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Thermostating by Deterministic Scattering:
The Periodic Lorentz Gas
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We present a novel mechanism for thermalizing a system of particles in equi-
librium and nonequilibrium situations, based on specifically modeling energy
transfer at the boundaries via a microscopic collision process. We apply our
method to the periodic Lorentz gas, where a point particle moves diffusively
through an ensemble of hard disks arranged on a triangular lattice. First, colli-
sion rules are defined for this system in thermal equilibrium. They determine the
velocity of the moving particle such that the system is deterministic, time-revers-
ible, and microcanonical. These collision rules can systematically be adapted to
the case where one associates arbitrarily many degrees of freedom to the disk,
which here acts as a boundary. Subsequently, the system is investigated in non-
equilibrium situations by applying an external field. We show that in the limit
where the disk is endowed by infinitely many degrees of freedom it acts as a
thermal reservoir yielding a well-defined nonequilibrium steady state. The
characteristic properties of this state, as obtained from computer simulations,
are finally compared to those of the so-called Gaussian thermostated driven
Lorentz gas.

KEY WORDS: Nonequilibrium steady state; deterministic and time-revers-
ible dynamics; energy transfer at the boundary; Lorentz gas.

I. INTRODUCTION

The investigation of transport properties of many-particle systems in non-
equilibrium situations generally requires thermostats which remove excess
energy to ensure the existence of nonequilibrium steady states with constant,
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or on average constant, energy.(1�5) Hoover, Evans, Nose� and others
developed methods of thermostating by introducing a momentum-depen-
dent friction coefficient into the microscopic equations of motion, modeling
the interaction of particles with a thermal reservoir.(3, 4, 6�11) These methods
are deterministic and time-reversible, in contrast to stochastic thermo-
stats.(2, 12, 13) In this paper we propose and analyze in detail an alternative
deterministic thermostat, based on including energy transfer for a micro-
scopic collision process between the moving particles and the boundaries
instead of using a momentum-dependent friction coefficient. A short account
of the main idea was reported in ref. 14.

The two basic versions of a conventional deterministic thermostat are
the Gaussian thermostat and the Nose� �Hoover thermostat. The Gaussian
thermostat(6�8) creates a microcanonical ensemble for the velocity com-
ponents in equilibrium and keeps the total energy (isoenergetic), or the
kinetic energy (isokinetic), constant in nonequilibrium. The Nose� �Hoover
thermostat(9�11) creates a canonical ensemble in thermal equilibrium and
keeps the energy on average constant in nonequilibrium.

Though the microscopic equations of deterministic thermostated
systems are time-reversible the macroscopic dynamics is irreversible in
nonequilibrium leading to momentum and energy fluxes with well-defined
transport coefficients.(6, 7, 15�19) These properties are intimately related to a
contraction of the phase space onto a fractal attractor.(16, 19�23) In contrast,
purely stochastic thermostats are expected to typically lead to a smooth
phase space density in nonequilibrium.(13) In agreement with the phase
space contraction, it has been found that the sum of the Lyapunov
exponents is negative in deterministic thermostated systems. It has been
argued by many authors that the rate of phase space contraction is related
to the thermodynamic entropy production.(17, 24�32) Based on this observa-
tion relations between the sum of the Lyapunov exponents and the corre-
sponding transport coefficient have been derived.(16, 25, 27, 28, 33�36) Therefore,
deterministic thermostats provide an important approach to modeling non-
equilibrium steady states and establishing interesting links between
dynamical system theory and statistical mechanics.(3, 4, 37�40)

On the other hand, conventional thermostats are based on a drastic
modification of the microscopic equations of motion by including momen-
tum-dependent friction coefficients, which implies that the microscopic equa-
tions cannot be Hamiltonian anymore in their usual physical coordinates.
Although there exist methods to relate them to generalized Hamiltonian
systems by noncanonical transformations(5, 41�44) the question still remains
whether the results obtained from these deterministic thermostats provide
general characteristics of nonequilibrium steady states, or whether they
depend on this particular way of thermostating.(38, 39)
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As an alternative, a specific mechanism to simulate a steady shear flow
without using a thermostat of the above kind has been studied in ref. 30.
Here, the collision of a particle with a wall is described by rules which
change the scattering angle but not the absolute value of the velocity of the
particle. Open systems with fixed concentration gradients at the boundaries
have been the subject of another approach to create a nonequilibrium
steady state, see ref. 45 and further references therein. A possible link of this
approach to thermostated systems is discussed in ref. 29.

A simple deterministic one-particle system in which there is evident
need of thermostating is the field driven periodic Lorentz gas. We recall
that the original Lorentz gas model consists of a system of randomly dis-
tributed hard disks and a particle that moves freely between successive
elastic collisions with the disks.(46) Later, a periodic configuration of disks
onto a triangular lattice known as the periodic Lorentz gas(47) has been
introduced, and serves as a standard model in the field of chaos and trans-
port, see, e.g., refs. 37�40, 45 and further references therein. In case of the
driven Lorentz gas, an external electric field drives the system into non-
equlibrium by accelerating the moving particle while pumping at the same
time energy into the system through Joule heating. A number of authors
developed mechanisms for removing energy from this system through a
Gaussian isokinetic thermostat, which creates a nonequilibrium steady
state with constant energy of the particle.(16, 27, 28, 34�36, 48�51) This thermo-
stated one-particle system shows the same characteristics in nonequilibrium
as other many-particle systems: the phase space density contracts onto a
fractal attractor, (16, 48�50) and the sum of Lyapunov exponents is negative.
Relations were derived between this sum of Lyapunov exponents, the conduc-
tivity and the irreversible entropy production of this system.(27, 28, 34�36, 49, 51)

