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Anomalous diffusion in the square soft Lorentz gas
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We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional
system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to
as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous
diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell
hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward
the numerical diffusion coefficient as the number of hops increases. Anomalous diffusion is characterized by
quasiballistic orbits forming Kolmogorov-Arnold-Moser islands in phase space, alongside a complex tongue
structure in parameter space defined by the interscatterer distance and potential softness. The distributions of the
particle displacement vector show notable similarities to both analytical and numerical results for a hard-wall
square Lorentz gas, exhibiting Gaussian behavior in normal diffusion and long tails due to quasiballistic orbits
in anomalous regimes. Our work thus provides a catalog of key dynamical system properties that characterize
the intricate changes in diffusion when transitioning from hard billiards to soft potentials.
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I. INTRODUCTION

Two-dimensional (2D) materials and electronic systems
have emerged as a frontier in solid-state physics, offering
promising applications in electronics, such as transistors and
memory devices [1]. The physics of these systems, partic-
ularly when far from the thermodynamic limit—referred to
as small systems [2,3] with only a few relevant degrees of
freedom—are characterized by nonequilibrium transport and
nonlinear dynamics that can result in chaotic behavior. This
gives rise to a diverse range of macroscopic phenomena, such
as branched flow [4–6] or anomalous diffusion, where the
mean-squared displacement (MSD) scales nonlinearly with
time [7–10].

The Lorentz gas is a simple yet powerful model for ex-
amining the diffusion properties of 2D systems [11–13]. It
consists of a point particle that scatters elastically with fixed
hard spheres, which are distributed either randomly or pe-
riodically in space. Originally put forward in 1905 [14] to
replicate Drude’s theory of electrical conductivity, the Lorentz
gas has been instrumental in mathematical physics. It has been
employed, for example, in proving Ohm’s law [15], studying
Lyapunov exponents [16] and fractal attractors [17], and for-
mulating the chaotic scattering theory of transport [18].

*Contact author: esko.toivonen@tuni.fi
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Conventionally, scatterers in the Lorentz gas are mod-
eled as circular hard-wall potentials. However, various other
potentials have also been explored, including trigonometric
functions [19,20], Lennard-Jones potentials [21,22], Coulomb
potentials [23], Weeks-Chandler-Andersen potentials [24],
and hard-wall disks with low-potential regions [25]. Recent
work by some of the present authors [26] has focused on a soft
Lorentz gas, which smoothly extrapolates from hard to soft
walls under the variation of a potential parameter. This is ac-
complished by replacing the hard-wall disks with Fermi-type
potential profiles arranged in a triangular lattice. This soft po-
tential is particularly relevant as a model for various 2D elec-
tronic systems, such as artificial graphene [27–30], where the
confining potential is smooth. It was shown that the triangular
soft Lorentz gas exhibits both normal and anomalous diffu-
sion, with extreme sensitivity to the model parameters [26].
This complex interplay between spatially localized periodic
orbits and quasiballistic trajectories is characterized by tongue
structures as functions of the system parameters. Quasibal-
listic trajectories are defined as trajectories that are regular
and propagate infinitely toward one direction. Similar to these
findings, recent studies on branched flow [5,6] have demon-
strated that, at high energies significantly exceeding the ampli-
tude of the scatterers, the dynamics remain strongly dependent
on the potential shape. Notably, soft Fermi-type potentials are
able to induce branched flow even in a periodic lattice [5].

In this work, we focus on the soft Lorentz gas arranged
in a square lattice. This system is experimentally realizable in
various antidot superlattices, fabricated from materials such as
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GaAs/AlGaAs heterostructures [31–33] or graphene [34,35].
In contrast to the triangular configuration previously studied
in Ref. [26], the square lattice has an infinite horizon for all
lattice spacings, meaning there are singular channels in the
billard along which a particle can travel in a straight line to
infinity [36,37]. For soft potentials, the speed fluctuates along
these paths due to variations of the potential, and the corre-
sponding trajectories are related to the emergence of regular
structures in the phase space [19,38,39]. The existence of an
infinite horizon within the lattice complicates the exercise
of traditional approximations, as for hard-wall billiards, it
implies that normal diffusion does not exist [11–13].

