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Abstract – Dynamical systems having many coexisting attractors present interesting properties
from both fundamental theoretical and modelling points of view. When such dynamics is under
bounded random perturbations, the basins of attraction are no longer invariant and there is the
possibility of transport among them. Here we introduce a basic theoretical setting which enables
us to study this hopping process from the perspective of anomalous transport using the concept
of a random dynamical system with holes. We apply it to a simple model by investigating the role
of hyperbolicity for the transport among basins. We show numerically that our system exhibits
non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation
results are reproduced consistently from stochastic continuous time random walk theory.
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Introduction. – Understanding the dynamics of sys-
tems exhibiting coexisting attractors is fundamental for
modelling processes having many possible asymptotic
states. Although not restricted to, this multi-stable dy-
namics is particularly important in systems experiencing
very weak dissipation [1,2]. In contrast to strongly dis-
sipative ones, these are typically not dominated by one
or few attractors. There are many areas from which we
could pick up such examples. For instance, if one considers
finite-size particle in advection dynamics, the low dissipa-
tive interaction between the advected particles and the
fluid can be characterised by the presence of multiple at-
tractors trapping advected particles even in open flows [3].
Another example is found in the dynamics of space dust
and its role in the formation of planetesimals [4], among
others. Even when most of the attracting sets are peri-
odic, a chaotic component may be present in the form of a
fractal boundary separating the basins of attraction [1,2].
If the dynamics is fully deterministic, the attractors are
invariant structures. Hence, once a particle or trajectory
is trapped in one of the basins of attraction, it remains
there indefinitely. However, since most natural processes
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are not realistically isolated from external random pertur-
bations, it is natural to study their impact.

The presence of random noise dramatically changes the
dynamics. In contrast to deterministic systems, for ran-
domly perturbed dynamics the invariance of attractors
may not be true. If the considered perturbation is set to
be unbounded Gaussian noise, the whole phase space may
be the support of a unique invariant measure [5]. When
bounded perturbations are used, on the other hand, there
might be many coexisting invariant measures. In partic-
ular, depending on the amplitude of the noise orbits can
escape from the attracting domains [6] creating the possi-
bility of transport across their basins. This sort of hopping
process has been reported before [1,7–9], yet there is a lack
of understanding of its statistical properties, in particular
from the anomalous transport perspective [10,11].

In this paper we analyse the statistical properties of sys-
tems lying on the border between dissipative and conser-
vative dynamics which evolve under random perturbations
and their similarities to Hamiltonian dynamics. We start
by introducing what we call effective attractors. Below
a certain level of dissipation the dynamics naturally gives
rise to these attracting sets, which defined under finite res-
olution are indistinguishable from topological attractors.
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We then extend the description of escape in terms of a
closed systems with a hole [6] to the case of coexisting
attractors and establish the conditions allowing a hop-
ping dynamics among them. We show that it is possi-
ble to characterise the hopping process by a distribution
of first recurrence times to an appropriately chosen non-
zero measure set. We find that such a recurrence (or es-
cape time) distribution approaches the one expected for
non-hyperbolic dynamics as the dissipation is decreased
and the dynamics approaches the non-hyperbolic limit.
This effect is similar to stickiness in Hamiltonian non-
hyperbolic dynamics [10,12]. We verify our arguments by
computer simulations for the single rotor or dissipative
standard map [1,13]. The results match well to analyt-
ical predictions from stochastic continuous time random
walk theory [11,14,15]. Our discussion is based on general
arguments and not restricted to this particular model.

Dynamics and effective attractors. – We are inter-
ested in adding bounded random noise to our determin-
istic dynamics. More precisely, suppose our deterministic
dynamics is given by the iteration of a smooth function
f : M → M with differentiable inverse in our phase space
M , for example1, M ⊂ R

n. An orbit (xn)n≥1 is the se-
quence generated by the dynamical system xn+1 = f(xn)
from a given initial condition x0 ∈ M . We will be con-
cerned with subsets of M to which most orbits in their
neighbourhood converge for sufficiently long but finite
time, what we shall call effective attractors or attracting
sets. In other words, those are f -invariant subsets of M

contained in basins of attraction, which are open sets of
initial conditions with positive Lebesgue (volume) measure
converging to the attracting sets. Note that our require-
ments on convergence demand this to happen within finite
time, which is very important for numerical/experimental
investigations. In these cases, contrary to a rigorous math-
ematical framework and due to physical limitations one
cannot ask for time going to infinity or infinitely small
length intervals. By making such finite-size assumptions
on the dynamics one may include among the detected in-
variant sets homoclinic tangencies and Newhouse attrac-
tors which support some invariant measure at least within
finite scales, thus being indistinguishable under finite res-
olution from more general “real” attractors [2,16].

