in Refs[15,16,32,33 but which seems to be at vari- are sufficient conditions for obtaining an identity between
ance with the conclusions in R€f30]. We remark that we phase-space contraction and entropy production. A class of
consider the lack of time reversibility in model Ill as a tech- systems where such an identity is guaranteed by default are
nical difficulty of how we define our scattering rules ratherthe ones thermostated by velocity-dependent friction coeffi-
than as a necessary property to obtain an identity betweerients[8,9,11. We suggest that in general, that is, by using

entropy production and phase-space contraction. other ways of deterministic and time-reversible thermostat-
ing, such an identity may not necessarily exist. We would
V. CONCLUSION expect the same to hold for any system where the interaction

_ _ _ _ between bulk and reservoir depends on the details of the
We have applied a thermostating mechanism to an '”termicroscopic scattering rules.

acting many-particle system. Under this formalism the sys-  ag a next step it would be important to compute the spec-
tem is thermalized through scattering at the boundaries whilg,m of Lyapunov exponents for the models considered in
the bulk is left Hamiltonian. We have shown how this deter-ihig paper. This would enable us to check, for example, the
ministic and time-reversible thermostating mechanism is reyajidity of formulas which express transport coefficients in
lated to conventional stochastic boundary conditions. For grms of sums of Lyapunov exponefizd 27, and the exis-
two—d|_menS|onaI system of hard disks, this thermostat yield$ence of a so-called conjugate pairing rule of Lyapunov ex-
a stationary nonequilibrium heat or shear flow state. Transponents[22,39]. Moreover, it would be interesting to verify

port coefficients obtained from computer simulations, suchne fluctuation theorem, as has been done recently for the
as thermal conductivity and viscosity, agree with the valuesshernov-Lebowitz model40].

obtained from Enskog’s theory.
Having a time-reversible and deterministic system we
also examined t_he' relatlon pgtween microscopic reversibility ACKNOWLEDGMENTS
and macroscopic irreversibility in terms of entropy produc-
tion. We find that entropy production and exponential phase- Helpful discussions with P. Gaspard, M. Mareschal, and
space contraction rate in general do not agree. When the NSS Rateitschak are gratefully acknowledged. R.K. wants to
is created by a temperature gradient both quantities converghank the Deutsche ForschungsgemeinsctiaiG) for fi-
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