Furthermore, the conventional Machta-Zwanzig (MZ)
approximation assumes that hops between unit cells are un-
correlated [36]. This assumption, as well as a well-defined
hard-wall normal diffusive limit, do not hold in a generic
infinite-horizon lattice, calling for the development of more
refined approximations. While a Taylor-Green-Kubo-based
expansion has been proposed for triangular lattices [37,40], as
well as other approaches based on stochastic theory [41–44],
we here introduce an alternative approximation that accounts
for correlations between unit cell hops. The established model
is then compared against the widely applied MZ approxima-
tion and numerical results for the diffusion coefficient.

In particular, we find several common features in the
anomalous diffusion of square and triangular systems. Sim-
ilarly, as in the case of the triangular arrangement, we analyze
the tongue structures in detail, including their relation with the
existence of Kolmogorov-Arnold-Moser (KAM) islands, and
discover complex fine structure in the density of quasiballistic
orbits. Furthermore, we emphasize the weak-softness limit of
the system and find qualitative agreement with the properties
of the conventional (hard-wall) Lorentz gas. However, the
extreme sensitivity of the system to potential parameters is
also demonstrated in this limit.

The paper is organized as follows. In Sec. II, we introduce
the model and numerical tools used for its analysis. Section III
presents the formulation of a hopping model approximation
for the diffusion coefficient. Our numerical results are detailed
in Sec. IV, where we first discuss the diffusion coefficient,
followed by an analysis of anomalous diffusion regimes, qua-
siballistic trajectories, phase-space structures, and tongue-like
features in the parameter space. We conclude with a dis-
cussion of particle displacement distributions. The paper is
summarized in Sec. V.

II. MODEL AND METHODOLOGY

Our soft Lorentz gas is defined as a square lattice of circu-
lar scatterers modeled as a smooth Fermi potential

V (r) = V0

1 + exp
( |r|−r0

σ

) , (1)

where r0 is the effective radius of each scatterer and σ is a
softening parameter. For simplicity, we can choose the energy
scale of the system in such a way that the potential amplitude
of the scatterers is V0 = 1. The lattice, unit cell, and potential
profile of the scatterers are illustrated in Fig. 1. In Hartree
atomic units (r0 = m = 1), the total energy of the particle is
set to be E = 1/2. We expect the results obtained with this

FIG. 1. Visualization of a square soft Lorentz gas. The periodic
unit cell is labeled region A, and the diagonal inside the unit cell
corresponds to the Poincaré surface of the section used later in the
article. The effective gap between the scatterers is denoted by w. The
inset shows the cross-section of the Fermi potential for a few values
of the softening parameter σ .

energy choice to be somewhat representative of all energies
for which particles can escape the unit cell but, on the other
hand, cannot cross the potential maxima (V0 = 1). Above E =
1, the energy-dependent diffusion exhibits partially somewhat
different, novel features, as has been explored in detail for the
triangular lattice [45]. The periodic unit cell has a side length
of 2r0 + w, where w is the nominal gap between the scatterers
(measured at a half maximum of the Fermi potential). In
what follows, we consider w and σ the two main controlled
parameters. The limit σ → 0 corresponds to the conventional
hard-wall Lorentz gas, whereas when σ is large, the system
approaches the integrable cosine potential.

Our main quantity of interest is the 2D diffusion coefficient
D, given by

D = lim
t→∞

〈(r(t ) − r(0))2〉
4t

, (2)

where 〈(r(t ) − r(0))2〉 is the MSD for position r(t ) of a
particle at time t . Here the angular brackets denote a configu-
rational ensemble average. In the case of normal diffusion, the
MSD grows linearly in time, that is, MSD ∝ t . Superdiffusion
and subdiffusion are characterized by MSD ∝ tα with α > 1
and α < 1, respectively, and ballistic motion corresponds to
α = 2. We point out that Eq. (2) is only valid for normal, that
is, nonanomalous diffusion. In the following, however, we ap-
ply this definition numerically to various scenarios to identify
anomalous diffusion, which will be analyzed separately.