We will focus on the case where there is only a finite
number of coexisting attractors. This is not a restriction,
because for compact spaces the finiteness of the number of
effective attractors follows. Indeed, it is only possible to fit
a finite number of non-overlapping balls of radii bounded
from below in a compact space. Furthermore, for the case
of randomly perturbed dynamics we shall deal with it can
be proven that the system has only a finite number of
invariant physical measures [17]. Therefore, we represent
the set of coexisting effective attractors by {Λi}N

i=1, a fam-
ily of pairwise disjoint compact sets, i.e. Λi ∩ Λj = ∅, for
i �= j. Another important fact is that we also assume that

1More generally, M is a Riemannian manifold.

the union of the basins of attraction covers every point of
the whole phase space, up to a zero Lebesgue measure set.
So we write

m

(

M

∖ N
⋃

i=1

W s(Λi)

)

= 0, (1)

where m denotes Lebesgue measure and W s(Λi) the basin
of attraction of Λi. This plays a very important role in
the definition of the hopping process between different at-
tractors, because the trajectories are always expected to
converge to some attractor. The boundary between basins
of attraction is a zero Lebesgue measure component, the
so-called basin boundary, which we denote by ∂. The basin
boundary plays a fundamental role in the hopping process,
as we shall see in what follows.

Random perturbations. – We now perturb the dy-
namics exhibiting multiple attractors by assuming physical
random perturbation; see [17] and appendix D of [18] for a
formal definition. Roughly speaking we add bounded ran-
dom uniformly distributed noise to the dynamics. That
is, given the deterministic system f defined as before, we
consider the dynamical system

F (xj) = f(xj) + εj, (2)

with ||εj || < ξ, where εj is the random vector of noise
added to the deterministic dynamics at the iteration j,
and ξ is its maximum amplitude. We require the noise to
asymptotically cover uniformly a ball around the unper-
turbed dynamics, representing the idea that the perturba-
tion has no preferential direction and amplitude. The orbit
thus jumps from x to f(x) but misses the point at random
with the conditional probability of finding the perturbed
orbit in an ξ-neighbourhood of f(x) given x, see [19] for a
comprehensive treatment of this topic.

Escape. – If the amplitude of the perturbations is
small enough, an orbit in the domain of attraction
approaches the attracting set, wanders around without
escaping and is expected to be trapped there forever.
Although the trajectory may seem very intricate, it is ac-
tually well described from a statistical perspective. In
these cases, one has a unique invariant ergodic probabil-
ity distribution representing a given attracting set [17].
If the system is stochastically stable, such distributions
for the randomly perturbed system approach those of the
deterministic one as the amplitude of the perturbations
decreases to zero. The dynamics inside the basin can be
described as that of a closed system if the amplitude of
the perturbations is small enough [6]. When the ampli-
tude of the noise increases beyond a threshold ξ0 the at-
tracting sets lose their stability. This effect can be seen
as the introduction of a hole I∂ = I∂(ξ) in the basin by
which the orbits can escape from the domain of attrac-
tion; see [6] and further references therein for the general
setting. Under some assumptions it is possible to estimate
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the size of such a hole, or its measure µ(I∂) > 0 [6]. For
one-dimensional systems rigourous results in this direction
have been obtained with a different approach [9].

Hopping process. – Now we are ready to translate
the problem of noise induced escape from pseudo attrac-
tors into that of a closed system with a hole I∂ , or a recur-
rence problem. We call pseudo attractors the sets where
the orbits remain trapped for some amount of time before
escaping due to noise. Rigourously speaking they are not
attractors or attracting sets, since the invariance condi-
tion is not fulfilled. In our context, a pseudo attractor A

is a quasi-invariant set when the amplitude of the random
perturbations is increased beyond ξ0. With the assump-
tion above we can describe our dynamics and the escape
from a single attractor as xj+1 = F (xj) if xj ∈ A or es-
cape if xj ∈ I∂ . We do not define the dynamics in I∂ as it
is irrelevant to our discussion, hence when the orbit falls
into I∂ we stop considering it. However, we allow the tra-
jectory to come back from the hole to A. If so, we restart
the process of counting the time in A by neglecting the
number of iterations that it had spent in I∂ .