We note that a model almost identical to the driven periodic Lorentz gas,
except for some geometric restrictions, is the Galton board, which has been
invented in 1873 to study probability distributions.(23)

In the present paper we introduce an alternative method of deter-
ministic thermostating which is free of addition of new terms in the equa-
tions of motion, and illustrate it on the periodic Lorentz gas. The paper is
organized as follows. In Section II we introduce our model in equilibrium.
We define collision rules for the particle which change its velocity at a colli-
sion with a scatterer such that the dynamics of the system is deterministic,
time-reversible, and yields the microcanonical density in equilibrium. In
Section III we numerically investigate the system in nonequilibrium by
switching on the external field. The characteristic features of the resulting
nonequilibrium steady state for our model are discussed explicitly, espe-
cially in comparison to the Gaussian thermostated periodic Lorentz gas.
A summary with main conclusions is given in Section IV.
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II. THE MODEL AND ITS EQUILIBRIUM PROPERTIES

Owing to the periodicity of the lattice, it will be sufficient to study the
dynamics in one Lorentz gas cell with periodic boundary conditions, see
Fig. 1(a). As the radius of the disk we take r=1. For the spacing between
two neighboring disks we choose w&0.2361, as is standard in the literature
to ensure that a diffusion coefficient exists.(16) The variables intervening in
the dynamics are defined in Fig. 1(b): ; is the angular coordinate of the
point at which the particle collides with the disk, # is the angle of incidence
at this point, and : is the angle of flight of the particle. The particle has two
velocity components, v� =(vx , vy). To establish the energy transfer between
particle and disk we assign to the disk an internal degree of freedom k.
Thus, in total our model has three degrees of freedom. To proceed further
we now need to introduce specific collision rules for the moving particle,
which map v and # onto v$ and #$. Conservation of energy between particle
and disk according to 2E=v2+k2=v$2+k$2 then yields the velocity k$
onto the disk after a collision.

A. Rotating Disk Model

We first present a model based on a very simple physical mechanism
for a possible energy transfer between particle and disk at a collision. This
model has the required properties only in a limited parameter range, but
it contains some basic ideas for the formulation of our thermostating
mechanism, which we will introduce in full detail afterwards.

The position of the disk is held fixed. The velocity of the moving par-
ticle at a collision can be split into a normal component vn and into a

Fig. 1. (a) Elementary cell of the periodic Lorentz gas on a triangular lattice. (b) Definition
of the relevant variables to describe the collision process.
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tangent component vt . We now interpret the internal degree of freedom k
of the disk as a rotational velocity. In a simple approximation we assume
that a mass mk representing the disk moves with velocity k on the disk
circumference and that whenever the particle of mass m collides with the
disk it exchanges kinetic energy with the mass mk . Assuming that vn is
elastically reflected reduces the problem of energy transfer between particle
and disk to the classical problem of two elastically colliding masses on a
line and allows us to define the transfer of kinetic energy between vt and
k by energy and momentum conservation. The full collision rules thus read

v$n=&vn

v$t=
(m&mk) vt+2mk k

m+mk

k$=
(mk&m) k+2mvt

m+mk

Computer simulations show that this model yields a microcanonical prob-
ability density for a total kinetic energy of E=0.5, m=mk=1 and large
spacings between two neighboring disks w�2.0. However, by decreasing w
the probability density starts to deviate from the microcanonical density
because the particle gets more and more trapped in parts of the Lorentz
gas cell. By increasing the mass of the disk mk deviations from the
microcanonical density appear already for larger w.

Thus, only for a certain choice of parameters is this simple approach
leading to the desired result, which is that the system is microcanonical and
shows equipartitioning of energy in all degrees of freedom, while, in
general, the dynamics is apparently more complicated. In the following we
want to investigate whether by introducing more generic collision rules we
can achieve that the dynamics is microcanonical for any choice of respec-
tive parameters. Specifically the fact that the energy and momentum con-
servation law is a linear two-dimensional map of the form (v$t , k$)= f (vt , k)
motivates us to define the collision process by a simple, chaotic two-dimen-
sional map as discussed amply in the next section. More details of the
rotating disk model will be reported elsewhere.(52)

B. Modeling the Collision Process by a Two-Dimensional Map

1. The Baker Map

We choose the well-known baker map, (37) which we apply to the
variables (xb , yb)=(sin |#| , v�- 2E ). Here xb=sin |#| is the Birkhoff
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coordinate2 of #, and yb=v�- 2E is the absolute value of the velocity of the
particle scaled by the factor 1�- 2E such that 0� yb�1. The change of
these variables at a collision to (x$b, y$b)=(sin |#$|, v$�- 2E ) (see Fig. 1) is
thus given by

(x$b, y$b)=M(xb , yb)={(2xb , yb �2),
(2xb&1, ( yb+1)�2),

xb�0.5
xb>0.5

(1)

k$ is then obtained from energy conservation. Since k is not explicitly con-
tained anymore in the collision rules given by Eq. (1), one can argue that
the detailed dynamics of k is no longer relevant for the moving particle. In
particular, k need no more be associated to a rotational degree of freedom.
Based on our general formulation of the collision rules its physical inter-
pretation as an internal degree of freedom is now more flexible. For example,
one may think of k as being related to some kind of lattice modes.