Determining D using Eq. (2) requires computing the MSD
with a sufficiently large ensemble. In the simulations, we em-
ploy the Bill2D software package [46] for different values of
w and σ . To ensure the accuracy of the simulations, we use the
sixth-order symplectic integrator for the equations of motion
[47]. This integrator produces the most accurate conservation
of energy within the parameter space of our simulations. See
the Appendix for details on the evaluation of different propa-
gation algorithms and their timesteps. A 3-by-3 unit-cell grid
is formed to accurately compute the potential values for a
particle in the centermost unit cell. The initial positions of
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the particles are uniformly randomized in the energetically
allowed coordinate space in the unit cell, and the initial speeds
of the particles are determined based on the constant energy
condition of E = 1/2 while the initial propagation angles
are randomized. This procedure is utilized in Sec. IV unless
otherwise specified.

III. THEORETICAL PREDICTIONS

In previous studies [12,13,36,37,40–44], numerous analyt-
ical approximations have been brought into play to compute
the diffusion coefficient D in the conventional Lorentz gas.
In many of these predictions, random walks together with
diffusive processes are reviewed to obtain D as a function of
the density of the Lorentz gas scatterers.

Following the reasoning behind the MZ approximation
[36], we associate the diffusion with random hopping between
adjacent unit cells. By the phase-space argument, the mean
residence time τ within a unit cell is approximately

τ ≈ �

ω
, (3)

where � is the total allowed phase-space volume within the
unit cell—henceforth called a “trap”—and ω is the outward
phase-space flux from the trap. Thus, integrating over both
velocity and position spaces yields

� = 2π

∫
V (r)�E

v(r) dr = 2πAtrap〈v(r)〉trap, (4)

where v(r) = √
2(E − V (r)) is the magnitude of the velocity

obtained from the conservation of energy E , Atrap is the area of
the trap, and 〈v(r)〉trap is the average magnitude of the velocity
within the trap. Utilizing the symmetry of the four exits from
the trap, the total outward phase-space flux is given by

ω = 4
∫

V (x)�E

∫ 1
2 π

− 1
2 π

v(x)2 cos θ dθ dx (5)

= 8lexit〈v(r)2〉exit, (6)

where V (x) and v(x) are evaluated at r = (x, 0), lexit is the
length of the exit, and 〈v(r)2〉exit is the mean-squared magni-
tude of the velocity within the exit. Note that the integrand is
the velocity-space density multiplied by the dot product of the
velocity vector and the outward pointing unit normal vector
of the exit, yielding the outward phase-space flux at the given
point x toward θ , and the total flux when integrated.

By assuming that the hopping between the traps is uncor-
related, the diffusion coefficient is then given by

DMZ,soft = l2

4τ
= (2r0 + w)2lexit〈v(r)2〉exit

πAtrap〈v(r)〉trap
(7)

in terms of the lattice spacing l = 2r0 + w. In general, there
is no analytical solution for Atrap, lexit, or the averages, but it is
straightforward to compute them numerically. We include this
approach as our first-level approximation in Fig. 2(a), as we
expect that the uncorrelatedness assumption is violated due to
the presence of an infinite horizon in the square lattice.

A more precise formulation for the diffusion coefficient
can therefore be obtained by considering unit cell hopping

FIG. 2. (a) Diffusion coefficient D as a function of the distance
between the scatterers w in a square soft Lorentz gas with softness
parameter σ = 0.05. The numerical results (blue solid line) are com-
pared with the Machta-Zwanzig approximation of Eq. (7) (dashed
line) and the hopping approximation of Eq. (10) (numbered solid
lines). The gray areas correspond to quasiballistic regions (see text).
(b) Corresponding proportion of Kolmogorov-Arnold-Moser islands
of the Poincaré surface of section. The labels (a)–(e) refer to the
Kolmogorov-Arnold-Moser islands and trajectories in Fig. 3.

sequences of length n and calculating the diffusion coeffi-
cient using the path lengths and durations, weighted by the
probability of the hopping paths. Here, a hop is defined as
exiting a unit cell in a certain (absolute) direction. We define
H = {←,↑,→,↓} as the alphabet of possible hopping direc-
tions, and 	i ∈ H as the direction of the ith hop. Next, we
determine the displacement vector covered by a certain path
	1	2 · · · 	n of length n as

R(	1 · · · 	n) =
n∑

i=1

ρ	i
(8)

with

ρ← =
[−1

0

]
ρ↑ =

[
0
1

]
ρ→ =

[
1
0

]
ρ↓ =

[
0

−1

]
.

