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Thermostating by Deterministic Scattering: Construction of Nonequilibrium Steady States
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We present a novel approach for constructing nonequilibrium steady states. It is based on a determinis-
tic and time-reversible mechanism for dissipating energy from a subsystem into a thermal reservoir. The
key idea is to thermalize a moving particle by appropriately modeling its microscopic collision rules with
a boundary mimicking a thermal reservoir with arbitrarily many degrees of freedom. We demonstrate
our method for the periodic Lorentz gas with an external electric field. By applying our thermostat we
do not find an ergodic breakdown with increasing field strength.

PACS numbers: 05.20.Dd, 05.60.Cd, 05.70.Ln, 45.70.Mg
A fundamental problem of nonequilibrium statistical
mechanics is the construction and characterization of
nonequilibrium steady states (NSS). In recent years, a
number of interesting connections between macroscopic
statistical properties and the underlying microscopic
chaotic dynamics have been put forward [1–4]: One ma-
jor line of research employs deterministic, time-reversible
bulk thermostating schemes, where the change of the
internal energy of a fluid caused, e.g., by applying external
fields is compensated by introducing a fictitious frictional
force into the microscopic equations of motion [1,5]. For
this class of systems the measures characterizing NSS are
typically singular [5–7]. This is in contrast to systems
which have been thermostated by stochastic boundaries
leading to smooth nonequilibrium measures [8]. To
bridge the gap between these two approaches, shear
flow NSS have been created by “Maxwell daemonlike”
moving boundaries [9]. Moreover, in the context of bulk
thermostating schemes a deterministic generalization of
the chaotic hypothesis of Boltzmann has been proposed
[10]. An alternative approach to nonequilibrium was
initiated by Gaspard, where nonequilibrium is induced
by appropriate boundary conditions in spatially extended
systems [3,11]. The main difficulty resulting from these
different approaches is that the associated NSS exhibit
very different statistical dynamical properties. This
implies that different answers to fundamental questions of
nonequilibrium thermodynamics are obtained. In particu-
lar, bulk thermostating schemes have led to the conclusion
that there exists an identity between irreversible entropy
production and phase space contraction [7,9,12,13]. This
identity is at the heart of specific formulas which relate
transport coefficients to Lyapunov exponents [6,12,14].
On the other hand, apparently different such relations
have emerged from the method of Gaspard [3,11]. Despite
efforts to unify the latter two approaches [15], it is still not
clear whether relations obtained from a certain mechanism
to create NSS are of general validity or just characterize a
specific class of models.

In this Letter we propose a novel deterministic, time-
reversible thermost yielding NSS. Our scheme is differ-
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ent from bulk thermostats since it does not appeal to ficti-
tious frictional forces. However, it goes beyond the one of
Ref. [9] since our scattering rules include an energy trans-
fer between subsystem and thermal reservoir. In particular,
it enables one to correctly interpolate between determin-
istic thermostats and stochastic thermal boundaries. Our
approach thus provides a suitable tool to check for the va-
lidity of the above-mentioned general relations obtained
from the various approaches to nonequilibrium. The aim
of our Letter is to systematically construct this thermostat
for a simple model system and to characterize the resulting
NSS by computer simulations.

We chose the periodic Lorentz gas, a standard model
in the field of chaos and transport [2,3,11], where a point
particle scatters elastically at hard disks arranged on a tri-
angular lattice. It mimics classical diffusive transport in a
crystal but is as well isomorphic to a periodic fluid of two
hard disks per unit cell [16]. In the driven case an electric
field acts on the moving particle, and a thermostat must
be applied to generate NSS [5,6,13,17–21]. We consider
one scatterer in an elementary cell with periodic boundary
conditions, see Fig. 1(a), and assume unit mass and unit
charge for the moving particle. For the spacing between
two neighboring disks at disk radius R � 1 we choose,
following the literature [6,20,21], w � 0.2361, ensuring
that a particle cannot move collision-free for infinite time.
Figure 1(b) defines the relevant variables for the collision

FIG. 1. (a) Elementary cell of the periodic Lorentz gas on
a triangular lattice. (b) Definition of the relevant variables to
describe the collision process.
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process, where we express the velocity y of the particle in
local polar coordinates �g, y� with g as the angle of in-
cidence and y as the absolute value of the velocity. The
dashed variables indicate the respective values after the
collision. We also introduce the angle b, which determines
the position of the colliding particle at the disk. In con-
trast to an elastic collision �g, y� � �g0, y0�, we propose to
include an energy transfer between particle and disk. We
do this by introducing an additional velocity variable k as-
sociated with the disk and by allowing that g fi g0. We
require that the total energy E of the system is conserved
at the collision, y2 1 k2 � y0 2 1 k0 2 � 2E. Thus, the
collision process in velocity space is still effectively de-
fined by the dynamics of two variables for which we take
�g, y�. One possible implementation of this setup would
be when the disk rotates with k as an angular velocity. By
keeping y perpendicular to the disk fixed and allowing the
exchange of energy via only the tangent component, the
collision process effectively reduces to one of two colliding
masses on a line. Requiring energy and momentum con-
servation yields for the scattering rules a two-dimensional
piecewise linear map. As a drastic simplification of such a
model, but keeping important dynamical properties as time
reversibility, a deterministic dynamics, and the dynamical
instability induced by the disk geometry, we choose here
our collision rules according to a simple baker’s map [3,4].
We apply it on the respective Birkhoff coordinate of the in-
going angle, sinjgj, as its x coordinate and on y�

p
2E in

the range of 0 # y #
p

2E as its y coordinate. To ensure
that the system is time reversible, the forward baker acts
if 0 # g # p�2, and its inverse if 2p�2 # g , 0. The
angle g0 always goes to the respective other side of the
normal, as shown in Fig. 1(b). For g $ 0 this gives
M�sinjgj, y�
p

2E� �

(
�2 sinjgj, y�

p
8E � sinjgj # 0.5

�2 sinjgj 2 1, �y�
p

2E 1 1��2� , sinjgj . 0.5
(1)
and vice versa for g , 0. As for k0, it is obtained from
energy conservation. To avoid any symmetry breaking in-
duced by this combination of forward and backward
baker, we alternate their application in g with respect
to the position b of the colliding particle on the cir-
cumference [22].

The above setting leads to a well-defined scattering
system with three degrees of freedom. As it stands,
however, it does not satisfy the microcanonical distri-
bution in the absence of a field, since the energy is not
equipartitioned between all degrees of freedom. We
incorporate this essential feature by amending the micro-
scopic scattering rules, as given by the baker, in the most
straightforward way. As a starting point, we calculate the
projection of the microcanonical density r�yx , yy , k� �
cd�2E 2 y2

x 2 y2
y 2 k2� onto y, where c is a con-

stant to be fixed by normalization yielding r�y� �
y�

p
2E�2E 2 y2�. To achieve this long-time limiting

density in our model we proceed as follows: Let rmap�y�
be the probability density for y at the moment of the
collision corresponding to a respective Poincaré surface
of section, in contrast to the probability density of the
time-continuous system rcont�y�. During the free flight
the particle cannot change its velocity, and thus rmap�y�
and rcont�y� are simply related via the average time the
particle travels between two collisions with velocity y.
This average time plays the role of a weighting factor
leading to

rcont�y� �
c
y

rmap�y� . (2)

We want that the map which determines the colli-
sion rules generates an invariant velocity distribution
r�

cont�y� � r�y�. This leads to
r�
map�y� �

2y2

pE
p

2E 2 y2
. (3)

However, the invariant density of the baker’s map is sim-
ply r��xB, yB� � 1. Therefore, we define a conjugate map
which produces the desired density by including a transfor-
mation yB � Y �y�, where yB is the actual baker variable.
This transformation must be continuous and invertible, as
defined by conservation of probability,

r�� yB�jdyBj � rmap�y�jdyj . (4)

Y �y� can then be computed to

Y �y� � 2
y

pE

p
2E 2 y2 1

2
p

arcsin
y

p
2E

, (5)

with 0 # y #
p

2E, 0 # Y �y� # 1. If we write xB �
X�g� � sinjgj, the full collision rules read

�g0, y0� � �X21, Y21� ± M ± �X, Y � . (6)

Computer simulations carried out along the lines of
Refs. [6,20] confirm that a Lorentz gas with these col-
lision rules is microcanonical in both its position and
momentum coordinates in phase space.

We now inquire how the above ideas can be used to
mimic the interaction of a moving particle with a ther-
mal reservoir. For this purpose we associate arbitrarily
many degrees of freedom to the disk which could be re-
lated, e.g., to different lattice modes in a crystal as mecha-
nisms for dissipating energy from a colliding particle. For
the sake of simplicity we do not distinguish here between
all the individual velocities in the reservoir. Instead, we
pretend that the particle interacts instantaneously with all
�d 2 2� velocity components kj of the reservoir via an ab-

solute reservoir velocity k �
q

k2
1 1 k2

2 1 · · · 1 k2
d22 to
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which we identify the disk velocity. To ensure that the
projected densities of the accessible variables �yx , yy , k�
be generated from the microcanonical distribution of the
full d-dimensional system, we need the projection of the
microcanonical distribution rd�yx , yy , k1, k2, . . . , kd22� �
cd�2E 2 y2

x 2 y2
y 2

Pd22
j�1 k2

j � onto rd�y�, which can be
calculated for d . 2 to

rd�y� � �d 2 2� �2E�2�d22��2y�2E 2 y2��d24��2. (7)

Using the equipartition theorem E�d � T�2 with tem-
perature T and Boltzmann constant kB � 1, and taking the
limit d ! `, this expression reduces to the Maxwellian
distribution r`�y� � y�T exp�2y2��2T ��. Choosing
r