To ensure that the system is time-reversible, we let the forward baker
act if 0<#�?�2, and its inverse if &?�2�#<0. The angle #$ always goes
to the respective other side of the normal, that means #$ has the opposite
sign of #, as shown in Fig. 1. For #=0 the particle is elastically reflected.3

To avoid a symmetry breaking in a possible nonequilibrium situation we
alternate the assignment of the forward and backward baker, that is, if
int(; } 108) is even (odd) we take the forward (backward) baker for #>0
and vice versa the corresponding backward (forward) baker for #<0.
Ideally, the alternation should be done in infinitely fine steps, which is not
feasible in computer simulations.

2. Relation Between Map Density and Time-Continuous Density

By investigating the dynamics of the collision process through a baker
map, one is actually considering the Poincare� section of the velocity of the
particle at the moment of the collision. We denote the corresponding prob-
ability density of the moving particle as the map density *map(v). *map(v)
can be written in discretized form as *map(vi )=(..., cvi

�co ,...), where cvi
is the
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2 Note that the Poincare� or Birkhoff mapping between two collisions is area preserving
precisely in these Birkhoff coordinates (;, sin #), corresponding to a probability density of
*(;, sin #)#1.(45)

3 To illustrate the property of time-reversibility let, e.g., (sin |#|, v�- 2E ) at a collision be such
that 0<#�?�2. It is then (sin |#$| , v$�- 2E )=M(sin |#| , v�- 2E ). Now we reverse the direc-
tion of time yielding as an ingoing angle &?�2�#$<0. By applying the collision rules again
we get (sin |#"|, v"�- 2E )=M&1(sin |#$|, v$�- 2E ) thus leading to (sin |#"|, v"�- 2E )=

M&1 b M(sin |#|, v�- 2E ), which means that after time-reversal we are perfectly getting back
to the initial conditions, as required by the definition of time-reversibility.



number of collisions after which the particle has the velocity vi and co is the
total number of collisions.

One may establish a relation between *map(v) and the time-continuous
probability density *(v), where v is measured at any time interval dt. This
is the relevant quantity to check for a microcanonical distribution. Notice
that we can write in the same way as before *(vi )=(..., tvi

�t,...), where tvi
is

the total time during which the particle has the velocity vi , and t is the
total time.

We introduce now the mean time of flight between two collisions (t)
by

(t)=
t

co
(2)

and the mean time of flight between two collisions (t) vi
when the particle

has the velocity vi by

(t) vi
=

tvi

cvi

=
(s)
v i

(3)

(s) is the collision length, which is expected to be independent of v. To
compute a value of *(vi ), Eq. (2) and Eq. (3) can be combined to

tvi

t
=

(s)
(t) vi

cvi

c0

(4)

Equation (4) is valid for all i implying that we get the following relation
between the time-continuous density *(v) and the map density *map(v),

*(v)=
*map(v)

v
(s)
(t)

=const.
*map(v)

v
(5)

where the constant is determined by normalization. By assuming that the
coupling of the collision rules of Eq. (1) to the specific geometry of the
Lorentz gas does not yield an invariant map density being different from
the one of the baker map, we can now calculate *(v) for our model: Insert-
ing *baker#1 in Eq. (5) results in *(v)=const.�v. This expression is not
normalizable and does not correspond to the correct result related to a
microcanonical density. The way out of this difficulty is presented in the
next section.
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3. Getting a Microcanonical Density

Having shown in the last subsection that the collision rules as
described by the baker map are not sufficient to get a microcanonical prob-
ability density, we now amend the definition of the collision rules. We do
this by including an additional transformation Y which is constructed in
the following way: Our system has three degrees of freedom (vx , vy , k),
and the total energy E is conserved, 2E=v2

x+v2
y+k2. The dynamics is

microcanonical if the probability density is equidistributed on a three-
dimensional sphere,

*3(vx , vy , k)=
1

8?E
$(2E&v2

x&v2
y&k2) (6)

In the Appendix we calculate the reduced density for one or two degrees
of freedom of a d-dimensional microcanonical system. For d=3, Eq. (A.11)
and Eq. (A.17) lead to

*3(vx)=
1

2 - 2E
(7)

*3(v)=
v

- 2E(2E&v2)
(8)

With Eq. (5) the map density corresponding to Eq. (8) reads

*map(v)=
2

E?
v2

- 2E&v2
(9)

To get the reduced microcanonical probability densities given by Eqs. (7)
and (8) for the velocity of the particle in our model we thus have to
redefine the baker variable yb . Conservation of probability

*baker( yb) dyb=*map(v) dv (10)

yields

yb=Y3(v)=&
v

?E
- 2E&v2+

2
?

arcsin
v

- 2E
(11)

with 0�v�- 2E , 0�Y3(v)�1. The inverse transformation v=Y &1
3 ( yb)

exists because Y3 is monotonous. With xb=X(#)=sin |#|, we can sum-
marize the collision rules to

(#$, v$)=(X &1, Y &1
3 ) b M b (X(#), Y3(v)) (12)
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Fig. 2. Probability densities for d=3 at E=0.5.

k$ being obtained from energy conservation, k$=- 2E&v$2. Figure 2
shows the probability densities for the three-dimensional system resulting
from numerical simulations at E=0.5. *3(;)=*3(:)=1�2? are uniform as
expected. *3(v), *3(vx) and *3(vy) are in exact agreement with the reduced
microcanonical densities, that is, *3(v) corresponds to Eq. (8) and *3(vx),
*3(vy) correspond to Eq. (7). Moreover, numerical simulations show that
the trajectory of the particle covers the Lorentz gas cell uniformly in con-
figuration space. Beside the equidistribution of *3(;), this is a further check
of the ergodic behavior of our system.