Subsequently, the squared distance traveled by the path is
R2(	1 · · · 	n), where squaring implies the dot product. By
computing the MSD over all paths of length n by weighting
the paths by their probabilities, we obtain our higher-tier ap-
proximation for the time-dependent diffusion coefficient

Dn-hop = l2

4nτ

∑
Permutations

	1···	n

p(	1 · · · 	n)R2(	1 · · · 	n), (9)

where the residence time of any path is taken from the phase-
space approximation according to Eq. (3).

The residence time τ is not constant for different paths due
to the infinite horizon. In particular, hopping paths passing
straight through several unit cells are expected to take less
time than the other paths. Hence, we take the path-dependent
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residence times into account, which comes with the following
implicit assumption: the MSD of any individual n-hop path
scales linearly with time during the time range of the n hops.
Hence, we obtain

Dn-hop
MZ = l2

4

∑
Permutations

	1···	n

p(	1 · · · 	n)R2(	1 · · · 	n)

τ (	1 · · · 	n)
, (10)

where τ (	1 · · · 	n) is the time taken by a certain path and
p(	1 · · ·	n) is the probability of the path. The sum runs over
all unique hopping paths of length n, consisting of hoppings as
defined by alphabet H. In general, we denote the diffusion co-
efficients Dn-hop

MZ utilizing this improved approximation. Since
there are no known analytical results for the probabilities or
exact residence times, we are required to estimate them based
on simulation data.

In the special case of n = 1, our n-hop approximation of
the diffusion coefficient renders to the standard result of the
MZ approximation. To verify this fact, we expand the sum,
yielding

D1-hop
MZ = l2

4

(
p(↑)R2(↑)

τ (↑)
+ p(→)R2(→)

τ (→)

+ p(↓)R2(↓)

τ (↓)
+ p(←)R2(←)

τ (←)

)
. (11)

Since the residence times τ are equal, the squared distances
are unities, and each probability is 1

4 , this pathway ergo leads
to the anticipated MZ expression:

D1-hop
MZ = l2

4

(
1

4

1

τ
+ 1

4

1

τ
+ 1

4

1

τ
+ 1

4

1

τ

)
= l2

4τ
. (12)

To the best of our knowledge, this approach has not
previously been applied to the calculation of the diffusion
coefficient in a periodic system. We emphasize that this
way is not a Taylor-Green-Kubo-based expansion, such as
in Ref. [40]. Both approaches define sequences (indexed
by the hopping path length n) of time-dependent diffusion
coefficients that converge—if the assumptions behind the ap-
proximations hold—to the exact diffusion coefficient, based
on encoding the paths of diffusing particles in terms of symbol
sequences that map the original dynamics onto correlated ran-
dom walks on a lattice. However, the present approach does so
with respect to a properly weighted MSD, where the weight
is taken as the probability of a certain hopping path of length
n occurring at a corresponding average time τ (	1 · · · 	n). In-
stead, the Taylor-Green-Kubo approach evaluates the velocity
autocorrelation function along the very same hopping path of
length n but with respect to multiples n of the mean residence
time τ . Moreover, we do not consider lattice vectors but unit
cell hoppings.

IV. NUMERICAL RESULTS

A. Diffusion coefficient

We begin by numerically investigating the diffusion coef-
ficient D as a function of the interscatterer distance w with a
fixed softness parameter σ = 0.05. The results are collectively

presented in Fig. 2(a). The black dashed line denotes the MZ
approximation according to Eq. (7). The numbered solid lines
label the results of the estimations given by our upgraded hop-
ping approximation defined in Eq. (10) with different hopping
path lengths. Finally, the blue solid line shows our numerical
results for D computed from N = 20 000 trajectories for each
w. Here D is computed from 5000 to 10 000 time units.