�
cont,d�y� � rd�y� according to Eq. (7) and using Eq. (2)

determines the corresponding density r
�
map,d�y� of the

Poincaré section. The transformation Yd�y� which yields
r

�
map,d�y� can then be calculated from Eq. (4). In the

limit of d ! `, Y`�y� reads

Y`�y� � 2

s
2

pT
ye2y2��2T � 1 erf

µ
y

p
2T

∂
, (8)

with 0 # y # `, 0 # Y �y� # 1. Computer simulations
confirm that a periodic Lorentz gas with these collision
rules approaches projected densities in �yx , yy , k� which
are identical to the ones obtained from a uniform dis-
tribution on the energy shell in �yx , yy , k1, k2, . . . , kd22�.
The temperature T of the equilibrium system is unambigu-
ously defined via equipartitioning of energy as it enters
into Eq. (8). In Ref. [23] it is shown how these scattering
rules can alternatively be derived from stochastic boundary
conditions.

We are now ready to set up a nonequilibrium situation by
taking the system as defined in equilibrium for d ! ` and
by switching on an electric field parallel to the x axis. This
field affects the velocity of the moving particle. However,
since the particle is a small subsystem in a large reservoir,
and since we have built in a mechanism of equipartitioning
of energy, one expects that the particle is still getting ther-
malized by our scattering rules at a temperature determined
by the temperature T of the reservoir, thereby approach-
ing NSS with kinetic energy and conductivity fluctuating
around constant mean values. This is fully confirmed by
computer simulations. That such NSS exist according to
our scattering mechanism is the central result of our Letter.

In the following, we illustrate some important char-
acteristics of this state as deduced from computer simu-
lations. Figure 2 demonstrates that for small enough
field strength and high enough temperature the energy of
the system is still approximately equipartitioned between
��y2	 2 �yx	2� and the reservoir. Figure 3 depicts the con-
ductivity s�´� � �yx	�´ with respect to the field strength
´. The strong decrease of s�´� indicates that the system is
in a highly nonlinear regime. Ohm’s law may be suspected
to hold only at very small field strengths ´ ø 0.1 [13];
however, in this regime reliable numerical results are diffi-
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FIG. 2. Relation between average velocity squared in the
frame moving with the current, �y2	 2 �yx	2, and temperature T
for the infinite dimensional model. Equipartitioning of energy
would imply �y2	 2 �yx	2 � 2T . The numerical error is less
than the size of the symbols.

cult to get. The broadest fluctuations on smaller scales are
beyond numerical uncertainties and may be reminiscent
of strong irregularities as they occur in the conductivity
of the Gaussian Lorentz gas [6,18–21]. Figures 4(a) and
4(b) show Poincaré plots of �b, sin g� at the collisions.
In Fig. 4(b) the deterministic baker has been replaced by
a random number generator thus mimicking stochastic
boundaries. Figure 4(a) indicates the existence of a
fractal attractor, analogous to the one found in the Gauss-
ian Lorentz gas [6,17,20], whereas in Fig. 4(b) the fractal
structure is lost due to the stochasticity of the boun-
dary conditions. Figure 4(c) should be compared to the
analogous diagram obtained from the Lorentz gas with
a Gaussian thermostat [5,19]. In the case of our model,
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FIG. 3. Conductivity s�´� as it varies with field strength ´.
The curve consists of 90 data points; the numerical error is
equal to the size of the symbols.
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FIG. 4. (a),(b) Poincaré section of � b, sing� defined in Fig. 1
at the moment of the collision for field strength ´ � 1. In (a)
a baker’s map has been used for defining the collisions; in (b)
the baker’s has been replaced by a random number generator.
(c) Poincaré section of b at the moment of the collision for
varying field strength ´.

there is no indication of a pruning-induced “bifurcation
scenario” or an ergodic breakdown as in the Gaussian
version. The same holds for other choices of Poincaré
sections in phase space.

Having the novel thermostating mechanism at hand de-
scribed in this Letter, one can elaborate on further principal
features of NSS like entropy production and Lyapunov
exponents. In particular, one can inquire about the
universality of relations between these quantities as found
for specific thermostats. On the basis of this Letter, these
issues have been studied in recent work [23–26]: For a
system of hard disks under temperature gradient and shear
thermostated by our method, Ref. [23] shows that, in
general, no identity between phase space contraction and
entropy production exists. As a consequence, there is
no general relation between transport coefficients and
Lyapunov exponents. Furthermore, no conjugate pairing
rule between Lyapunov exponents holds for systems
thermostated by deterministic scattering [26]. A de-
tailed comparison of our thermostat to different types of
Nosé-Hoover thermostats in the driven periodic Lorentz
gas revealed different kinds of bifurcation scenarios
depending on the specific way of thermostating [24,25].
To obtain universal characterizations of NSS generated
by different thermostating schemes thus remains an open
question.
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