C. Arbitrarily Many Degrees of Freedom on the Disk

We have considered an energy transfer between particle and disk for
the case when the disk is equipped with one degree of freedom. We now
further modify the dynamics by pretending that the disk has arbitrarily
many degrees of freedom k9 =(k1 ,..., kd&2), entailing that in total the system
has d degrees of freedom. We do not deal with the individual components
of k9 , because the detailed dynamics of k9 is not relevant for our purpose.
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Instead, we consider only the absolute value |k9 |. The description of our
model as a dynamical system is therefore still based on having only three
relevant variables for the velocities, whereas the corresponding statistical
physical situation involves a microcanonical probability density of a
d-dimensional system, and thus implicitly mimics the situation of having d
physical degrees of freedom.

The consideration of such additional degrees of freedom requires a
modification of the collision rules to get correctly the microcanonical prob-
ability density corresponding to this d-dimensional system. In particular,
we have to redefine the transformation Y, which can be done by the same
method as for the three dimensional system above: First, we calculate the
reduced densities *d (vx) and *d (v) of the d-dimensional energy hyper-
sphere. They are given by Eq. (A.11) and Eq. (A.17) in the Appendix,

*d (vx)=
1 (d�2)

- ?1 ((d&1)�2)

1
(2E ) (d&2)�2 (2E&v2

x) (d&3)�2 (13)

and

*d (v)=
d&2

(2E ) (d&2)�2 v(2E&v2) (d&4)�2 (14)

Inserting Eq. (14) into Eq. (5) leads to the corresponding map density,
and with Eq. (10) we can calculate Yd . For arbitrary even d it is given by

Yd=
21 ((d+1)�2)

1 ( 3
2) 1 ((d&2)�2)(2E ) (d&1)�2 (d&2)

_\&v(2E&v2)(d&2)�2+ :
(d&2)�2

i=0
\(d&2)�2

i + (&1)i

2i+1
v2i+1(2E)[(d&2)�2]&i+

(15)

For all d this expression is monotonous, and thus its inverse always exists.
For odd d>3, Yd can be calculated in the same way, but cannot be written
down in a closed form. Inserting Eq. (15) in Eq. (12) yields the full collision
rules of our model for arbitrary even d. For different d they only differ in
the form of the transformation Yd .

|k9 $| is obtained from energy conservation. Figure 3 shows computer
simulation results of *d (v) and *d (vx) for d=3, 4 and 6. They are in exact
agreement with Eqs. (13) and (14).

Equation (13) was already written by Maxwell and Boltzmann, (53, 54)

however, for their calculation they took a different starting point: a set of
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Fig. 3. Probability densities for d=3 (solid curve), 4 (dashed curve) and 6 (long dashed
curve) at E=0.5.

n particles, any particle with two degrees of freedom, is moving according
to Hamilton's equations of motion. Using properties of the canonical trans-
formation they derived the reduced microcanonical probability densities
Eqs. (13) and (14). Notice that starting the calculation of the reduced
densities according to our reasoning, but including also momentum conser-
vation, reduces the effort of the calculation drastically, see ref. 55.

D. The Disk as a Thermal Reservoir

We now consider the limit d � �. Using equipartitioning of energy
E=dT�2 with kB=1, Eq. (A.11) reduces to Eq. (A.14),

*�(vx)=
1

- 2?T
e&v 2

x�2T (16)

which is the canonical distribution for the moving particle. The disk now
acts as a thermal reservoir, yet, the whole system remains microcanonical.
In the same way the limiting form of Eq. (A.17), see Eq. (A.18), reads

*�(v)=
1
T

ve&v 2�2T (17)

As for the transformation Y� , it is given by

Y�(v)=&� 2
?T

ve&v 2�2T+erf \ v

- 2T + (18)
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As before, Y� is monotonous, and thus the inverse Y &1
� exists. Inserting

Eq. (18) in Eq. (12) yields the full collision rules of our model in the limit
d � �. One can easily check that these collision rules are still completely
time-reversible. That this is not in contradiction to modeling a thermal
reservoir is a consequence of the special functional form of Y� . Notice that
in all these expressions the temperature T appears instead of the previous
total energy of the system and serves as a free parameter.

Figure 4 shows the probability densities for d � � resulting from com-
puter simulations: *�(;) and *�(:) are uniform, as expected. *�(v) is in
exact agreement with Eq. (17) and *�(vx) and *�(vy) are in exact agree-
ment with Eq. (16).

We note that combining Eq. (17) with the respective equilibrium dis-
tribution for the angle of incidence *�(#)=cos # and applying Eq. (5)
yields a map density *map(#, v) in local polar coordinates which is identical
to the stochastic boundary conditions as given, e.g., in ref. 30. This relation
of our method to stochastic boundary conditions is discussed in more
detail in ref. 56, where it has been used as an alternative starting point to
define the deterministic and time-reversible thermostat constructed above.