In the gray regions, the diffusion constant D in the sense
of Eq. (2) is ill-defined due to the existence of quasiballistic
trajectories (at least one in the ensemble). They are identified
by a criterion that the squared distance metric is monoton-
ically increasing for at least 99 % of the simulation time.
The dashed blue line in the gray regions shows the results
computed without these quasiballistic trajectories.

We find that the hopping model converges toward the
numerically computed diffusion coefficient, whereas the MZ
approximation underestimates the actual diffusion coefficient
roughly by a factor of 2. With path length n = 10, the im-
proved hopping estimation is already close to the numerical
result in the regions where the diffusion is predominantly nor-
mal. In those regions, the behavior of numerically computed
D(w) is complex with a clear fine structure (see next section
for details) and qualitatively similar to that of a triangular soft
Lorentz gas [26].

Let us next briefly assess the limits of small or large gap
w. We find in Fig. 2(a) that, below a critical value wc, which
depends on the softness σ , no diffusion exists as the particles
stay energetically trapped inside a single unit cell. We can
estimate this critical gap-softness ratio to be

w

σ
� 2 ln

(
2V0

E
− 1

)
(13)

by assuming that the two nearest Fermi scatterers of height of
V0 are the only culprits blocking the escape channel off the
unit cell for the particle with fixed energy E . For σ = 0.05
(with E = 1/2 and V0 = 1 as chosen previously), the esti-
mation yields the critical width wc = 2σ ln(3) ≈ 0.109 861,
which coincides extremely well with the numerical sim-
ulations. Moreover, this estimation concurs with the later
reported no-diffusion area in Fig. 4(a). On the other hand,
at w ≈ 0.55 we find an increasing number of quasiballistic
trajectories. We computed numerically that the rightmost gray
region in Fig. 2(a) continues to at least w = 4.0.

B. Phase-space structure and KAM islands

The quasiballistic regions in Fig. 2(a) can be understood
and further analyzed in terms of the rise and fall of KAM
islands in the phase space. We define the Poincaré surface of
section (PSOS) as the main diagonal of the unit cell, as visu-
alized in Fig. 1. For each crossing, we obtain variables (s, v‖)
denoting the distance along this diagonal and the velocity par-
allel to the diagonal at crossing time, respectively. Figure 2(b)
shows the proportion of KAM islands in the surface of sec-
tion as a function of w. The existence of KAM islands qualita-
tively agrees with the quasiballistic regions in Fig. 2(a). How-
ever, we point out that the KAM islands are generally tiny,
covering under one percent of the entire energetically allowed
phase-space area in the PSOS. This consequently complicates
the detection of these islands, requiring extensive phase-space
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FIG. 3. Examples of Kolmogorov-Arnold-Moser islands and
corresponding trajectories. The white areas inside the Poincaré
surfaces of section are Kolmogorov-Arnold-Moser islands, but no
trajectories have been sampled there. The smoothness of the poten-
tial is fixed to σ = 0.05, but the interscatterer distance w varies as
follows: (a) w = 0.2140, (b) w = 0.2195, (c) w = 0.3310, (d), (e)
w = 0.3748, and (f) w = 0.8535.

sampling. Furthermore, it is important to note that some of
the KAM islands correspond to localized periodic orbits (see
later). At w ≈ 0.55, the observed KAM islands appear persis-
tent, explaining the continuous gray region in Fig. 2(a).

The appearance of KAM islands in our soft Lorentz gas
is expected, as it has been proven that any perturbation of a
scattering billiard system to a smooth one may cause KAM
islands to form in the vicinity of the singular periodic orbits
of the original billiard [38,39]. The corresponding hard-wall
square Lorentz gas has ballistic orbits along the main coor-
dinate axes, and these orbits have a measure of zero in the
phase space. Softening the potential transforms these orbits
into islands of stability. As w increases, these islands become
wider and thinner, suggesting that, at the limit w → ∞, we
might recover the hard-wall case, that is, a straight line along
the PSOS.

In Fig. 3, we present some examples of KAM islands in the
regimes labeled (a)–(e) in Fig. 2(b), with an increasing order
of w. The main figures show the entire allowed phase space

and the insets show a zoomed PSOS exhibiting the KAM
island, together with a corresponding trajectory in that island.
This analysis confirms and illustrates the previous statement
that the KAM islands are typically minuscule, as already
demonstrated by the proportional areas in Fig. 2(b).