Similar arguments apply to systems with many coexist-
ing pseudo attractors Ai for which eq. (1) holds. In such
dynamics, when a trajectory falls into the i-th hole I∂i

there is the possibility of swapping basins. Using a Markov
assumption we argue this to be equivalent to restarting the
process. Although for the ith hole there is a distinct mea-
sure µi(I∂i

) > 0, according to our assumption we treat all
holes qualitatively in the same way. Ignoring the depen-
dence on i we simplify the recurrence in probability space
to the ith interval by dropping the index i. We are thus
characterising the dynamics in terms of a representative
hole I∂ with average measure µ(I∂). Correspondingly we
reduce the sojourn time distribution of the hopping pro-
cess to the statistics of the time intervals that a random
orbit takes to access the representative hole I∂ . Further-
more, we assume the general basin property to hold, which
tells us that up to a set of zero Lebesgue measure the time
averages of orbits in the basins of attraction converge to
the space average with respect to the invariant measures
supported on the attractors; see Chapt. 1.6 in [18].

Pseudo stickiness. – Let us now look further at the
microscopic dynamics in order to understand the overall
statistical behaviour of the noise induced hopping pro-
cess between different attractors. In particular we shall
explore its analogy with non-hyperbolic Hamiltonian dy-
namics where stickiness plays a fundamental role for ex-
plaining the statistical dynamics.

To set the scene let us forget about the noise for the
moment. Recall that Hamiltonian non-hyperbolic dynam-
ics is characterised by elliptic orbits, whose eigenvalues
are purely imaginary. These orbits are surrounded by
complex structures formed by marginally stable periodic
orbits, known as Kolmogorov-Arnold-Moser (KAM) in-
variant tori or islands, as well as regions of chaotic mo-
tion. Large islands are surrounded by smaller ones which,

on the other hand, are surrounded by even smaller ones,
repeating this pattern on smaller scales ad infinitum. Tra-
jectories starting in the chaotic region exhibit intermittent
dynamics: they spend long sporadic periods of time per-
forming almost regular motion near the borders of the
islands before escaping to the chaotic sea again. Even
small islands can have a great impact on the dynamics
of an orbit. Given the hierarchical structure of the phase
space, when an orbit eventually escapes from the neigh-
bourhood of an island it may spend some time wandering
in the chaotic sea before it gets trapped once more by the
same or another island. This effect, generally known as
stickiness [12], slows down the dynamics. Among its sta-
tistical signatures one typically observes power-law decay
of correlations and anomalous diffusion [10].

Uniformly hyperbolic dynamics, on the other hand, is
characterised by exponential-like laws. Roughly speak-
ing a system is called hyperbolic if at each point on the
attracting set distances are contracted or expanded with
exponential rate. If the rate of convergence does not de-
pend on the point, the system is called uniformly hyper-
bolic [18]. In what follows we argue that, from a statistical
point of view, in our case the presence of random per-
turbations destroys uniformly hyperbolic behaviour. That
is, the perturbations destroy uniform contraction and ex-
pansion rates, therefore exponential statistical signatures
are lost. Furthermore, when the noise amplitude is set
above a threshold, the orbits can escape from the attract-
ing sets as explained in the previous section “Escape”.
The general statistical effect is similar to that observed in
non-hyperbolic Hamiltonian systems. Namely, the pseudo
attractors behave in a manner similar to the KAM islands,
where the orbits perform an almost regular motion for a
limited time interval. The presence of noise furthermore
washes out fine-scale structures of the phase space. Thus,
the trapping regions of small attractors have less but non-
negligible importance, since the orbits might stay inside
them only for a short time by performing almost regular
motion before escaping again. Once an orbit escapes from
a pseudo attractor, it undergoes an erratic motion until it
falls again into the same or another trapping region. Al-
though some of the trapping regions may be very small,
yet they have great influence on the statistical character-
isation of the dynamics because, just like small KAM is-
lands in the case of non-hyperbolic dynamics, every pseudo
attractor has a stickiness-like effect. An important differ-
ence nevertheless is that for the dissipative case, the at-
tractiveness to a nearly invariant sets determines the type
of diffusion. The mean square displacement is thus ex-
pected to show a slower diffusive dynamics compared to
Hamiltonian systems.