Fig. 4. Probability densities for d � � at T=0.5.
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III. NONEQUILIBRIUM, STEADY STATES, AND TRANSPORT
UNDER AN EXTERNAL ELECTRIC FIELD

In the previous section we have extended the dynamics of a periodic
Lorentz gas in equilibrium by defining new collision rules for the particle
allowing for an energy transfer between particle and disk at each collision
such that the dynamics is deterministic, time reversible, and yields a
microcanonical probability density. In this section we analyze the behavior
of the model under nonequilibrium conditions, associated with the presence
of an external electric field = applied parallel to the x-axis. Taking the colli-
sion rules as defined in equilibrium, we study the structure of *(v) in non-
equilibrium and the associated transport properties.

Figure 5 shows the time evolution of twice the average kinetic energy,
(v2) , for an ensemble of moving particles and for different d. As can be
seen, the particle energy grows continuously with time for finite d, but
fluctuates around a constant mean value as d � �. This can be understood
as follows. In equilibrium the energy transfer ensures equipartitioning of
energy between all degrees of freedom. In the presence of a field the energy
of the particle grows during the free flight, and as a consequence the par-
ticle has on the average a surplus of energy at a collision in comparison to
the disk. The energy transfer then counteracts this surplus of energy of the
particle, because equipartitioning of energy is still built into the collision
rules. Since there is no other source of dissipation in our model than the
transfer of energy onto the disk, the energy of the particle must eventually

Fig. 5. Time series of the ensemble average (v2) as a function of time t for different d.
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grow for finite dimension, while the growth rate decreases by increasing d,
because by increasing d more energy can be stored onto the disk. In the
limit of d � � we obtain a constant average kinetic energy, since then the
disk acts as a thermal reservoir with infinitely many degrees of freedom,
which means that our system is thermostated. Still, the system is time-
reversible.

In the following we investigate the nonequilibrium steady state of the
model for d � � in more detail. The mean kinetic energy in the comoving
frame (v2)&(vx) 2 of the moving particle in comparison to the one
obtained from the equipartition theorem, (v2)&(vx) 2=2T, is presented
in Fig. 6. For small =, or for large temperatures, the curves approach the
equipartitioning values. However, for general = and T there is a systematic
difference between the measured temperature in the simulations and the
parametric temperature as it appears in the collision rules. The reason for
this difference can be found in our approach to define the collision rules in
an equilibrium situation: First, Eq. (5), which is one step in the derivation
of the transformation Y� , is based on having a constant particle velocity
between two collisions, which is not correct anymore by applying an elec-
tric field. And second, we have defined our collision rules only with respect
to a canonical probability density in equilibrium, since we do not know the
correct nonequilibrium density for the periodic Lorentz gas. As a conse-
quence, the parametric temperature of the disk, which refers to an equi-
librium distribution, and the measured kinetic temperature of the moving

Fig. 6. Relation between average velocity squared in the frame moving with the current,
(v2) &(vx) 2, and parametric temperature T for the infinite dimensional model. Equiparti-
tioning of energy would imply (v2) &(vx) 2=2T. The numerical uncertainty of each point is
less the size of the symbols.

1352 Rateitschak et al.



File: 822J 254815 . By:XX . Date:05:05:00 . Time:07:48 LOP8M. V8.B. Page 01:01
Codes: 1848 Signs: 1437 . Length: 44 pic 2 pts, 186 mm

particle in nonequilibrium do not agree. One way out of this problem
would be to redefine a proper kinetic temperature for the reservoir. This
can in fact be done by employing the average value of the variances of the
in- and outgoing map densities, as is discussed in detail in ref. 56. With
respect to such a new temperature definition for the reservoir, we would
expect to have equipartitioning of energy at least for sufficiently small field
strengths when the temperature is sufficiently high. Figure 6 shows that for
low T the variance approaches finite values not equal to zero for non-
vanishing field strengths. The reason for this behavior is that between colli-
sions the electric field accelerates the particle, whereas the thermostat acts
only at the collisions. Thus, we may expect that in this region there will
always remain a discrepancy between the measured temperatures of particle
and reservoir.

Figure 7 depicts the probability densities for d � � and ==0.5. The
external field leads to strong deviations from the equilibrium probability
densities: On a very coarse scale, *�(;) shows the existence of a global
maximum opposite to the field direction at ;=?. However, there appear
six strong pronounced local maxima which are related to the specific
geometry of our model. Correspondingly, *�(:) shows a global maximum

Fig. 7. Probability densities for d � �, ==0.5 at T=0.5.
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Fig. 8. Probability densities for d � � and ==0 (solid curve), 0.5 (dashed curve) and 1
(long dashed curve) at T=0.5.

parallel to the field direction at :=0, but there also exist four local max-
ima on a finer scale. *�(v), *�(vx) and *�(vy) are also clearly modified by
the field, while remaining close to the functional form of the equilibrium
probability densities. Especially, *�(vx) is shifted to positive vx-values. This
indicates the existence of a current parallel to the field direction.

The changes in the probability densities by increasing the field strength
in reference to the equilibrium solutions are presented in Fig. 8. The mean
value of *�(vx) grows with =, whereas *�(vy) remains symmetric around 0.