Figure 3(a) shows a typical PSOS for nearly straight quasi-
ballistic trajectories. The minor oscillation in the example tra-
jectory is not visible without extreme distortion and zoom in
the figure. The trajectories corresponding to the center of the
KAM island have the lowest amplitude in the oscillations. If
w is increased, the KAM island gradually becomes larger, de-
forms, bifurcates into two islands, and finally disappears. This
behavior is illustrated in the video included in the Supple-
mental Material [48]. The top-right panel shows the complete
PSOS, with a magnified section highlighted in the left panel,
while the bottom-right panel presents the values of D and area
of the KAM islands within the PSOS. The black vertical line
indicates the current value of w displayed in the PSOS panels.
The white strip at w ∼ 0.24 is due to the fact that no quasibal-
listic trajectories have been sampled at that value of w.

Next, Figs. 3(b)–3(e) show specimens of localized periodic
orbits. The trajectories in Figs. 3(b) and 3(c) periodically
circulate around one and nine scatterers, respectively. We note
that even though only one KAM island is shown in detail, the
trajectory forms several small islands in the PSOS. We further
conjecture that similar circulating trajectories around a square
arrangement of scatterers exist, but they are rare with minute
KAM islands.

Figures 3(d) and 3(e) show two localized periodic or-
bits, which notably appear with the same parameter values
(σ = 0.05, w = 0.3748). For the needle-like trajectory in
Fig. 3(d), all the rotations and mirror versions are present,
and the following KAM island structure is rather intricate.
The bowtie-like trajectory in Fig. 3(e) forms a diagonal KAM
island in the PSOS.

As the final example, Fig. 3(f) shows a zigzag-like qua-
siballistic orbit. Here the Lorentz gas is already relatively
sparse with w = 0.8535, and the KAM island formed by this
trajectory is diminutive.

C. Tongue structures

As the next step, we explore the 2D parameter space (w, σ )
to identify and characterize the regimes that display anoma-
lous diffusion. Figure 4(a) shows the relative proportion, that
is, the density of quasiballistic trajectories ρB. Each pixel in
Fig. 4(a) is covered by N = 100 000 simulations, with a sim-
ulation time of t = 1000. This sampling size ensures sufficient
coverage of the phase space so that even small KAM islands
can be found.

Overall, the parameter space (w, σ ) in Fig. 4(a) is charac-
terized by a periodic tongue-like structure similar to that in the
triangular soft Lorentz gas [26]. However, in a square lattice,
the tongues are significantly wider, resulting from the different
geometry, including an infinite horizon. Each tongue is char-
acterized by a finite density of quasiballistic trajectories (up
to 1.5% in the figure), implying anomalous diffusion. We also
encounter parameter areas with zero density for quasiballistic
trajectories (white regions) corresponding to normal diffusion.
It is interesting that these regions even exist for relatively
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FIG. 4. (a) Density of quasiballistic trajectories over the pa-
rameter space of the square soft Lorentz gas, characterized by a
tongue-like structure. The gray area (top left) corresponds to the
parameter space where the particles cannot escape from the unit cell,
and the dashed horizontal line refers to Fig. 2. (b), (c) Zoomed sec-
tions of (a) corresponding to high and low densities of quasiballistic
trajectories, respectively. Note the different color bars in (b) and (c).
(d) Zoomed strip of (c) illustrating the irregular cross-section of the
tongue. In (c) and (d), the ensemble size has been increased to 106.

large interscatterer distances w, given that the potential is
sufficiently soft (large σ ).

In Figs. 4(b) and 4(c), we examine the detailed structure
of the tongues at high and low densities of the quasiballistic
trajectories, respectively. The zoomed figures show small-
scale fringes, even though the amount of noise is relatively
high. It is expected that fractal-like tongue structures, such
as these examples, are ubiquitous in the parameter space.
Unfortunately, due to a finite search grid and ensemble sizes,
detailed characterization is numerically tedious.