Sojourn time distribution and hyperbolicity. –

In the previous sections we focused on the connection be-
tween a hopping process and escape in a dynamical system
with holes. As a consequence, the sojourn time distribu-
tion for the hopping process given by the distribution of
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escape times P (t) for a system with holes depends on the
dynamics in the pseudo attractors (i.e. the sets Ai) gov-
erned by their hyperbolic properties. We consider two
“extreme types” of dynamics: on the one side, the escape
of orbits from sets in uniformly hyperbolic dynamical sys-
tems has been shown to follow an exponential time distri-
bution. On the other side, escape in Hamiltonian systems
with mixed phase space yields power-law tails [12,20–22].

Now suppose that in a given dynamical system we could
somehow control “how hyperbolic” it is. We might then
switch the escape time distribution between P (t) ≈ ae−αt

and P (t) ≈ bt−β , where the parameters a and b depend on
the hyperbolicity of the dynamics. They are determined
by the dynamics in the pseudo attractors, or more gen-
erally, in the set with a hole from where the trajectories
escape. For uniformly hyperbolic systems the parameter a

is large and the dynamics in the pseudo attractor has hy-
perbolic characteristics. Therefore, we have a hyperbolic
recurrence time distribution to I∂ , and the asymptotic de-
cay of the corresponding escape times is exponential. On
the other hand, when the non-hyperbolic component of
the dynamics is increased, the parameter b gains impor-
tance and the diffusion of the random orbit in the sup-
port of the conditionally invariant measure2 experiences
a stickiness effect, resulting in a slower distribution of re-
currence times to I∂ with a power-law tail. Such an in-
crease of non-hyperbolic characteristics under parameter
change may be the result of homoclinic tangencies with
highly non-uniformly hyperbolic properties [16,18]. Since
we deal with dynamics under finite resolution, we can-
not distinguish them from the other attractors. Note that
this behaviour should be independent of the noise ampli-
tude within some range of it, because its amplitude will
control the number of pseudo attractors, but the type of
escape should be controlled by the hyperbolicity of the
system. In the next section we present numerical evidence
supporting our arguments, showing that for systems close
to the non-hyperbolic regime the escape time distribution
indeed has the power-law signature of non-hyperbolicity
rather than being exponential as expected for uniformly
hyperbolic dynamics.

Numerical results. – We illustrate our results by sim-
ulations of the perturbed system defined by F (xj , yj) =
f(xj , yj)+(εx,j , εy,j) with uniformly distributed i.i.d. ran-
dom noise. For f we choose the single rotor map [13]

f

(

xj

yj

)

=

(

xj + yj mod 2π

(1 − ν)yj + f0 sin(xj + yj)

)

, (3)

with x ∈ [0, 2π], y ∈ R and damping parameter ν ∈ [0, 1].
When ν �= 0 the dynamics is dissipative. In the strongly
dissipative limit ν → 1 this model shows uniformly hyper-
bolic statistical properties, at least from the perspective

2The conditional measure is defined such that, for each iteration,
when the set A loses a fraction of its orbits to the hole, we renormalise
its measure by what remains in A; see [6] for details.
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Fig. 1: (Colour on-line) (a) Probability density function P (n, y)
at position y for different iteration numbers n. An ensemble
of 106 random initial conditions uniformly distributed around
x = y = 0 was iterated by the map eq. (3) randomly perturbed
by noise of level ξ = 0.06 and dissipation ν = 0.002. The
lower (orange) lines display fits with Gaussian distributions for
the three smaller n, the upper (dark green) lines are stretched
exponential fits with eq. (4). The inset shows a blowup of two
tails. (b) The black graph depicts a representative time series of
the noisy system for ν = 0.02 and ξ = 0.2. The corresponding
result by our eigenvalue criterion to identify pseudo attractors
(see text) is given by the red line. The plateaus at y = 30 reveal
pseudo attractors, which coincide with the visual identification
of localisation in the time series.

of effective attractors [1]. Conversely, when ν → 0 the dy-
namics approaches the non-hyperbolic Hamiltonian limit,
and under finite-resolution dynamics there is an increase
of the number of periodic attractors [1,2]. For ν = 0 we re-
cover the area preserving standard map with Hamiltonian
dynamics [23]. Therefore, we can think of ν as a control
parameter measuring how far the dynamics is away from
the non-hyperbolic regime. We use f0 = 4.0, which results
in multiple attractors when ν �= 0 [1]. At this parameter
value and ν = 0 the standard map displays superdiffusion,
due to the existence of accelerator modes [24].