The conductivity _=(vx)�=, shown in Fig. 9, is a globally decreasing
function of =. This demonstrates that for the field strengths considered in
the figure we are already in a highly nonlinear regime. We furthermore
note that there exist irregularities in _ on a finer scale, which are beyond
our numerical error estimates and indicate a deviation of _ from a simple
functional dependence on =. This curve should qualitatively be compared
to the conductivity as obtained for the Gaussian thermostated periodic
Lorentz gas4:(16, 36, 49) Fig. 2 in ref. 49 shows a globally decreasing conduc-
tivity on a coarse scale as well, however, its irregularities on a fine scale are
much more pronounced and clearly nonmonotonous in =. Whether the
irregularities in our Fig. 9 are in fact monotonous or nonmonotonous on
a finer scale cannot be decided on the basis of our numerical data. Unfor-
tunately, it is not clear how to compare the conductivities of these two
models quantitatively, since the choice of temperature in the Gaussian
model is somewhat ambiguous by a factor of two.(27, 28)

To understand why no linear response is seen in Fig. 9, we attempt an
estimate of the expected range of validity of the linear response regime by
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Fig. 9. Conductivity _(=) as it varies with field strength = for T=0.5. The curve consists of
90 data points, the numerical uncertainty of each point is less the size of the symbols.

applying the simple heuristic argument suggested, e.g., in refs. 28, 37 and
further references therein. The reasoning given in these references may
actually be considered as the standard response to the famous van Kampen
objection against linear response,(57) since it amounts to properly modify-
ing his original argument. For the periodic Lorentz gas it is stipulated that
for having linear response it is sufficient for the field strength to fulfill
=<<2�{2

coll , where {coll is the average mean-free time between collisions. We
have computed this bound for the Gaussian thermostated Lorentz gas as
well as for our model. For the Gaussian thermostat, {coll has already been
obtained from computer simulations at different densities of scatterers in
ref. 36. For the density corresponding to the gap size w=0.2361 the upper
bound for linear response is then approximately =<<5.6. However, numer-
ical results for the conductivity indicate no linear response down to
=&0.05.(49) For a higher density corresponding to w=0.129, the conduc-
tivity in Fig. 9 of ref. 36 and the respective data values may be compatible
with a linear response-like behavior at most up to a field strength of
approximately =r0.9. Here, an upper bound for linear response yields
=<<13. Finally, for w=0.0076 the respective upper bound is =<<70. The
corresponding conductivity appears to be well-behaved up to =&2.5,
although for this very high density the numerical values are not very
precise. For our model, we calculated as an upper bound =<<4.45,
however, down to a field strength of ==0.05 we cannot detect any linear
response.
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We conclude that in the light of the numerical simulations the bound
for linear response discussed above does not appear to serve as a very
reliable reference for the driven periodic Lorentz gas. Other restrictions,
which may make this bound more precise, have been discussed in ref. 28,
without leading, however, to an improved quantitative formulation. Thus,
although the existence of a linear response has been proven for the Gaussian
thermostated periodic Lorentz gas with an external field in refs. 27 and 28,
having a reasonable estimate for the range of validity of linear response in
this system remains, to our knowledge, an open question. In particular, we
note that up to now for smaller densities like w=0.2361 such a regime has
not been detected in computer simulations. Analogous problems have
already been encountered in more simple low-dimensional models of chaotic
transport. These are so-called multibaker maps, which are believed to
represent certain essential dynamical features of Lorentz gas models, see,
e.g., ref. 45, and associated one-dimensional maps. The currents in such
systems turned out to be fractal functions in the bias, (58, 59) implying also
the non-existence of a regime of linear response down to extremely small
field strengths. Such properties may be related to the low dimensionality of
these systems, which is shared by the periodic Lorentz gas.

Figure 10(a) shows the Poincare� section of (sin(#), ;) at the moment
of the collision obtained for our model with the baker map. It displays
a highly variable phase space density exhibiting a structure which is
qualitatively analogous to the one of the fractal attractor found for the
Gaussian thermostated Lorentz gas.(16, 21, 23, 36) The existence of such an
attractor for our model is due to the fact that the phase space variables in
Fig. 10(a) only reflect the dissipative dynamics of the moving particle,
whereas the corresponding complementary dynamics of the reservoir is
completely left out. However, the dynamics of the single moving particle,
which represents here a subsystem projected out of the full system (particle
plus reservoir), is certainly not phase space volume preserving, because
there is an average energy transfer to the reservoir. This does not contra-
dict the existence of volume preservation, and thus a related Hamiltonian
character, of the full system (particle plus reservoir) if one takes the complete
dynamics of the full system appropriately into account. This reasoning can
be made more precise by computing the Jacobian determinant for the full
system (particle plus reservoir) at a collision by systematically varying the
number of degrees of freedom associated to the reservoir.(60)

Figure 10(b) shows the Poincare� section for a modification of our model
where we have replaced the baker map by a random number generator, thus
modeling in a way stochastic boundary conditions. This stochastic model
apparently leads to a smooth nonuniform density. The existence of smooth
versus singular measures in thermostated dynamical systems like the driven
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Fig. 10. (a), (b) Poincare� section of (;, sin #) defined in Fig. 1 at the moment of the collision
for field strength ==1. In (a) our model with the baker map has been used, in (b) the baker
has been replaced by a random number generator. (c) Poincare� section of ; at the moment
of the collision for varying field strength =. For (a), (b) and (c) it is T=0.5.