FIG. 5. Examples of particle displacement distributions in the
square soft Lorentz gas at t = 10 000 with w = 0.5 and vary-
ing σ . The displacements x and y are comparable to Ref. [52].
(a) Normal diffusion resembling a Gaussian distribution (σ =
0.045, note the logarithmic z-axis). (b) Small density of quasiballis-
tic trajectories, leading to long tails along the main coordinate axes
(σ ≈ 0.073). (c) High density of quasiballistic trajectories, leading
to long tails and peaks at the end (σ = 0.1).

To further examine the local structure of the faint tongue
presented in Fig. 4(c), a cross-section as a function of w is
presented in Fig. 4(d). Despite increasing the ensemble size to
106 in both of these Figs., the curve is relatively noisy. Hence,
no clear conclusions related, for instance, to the scaling prop-
erties of the curve in Fig. 4(d), can be drawn. Nonetheless, the
presence of three adjacent areas of anomalous diffusion (cen-
tered at w ∼ 0.610, w ∼ 0.611, and w ∼ 0.613) is prominent.

D. Particle displacement distributions

For the hard-wall infinite horizon Lorentz gas, it has been
shown [49] that the distribution of the displacement vector
r(t ), scaled with

√
t ln t , approaches a normal distribution.

However, this limit is numerically unattainable because of
weak convergence [49–51]. This result differs from the fi-
nite horizon Lorentz gas, where the required scaling factor
is proportional to the square root of time (∝ √

t). Recently,
analytical results based on a Lévy walk formalism have been
presented for the infinite-horizon square Lorentz gas [52,53].
This approach converges quickly, making it numerically fea-
sible to verify. In this context, we therefore compare the
displacement vector distributions from our soft-wall sim-
ulations with the hard-wall results presented by Zarfaty
et al. [52].

Figure 5 shows particle distributions at t = 10 000. We
simulated N = 106 trajectories starting from the center of the
unit cell with initial propagation angles between 0° and 45°.
Owing to the square symmetry, these results cover the entire
unit cell through rotation and mirroring. We have selected the
parameter values of σ and w to enable a direct comparison
with Ref. [52].

In Fig. 5(a), a typical distribution from system parameters
exhibiting normal diffusion is shown, resembling the infinite-
time Gaussian limit proven by Bleher [49] for the hard-wall
Lorentz gas. Figure 5(b) shows a system with a low but
nonzero density of quasiballistic trajectories. The distribution
is similar to those analytically computed by Zarfaty et al.[52],
but the tails of our distribution diminish quickly, likely due to
the lower trajectory count compared with Ref. [52]. Finally,
Fig. 5(c) depicts a distribution from a system configuration
with a high density of quasiballistic trajectories, leading to
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FIG. 6. Slices of distributions along the main coordinate axis for
different densities of quasiballistic trajectories. Similarly to Fig. 5,
the displacement x is comparable to Ref. [52]. The dots in the inset
indicate the system parameters in the tongue landscape (Fig. 4) for
each colored line.

high probability density along the main coordinate axes, in-
dicative of numerous sticky trajectories or long quasiballistic
flights.

On the other hand, Fig. 6 compares our results with the
analytical distribution at t = 10 000 by Zarfaty et al. [52],
presenting a slice of the distribution along the main coordi-
nate axis. Again, the system with no quasiballistic trajectories
(ρB = 0) follows a pattern resembling a 2D normal distri-
bution (note the logarithmic y-axis). However, even a slight
presence of quasiballistic behavior (ρB ∼ 0.000 06) causes
deviations from a Gaussian distribution, showing a long tail.
As ρB is further increased, the tails become thicker, but the
behavior as functions of x and ρB is relatively irregular,
stemming from both the extreme sensitivity of the system in
the regime of anomalous diffusion and the numerical limita-
tions. Nevertheless, the analytical limit (dashed line) is well
captured with ρB ∼ 0.004.

In general, we find rich dynamics in the diffusion proper-
ties of the square soft Lorentz gas. In parameter areas where
normal diffusion is prevalent, the displacement distribution is
found to be Gaussian, contrary to the hard-wall gas where the
Gaussian distribution is only a theoretical result and unattain-
able in practice due to enormous computational requirements
to reach the long-time limit. Moreover, in parameter areas
where regular motion can be found, we notice that the tails
of the distribution are at different heights depending on the
volume of the portion of the phase space covered by regular
trajectories.