If we evolve our system under the presence of random
noise beyond a certain amplitude ξ ≥ ξ0 the attracting sets
lose their stability, as discussed in the section “Escape”.
Note that each attractor may have a different value of
minimum noise amplitude such that escape takes place,
which is proportional to the size of their basins of attrac-
tion. We choose as a global ξ0 the minimum value for
the escape from the largest trapping region. For ξ ≥ ξ0

escape from the attracting sets consequently gives rise to
diffusion of trajectories through the phase space.

Figure 1(a) shows the time dependence of the y-position
probability density function of such a process. It confirms
our hypothesis that diffusion of trajectories induced by
random perturbations indeed takes place. While at first
view the included fits to Gaussian distributions seem to
match well to the simulation data, the inset shows devia-
tions in the tails especially for long times. This deviation
will be explained later on by matching the data with a
stochastic theory. Note also the existence of a periodic
fine structure, which reflects the spatial distribution of
the attracting sets along the y-axis [1]. Analogous results
have been obtained for simulations under different levels of
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random noise, for different dissipation parameters ν, and
also for different values of f0.

For general systems a rigourous investigation of the so-
journ time distribution and the identification of pseudo
attractors can be a very difficult task [9,17]. Even from
the numerical point of view the fact that, a priori, nei-
ther the physical nor the conditionally invariant measures
are known can represent an obstacle to the identification
of pseudo attractors. A way to detect whether an orbit
is trapped in the trapping region of some pseudo attrac-
tor for a period of time is given in terms of finite-time
Lyapunov exponents. Equivalently, one can calculate the
eigenvalues of the Jacobian matrix of F along the orbit. As
a consequence of meta-stability of the pseudo attractors,
while an orbit remains trapped the maximum eigenvalue
of the Jacobian has, on average, magnitude less than one;
see Theorem V1.1 in [25] for a rigourous discussion on
characteristic exponents in the case of random transfor-
mations. Figure 1(b) illustrates our criterion for the ran-
dom dynamical system eq. (3) where we have, without loss
of generality, plotted y = 30 when a pseudo attractor is
identified and y = 20 otherwise. Also without loss of gen-
erality we only consider trajectories that remain trapped
for more than 20 iterations.

Once a proper identification of the different dynamical
regimes, i.e. trapped or wandering, is obtained, we are
ready to statistically analyse these different behaviours.
We start by computing the probability distributions for
the times an orbit stays trapped for n < t iterations in
a pseudo attractor. For a range of larger values of ν in
our simulations we observe a predominantly exponential
escape, as was to be expected [12,20–22]. However, when
the damping is decreased below ν = 0.02 the probability
distribution is roughly described by a power law, similar
to the case of non-hyperbolic Hamiltonian dynamics [21].
In fig. 2(a) we show the probability distributions of es-
cape times from pseudo attractors, or equivalently, the
first recurrence time distributions to I∂ , for fixed small
dissipation ν but different noise amplitudes ξ. Approx-
imately up to times t < 300 the escape time distribu-
tions match reasonably well to power laws with exponents
around β = 1.95 as shown in the figure. This will be jus-
tified later by matching all data consistently with a the-
oretical prediction. The value is in agreement with the
range of exponents 1.5 ≤ β ≤ 3 obtained analytically for
trapping regimes in bounded Hamiltonian systems [26].

Although the precise value of the noise escape threshold
ξ0 depends on the parameters f0 and ν, for amplitudes
ξ ≥ ξ0 the existence of a power-law decay is independent
of the amplitude of the noise. This is not shown here
but observed in further simulations. When we decrease
ξ the orbit typically takes longer to escape, consequently
the probability distributions are stretched to longer times.
In fig. 2(a) we observe a cross-over to exponential laws
which changes with ξ, as is highlighted by the inset. The
most important result of this analysis is that when the
dynamics is near the non-hyperbolic Hamiltonian limit,
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Fig. 2: (Colour on-line) (a) Double-logarithmic plot of the
probability distribution P (t) of escape times t for an orbit to
stay trapped in a pseudo attractor for n < t. The map eq. (3)
was iterated 109 times for dissipation ν = 0.002 and different
values of the noise amplitude ξ. The dashed line represents
a power-law decay with exponent β = 1.95. The inset shows
the corresponding semi-logarithmic plot. (b) Mean square dis-
placement 〈y2(n)〉 for the coordinate y as a function of time n.
An ensemble of 106 initial conditions was iterated by the map
eq. (3) for different amplitudes ξ of random noise and fixed
small dissipation ν = 0.002. The lower bold line corresponds
to a power law with exponent γ = 0.95, the upper dashed line
to an exponent γ = 0.85.

i.e. for small dissipation parameters ν, the behaviour of
diffusive trajectories indeed has, from the statistical point
of view, non-hyperbolic characteristics. This is what we
shall address next.