Lorentz gas has been vividly discussed in the recent literature:(13, 61, 62) As
pointed out in the introduction of this paper, the existence of singular non-
equilibrium measures is an essential feature of Gaussian and Nose� �Hoover
thermostated systems. On the other hand, it has been proven that for a
specific system in a nonequilibrium situation created by stochastic bounda-
ries the corresponding measure is smooth,(13) and it has been argued that
this should be considered as a general feature of systems which are thermo-
stated by stochastic boundaries.(61) Our results of Figs. 10(a) and (b)
suggest that for the periodic Lorentz gas there is a clear distinction between
deterministic boundaries producing a singular measure, and stochastic
boundaries creating a smooth measure. We note that in ref. 62 a combina-
tion of deterministic and stochastic boundaries has been applied to the
driven periodic Lorentz gas, leading to the observation that the fractal
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attractor is apparently very stable with respect to the random perturba-
tions induced by the stochastic part of the boundaries. How the non-
equilibrium stationary measure looks like for a general many-particle
systems with stochastic boundaries remains thus an open question up to
now. Our approach of thermostating may help to bridge the gap, because
we can alternatively produce deterministic or stochastic boundaries simply
by replacing the reversible deterministic map by a random number gener-
ator, thereby either preserving or completely destroying any dynamical
correlations induced by the boundaries.

Figure 10(c) shows the Poincare� plot for ;= f (=) at T=0.5. For small
= we observe a uniform phase space density which is in agreement with the
histogram *�(;) in Fig. 4. By increasing = the density shows several max-
ima but remains phase space filling. This behavior reflects the dynamics
depicted in the histogram *�(;) of Fig. 7. We could neither detect a con-
traction of the attractor onto periodic orbits, nor a breakdown of ergodicity
for higher field strengths, or eventually the existence of a so-called creeping
orbit for very high field strengths.5 Similar results have been obtained for
other choices of Poincare� sections in phase space. This is in contrast to
what has been found for the Gaussian isokinetic thermostat, (5, 16, 48�50)

suggesting that the complicated scenario found in the Gaussian model is
rather a property induced specifically by the Gaussian thermostating
mechanism.

IV. CONCLUSIONS

We have presented a new deterministic and time-reversible thermostating
mechanism for the periodic Lorentz gas. Our mechanism is based on
modeling energy transfer between the particle and the disk at each collision
instead of using a momentum-dependent friction coefficient. Under non-
equlibrium conditions we obtained a nonequilibrium steady state with a
constant average kinetic energy of the particle implying that we have suc-
cessfully thermostated our system.

The results obtained from our model in nonequilibrium have been
compared to the results of the Gaussian thermostated periodic Lorentz gas.
It turned out that the attractor associated to the model is qualitatively
similar to the fractal attractor of the Gaussian thermostated periodic
Lorentz gas. However, we could not find any breakdown of ergodicity or
a collapse of the attractor onto periodic orbits for higher field strengths
in our model. In both models the conductivity is a nonlinear decreasing
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function with increasing field strength with more or less pronounced irregu-
larities on a finer scale.

Our thermostating mechanism yields the canonical probability density
for the moving particle in equilibrium and keeps the kinetic energy of the
particle constant on average in nonequilibrium. This is similar to what is
achieved by applying a Nose� �Hoover thermostat. A detailed comparison of
the Nose� �Hoover thermostat, three variations of it, the Gaussian thermo-
stat and thermostating by deterministic scattering for the periodic Lorentz
gas can be found in ref. 63.

We note that the thermostating mechanism presented in this work has
recently been successfully applied to simulate heat and shear flow of an
interacting many-particle system of hard disks.(56) As a main result, it has
been found that in general there exists no identity between phase space
contraction and entropy production in this system if it is thermostated by
our method. We would expect the same result to hold for the thermostated
Lorentz gas as described in this paper. It would also be interesting to
investigate the validity of fluctuation theorems(31) for our Lorentz gas
model.

Further work along the lines of this paper should aim at calculating
the Lyapunov exponents, using for instance the method of Dellago and
Posch.(36, 64, 65) This would enable to check for the validity of the expression
of the conductivity in terms of the sum of Lyapunov exponents, as
obtained for conventionally thermostated systems.(16, 25, 27, 28, 33�36) More-
over, it could be investigated whether there exists a conjugate pairing rule
for the Lyapunov exponents in our model.(5, 33) In particular, the knowl-
edge of the Lyapunov exponents would allow an estimation of the fractal
dimension of the attractor.

Finally, collision processes in granular media might be advantageously
modeled by applying our formalism of energy transfer. This could be done
by associating finitely many degrees of freedom to a scatterer according to
our method, thus rendering the collision process inelastic. This would
provide an interesting alternative to describing collision processes by velocity
dependent restitution coefficients, as it has been done previously.(66, 67)

APPENDIX A. CALCULATION OF THE REDUCED DENSITIES

In this section we calculate the reduced, or projected, densities for one
and two degrees of freedom of a d-dimensional microcanonical system. We
use the following notation: general momentum space coordinates are
denoted by x1 ,..., xd or by x, and wi is the absolute value of a vector with i,
i # N, degrees of freedom.
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The probability density of a d-dimensional microcanonical system is
an equidistribution on a d-dimensional hypersphere,

*d (x1 ,..., xd )=
1 (d�2)

2?d�2(2E ) (d&1)�2 $(2E&x2
1& } } } &x2

d ) (A.1)

Introducing d-dimensional spherical coordinates

x1=- 2E sin �d&1 sin �d&2 } } } sin �2 sin �1

x2=- 2E sin �d&1 sin �d&2 } } } sin �2 cos �1

x3=- 2E sin �d&1 sin �d&2 } } } cos �2
(A.2)

b

xd&1=- 2E sin �d&1 cos �d&2

xd =- 2E cos �d&1

where �1 # [0, 2?) and �n # [0, ?), n�2, we can transform Eq. (A.1) onto
these coordinates according to