V. SUMMARY

In summary, we analytically and numerically studied the
diffusion properties of a square soft Lorentz gas under vari-
ous system configurations. The infinite horizon of the system

complicates the analysis, and conventional random-walk mod-
els require numerical estimates for relevant parameters to
accurately describe the behavior. We developed a hopping
model that, in the single-hop limit, recovers the MZ approxi-
mation and provides reasonable estimates for the numerically
computed diffusion coefficient in regimes of normal diffusion
as the number of hops increases.

Our findings indicate that diffusion is largely anomalous,
caused by the presence of quasiballistic orbits, which manifest
as long-flight trajectories and appear as KAM islands on the
PSOS. We identified a convoluted tongue structure in the
density of quasiballistic trajectories, similar to those found in
the triangular soft Lorentz gas. Even with the infinite horizon,
the square soft Lorentz gas also exhibits localized periodic
orbits that either circulate the scatterers or bounce between
them in intricate patterns.

Our analysis of the particle displacement distributions re-
veals notable similarities to analytical and numerical results
for a hard-wall square Lorentz gas. Specifically, in the regime
of normal diffusion, the distributions exhibited Gaussian be-
havior, while quasiballistic orbits produced long tails in the
distribution. Furthermore, we pinpointed a softening param-
eter that yields the analytical result of the hard-wall square
Lorentz gas in the long-time limit.

An interesting open question is what type of anomalous
diffusion is generated whenever there is a quasiballistic orbit,
in terms of a known stochastic process (if any) suitably re-
producing the original deterministic dynamics in this system.
Naively, one might expect a type of Lévy walk, perhaps as
discussed in Refs. [43,44]. Another important open question is
to better understand the surprisingly regular tongue structure
of quasiballistic orbits reported in Fig. 4, perhaps along the
lines of the mathematical theory developed in Refs. [38,39].
We hope this work will not only stimulate further theoretical
research on anomalous diffusion in periodic potentials but
also applications to experimentally relevant systems such as
nanomaterial lattices modeled by realistic soft potentials [54].
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APPENDIX: ADDITIONAL DETAILS
ON NUMERICAL SIMULATIONS

For the selection of the solver and timestep 	t , we per-
formed numerical tests by launching several particles toward
one scatterer at different impact parameters b and measured
the average absolute deviation of the total energy from the
expected value of E = 1/2 during the deflection. These tests
were repeated for different solvers, timesteps 	t , and softness
parameteres σ . The solver abbreviations used in the following
are listed in Table I.

The results for 	t = 10−3 and σ = 0.05 are shown in
Fig. 7(a). Among the tested solvers, we find that the 6opt
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TABLE I. Symplectic solvers supported by the Bill2D [46]
software.

Abbreviation Solver Ref.

2 Velocity Verlet [55]
2opt Second order, optimal coefficients [47]
3 Third order [56]
4 Fourth order [57]
4opt Fourth order, optimal coefficients [47]
6opt Sixth order, optimal coefficients [47]

solver yields the lowest average absolute energy deviation.
Based on this, we select 6opt for further detailed analysis.

In Fig. 7(b) we examine the accuracy as functions of both
the timestep 	t and softness parameter σ . Our findings in-
dicate that, as σ decreases, a smaller timestep is required to
maintain accuracy. However, for a fixed σ , there exists an
optimal 	t that provides the best accuracy. In the range of pa-
rameters examined, the optimal timestep is typically 0.1 . . . 1
times σ .

From these results, we conclude that the optimal solver is
a sixth-order method with optimal coefficients [47], and that
the timestep must be adapted based on the softness of the po-
tential. Notably, reducing the timestep significantly increases
the computational cost.

The challenge of developing an adaptive timestep solver
remains an open question for future work. Such a method
would be advantageous for simulating systems with small σ ,
where particle trajectories alternate between (nearly) linear

FIG. 7. Average absolute deviation of energy of the Bill2D
software [46], which measures the accuracy of the computation.
(a) Accuracy for different solvers with 	t = 10−3 and σ = 0.05.
(b) Accuracy as functions of 	t and σ with the 6opt solver.

motion in open regions and more complex behavior near
scatterers.
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