In order to understand the type of diffusion process we
are dealing with, we computed the mean square displace-
ment 〈y2(n)〉 for the coordinate y, the relevant one for
diffusion, as a function of time n. The two lines shown in
fig. 2(b) represent power laws 〈y2(n)〉 ∼ nγ with exponents
γ < 1. They reveal power-law behaviour for the data up
to approximately t < 300 by providing upper and lower
bounds for the exponents. For the corresponding subd-
iffusive hopping process among the different basins the
power laws persist independently of ξ but with a slightly
varying exponent. Changing other parameters such as ν

typically generates the same behaviour. This finding is in
agreement with our analogy to non-hyperbolic Hamilto-
nian dynamics generating stickiness to pseudo attractors
as discussed in the section “Pseudo Stickiness”. Note that
for t > 1000 all power-law exponents of 〈y2(n)〉 are close
to zero. This is due to the fact that the fastest particles
have reached the region in phase space where the pseudo
attractors of the map cease to exist [1] meaning they can-
not move any further, and trivial localization sets in.

In the area preserving standard map superdiffusion has
successfully been modeled by stochastic Continuous Time
Random Walk (CTRW) theory [27]. As our randomly
perturbed dissipative model displays subdiffusion, here
we test the subdiffusive CTRW version put forward in
refs. [11,14,15] to explain our simulation results. This the-
ory predicts that if the mean square displacement exhibits
a power law with exponent 〈y2(n)〉 ∼ nγ , the respective es-
cape (or waiting) time distribution must be P (t) ∼ t−(γ+1)

on corresponding time scales. It furthermore predicts
that the position distribution function of the subdiffusive
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process must approximately be of the stretched exponen-
tial form3:

P (n, y) ∼ exp
(

−c(n)y2/(2−γ)
)

. (4)

The lower straight line in fig. 2(b) representing a power
law with exponent γ = 0.95 matches well to the mean
square displacement of ξ = 0.06. The dashed line in
fig. 2(a) yields the corresponding power law with exponent
γ+1 = 1.95 as predicted by CTRW theory, which matches
well to the numerical result for the escape time distribu-
tion for the same ξ = 0.06 in the regime of t < 300 where
the system is subdiffusive. Finally, the stretched exponen-
tial fits for ξ = 0.06 in fig. 1(a) have all been performed
with eq. (4) by using the very same value of γ. Evidently,
these fits match much better to the numerical results in
the tails than the corresponding Gaussian distributions,
at least for long enough times. We thus conclude that the
subdiffusive CTRW of refs. [11,14,15] consistently explains
our numerical findings, thus confirming theoretically that
our randomly perturbed dissipative dynamics generates
a subdiffusive process that is well-known in stochastic
theory. This is quite surprising, as we did not take
the strongly non-uniform distribution of pseudo attractors
along the y-axis into account but just averaged over all of
them by performing a kind of mean-field approximation.

Conclusion. – We have investigated the hopping pro-
cess of points generated by randomly perturbed dissipa-
tive dynamics. We have set up a theoretical framework
that describes escape in terms of a closed system with a
hole. Escape occurs when the support of the conditional
invariant measure of one pseudo attractor overlaps with
the neighbourhood of another basin boundary. In this set-
ting the sojourn time distribution becomes the recurrence
time distribution of the orbit wandering to a hole. We then
showed by simulations that for the randomly perturbed
weakly dissipative single rotor map the distribution of so-
journ times is described by a power law up to relevant time
scales, in contrast to an exponential distribution for strong
dissipation. We found that the hopping process among
different basins is subdiffusive for a wide range of pertur-
bation strengths. Using only the subdiffusive power-law
exponent as a fit parameter, we showed that stochastic
CTRW theory consistently explains all of our simulation
data by revealing stretched exponential tails in the po-
sition distribution function. We conclude that bounded
random perturbations generate a kind of non-hyperbolic
stickiness in the diffusion process for the considered dis-
sipative dynamics which leads to non-Gaussian position
distributions, power laws in the escape time distributions,
and subdiffusion. It would be interesting to investigate
whether similar phenomena occur in other diffusive ran-
domly perturbed deterministic dynamical systems.

3In detail the asymptotic CTRW results for P (n, y) look a bit
different, cf. eq. (51) in ref. [15]. But we have checked that the
stretched exponential dominates the expression for our γ and at
least large y.
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