*d (- 2E , �1 ,..., �d&1)=Jd (x1 ,..., xd , - 2E , �1 ,..., �d&1) *d (x1 ,..., xd )

(A.3)

where Jd =|(dx1 } } } dxd )�(d - 2E d�d&1 } } } d�1)| is the Jacobian determi-
nant. For Jd , d �3, we obtain the following recursion relation,

sin �d&1:11 - 2E cos �d&1:11 sin �d&1 :12 } } } sin �d&1 :1(d&1)

sin �d&1:21 - 2E cos �d&1:21 sin �d&1 :22 } } } sin �d&1 :2(d&1)

Jd= } } } } } } } } } } } } } } } } }sin �d&1 :(d&1) 1 - 2E cos �d&1 :(d&1) 1 sin �d&1:(d&1) 2 } } } sin �d&1:(d&1)(d&1)

cos �d&1 &- 2E sin �d&1 0 } } } 0

(A.4)

where :jk are the matrix elements of the Jacobian Jd&1 for d&1 dimen-
sions. An expansion after the d th row yields

Jd=(cos �d&1 |01|+- 2E sin �d&1 |02| ) (A.5)

Any column in the matrices 01 and 02 is equivalent to the corresponding
column in Jd&1 multiplied by a factor. In the first column of 01 (derivative
after �d&1) the factor is - 2E cos �d&1 , in the other columns of 01 the
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factor is sin �d&1 . In all columns of 02 the factor is sin �d&1 . Factoring
out leads to

Jd=- 2E sind&2 �d&1Jd&1 (A.6)

Proceeding for the Jacobians Jd&1 } } } J2 in the same way gives

Jd=(2E ) (d&1)�2 `
d&1

n=2

sinn&1 �n (A.7)

Inserting Eq. (A.7) into Eq. (A.3) and taking into account that the
radius appearing in the spherical coordinates is a constant equal to - 2E ,
according to $(2E&x2

1& } } } &x2
d )#1 leads to the microcanonical prob-

ability density in spherical coordinates

*d (�1 ,..., �d&1)=
1 (d�2)
2?d�2 `

d&1

n=2

sinn&1 �n (A.8)

In Eq. (A.8) the angles �n appear in product form. This allows to infer
from this equation directly the probability density for the angle �n ,

*(�n)=N sinn&1 �n (A.9)

Normalizing *(�n), n�2, leads to

N=
1 ((n+1)�2)

- ? 1 (n�2)
(A.10)

and *(�1)=1�2?. Now we can calculate the probability density for a
variable representing exactly one degree of freedom by using the last line
of Eq. (A.2),

*d (xd )=*(�d&1) } d�d&1

dxd }
(A.11)

*d (xd )=
1 (d�2)

- ? 1 ((d&1)�2)

1
(2E) (d&2)�2 (2E&x2

d )(d&3)�2

Equation (A.11) is valid for all xn , 1�n�d. To simplify the notation we
replace the variable xd by x in the following. Inserting equipartitioning of
energy E=Td�2 into Eq. (A.11) and performing the limit d � � leads to

lim
d � � \1&

x2

Td +
(d&3)�2

=e&x 2�2T (A.12)
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for the last term and, by applying Stirlings formula, to

lim
d � �

1 (d�2)
1 ((d&1)�2)

=�d
2

(A.13)

for the prefactor. Finally, we get

*�(x)= lim
d � �

*d (x)=
1

- 2?T
e&x 2�2T (A.14)

The probability density *d (wd&1) with wd&1=- x2
1+x2

2+ } } } +x2
d&1

=- 2E&x2
d =- 2E sin �d&1 can be calculated straightforward to

*d (wd&1)=2*(�d&1) } d�d&1

dwd&1 }
(A.15)

*d (wd&1)=
1 (d�2)

- ? 1 ((d&1)�2)

2
(2E ) (d&2)�2

wd&2
d&1

- 2E&w2
d&1

Note that the angles �d&1 , 0��d&1<?�2 and ?�2<?&�d&1�? are
mapped onto the same value wd&1 , wd&1�0, which leads to the factor of
two in Eq. (A.15).

We proceed by considering the variable wd&2=- x2
1+x2

2+ } } } +x2
d&2

=wd&1 sin �d&2 . Together with the variable xd&1=wd&1 cos �d&2 of
Eq. (A.2) a two-dimensional set of variables (wd&2 , xd&1) can be defined,
where (wd&1 , �d&2) are the corresponding polar coordinates. On these
grounds the probability density *d (wd&2) can be calculated as

*d (xd&1 , wd&2)=*d (wd&1) *(�d&2) } �(wd&1 , �d&2)
�(xd&1 , wd&2) }

=
d&2

?(2E )(d&2)�2

wd&3
d&2

- 2E&w2
d&2&x2

d&1

Integration over xd&1 yields

*d (wd&2)=
d&2

(2E ) (d&2)�2 wd&3
d&2 (A.16)

With w2=- 2E&w2
d&2 we get the probability density for two degrees of

freedom *d (w2),

*d (w2)=
d&2

(2E ) (d&2)�2 w2(2E&w2
2) (d&4)�2 (A.17)
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Inserting E=Td�2 and performing the limit d � � yields

*�(w2)=
w2

T
e&w 2

2 �2T (A.18)
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