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We study the consequences of deterministic chaos for diffusion-controlled reaction. As an example,
we analyze a diffusive-reactive deterministic multibaker and a parameter-dependent variation of it.
We construct the diffusive and the reactive modes of the models as eigenstates of the Frobenius—
Perron operator. The associated eigenvalues provide the dispersion relations of diffusion and
reaction and, hence, they determine the reaction rate. For the simplest model we show explicitly that
the reaction rate behaves as phenomenologically expected for one-dimensional diffusion-controlled
reaction. Under parametric variation, we find that both the diffusion coefficient and the reaction rate
have fractal-like dependences on the system parameterl998 American Institute of Physics.
[S1054-150(98)02102-9

Matter is most often the stage of reactions which evolve v/

on a reactive time scale intermediate between the long )\max~7 |na, (1)
time scale of hydrodynamic transport and the short time .

scale of microscopic chaos. This chaos is generated by the Where/” is the mean free path between the collisions, and
collisions between the atoms and molecules of the fluid is the mean velocity of the particlés!? Consequently, the
beyond a temporal horizon caused by the Lyapunov in- time scale over which the dynamical instability develops in
stability of motion. Under nonequilibrium conditions, the motion of a particle due to the collisions with the sur-
long-time trajectories organize themselves in phase space rounding particles is of the order of the inverse of the maxi-

to form fractal structures and unusual invariant or con- mum Lyapunov exponent which takes the valligyaos
ditionally invariant measures, the consequences of which N)‘r;;xw 10 s for a gas at room temperature and pressure.
have just started to be explored. In this perspective, we The microscopic time scale is in contrast with the mac-

study here simple models of diffusion-reaction processes r45copic time scale of transport and reaction processes. This
in order to confront the phenomenology with the new eqence of two different time scales is an essential feature in
approach based on deterministic chaos. the recent establishment of quantitative relationships be-
tween macroscopic transport and microscopic chaos in both
| INTRODUCTION the thermostated—system. and the escape-rate
approache$>%13-15|ndeed, in both approaches transport
Irreversible phenomenological equations such as th_go_efficients_ are related wifferencesetween two character-
diffusion-reaction equations describdstic qua_ntltles of_ chaos: The thermostated-_system method
a\{vorks with the difference between the maximum and the
gbsolute value of the minimum Lyapunov exponeht,
whereas the escape-rate approach employs the difference be-
1tween the positive Lyapunov exponents and the
Kolmogorov—Sinai entropy>*~1°In this sense, the non-

Navier—Stokes or
transport and reaction processes in fluid flows or chemic
reactions occurring on macroscopic spatio-temporal scale
For instance, spatial inhomogeneities of sizen the density

are damped by diffusion over a time scale of the order o

Tai~ L /D, whereD is the diffusion coefficient. In typical equilibrium property of transport is related to a slight disbal-
laboratory experiments, the sizeof the inhomogenesities is ance between the dynamical instability, which is the cause
of the order of millimeters, centimeters, or larger so that theand the induced temporal disorder, wr;ich is the effect. At,
relaxation timeT g IS macroscopic. ) , equilibrium, the effect exactly compensates the cause. Away
Recent works have studied the relationship betwee,, oquilibrium, temporal disorder is slightly reduced to the
these macroscopic processes and the much faster processyah it of transport, which appears as an extra effect of the
chaos in the microscopic motion of atoms or molecules inyynamical instability beside the temporal disorder. In this
the fluid*~" The defocusing character of the collisions be-scheme, the fluid appears at the stage of a highly chaotic
tween the particles of the fluid is at the origin of a very highmotion of its constituent particles, which animates different
dynamical instability in the microscopic motion. This insta- possible transport processes if the system is maintained out
bility, which is a major phenomenon at the center of thegt equilibrium.
current interest, is characterized by a spectrum of positive  The hypothesis of microscopic chador the chaotic
Lyapunov exponents, as shown by many recent numericalypothesi&® replace the old stochastic hypotheses in non-
and analytical studie&:'® The maximum Lyapunov expo- equilibrium statistical mechanics. Previously, the stochastic
nent of a dilute gas of particles of diameteis typically of  hypotheses assumed that transport processes arise from sto-
the order of chastic effects, such as the Langevin white noise which has
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an infinite Kolmogorov—Sinai entropy per unit time. How-
ever, these processes thus have a much larger temporal dis-
order than allowed by Newton’s deterministic equations of
motion!’ The new chaotic hypothesis has the enormous ad-
vantage of assuming a temporal disorder which is now com-
patible with the determinism of a microscopic Newtonian
dynamics. In this regard, the chaotic hypothesis overwhelms
the previous stochastic hypotheses, which nevertheless re-
mains of great usefulness in their domain of validity. FIG. 1. Examples of reactive Lorentz-type modé®:on a regular lattice;

The purpose of the present paper is to describe several) on a random lattice.
consequences of the hypothesis of microscopic chaos in
diffusion-reaction systems. This class of physico-chemical
processes has not yet been explored in the perspective of . _ . .
understanding their kinetics on the sole assumption of microP0int particle undergoes elastic collisions on hard disks
scopic chaos, without involving stochastic Langevin or birth-Which are fixed in the plane. The disks may form a random
and-death processes. The diffusion-reaction systems are p&- regular configuratiotFig. 1). A fraction of the disks are
ticularly important in various fields of chemical physics, supposed to be catalysts Whgre the point parFche changes its
such as chemical kinetics, homogeneous and heterogenectiéte: Or color, fromi to B or vice versa at the instant of the
catalyses, pattern formation in nonequilibrium reactions ang°!lision. The mass of the particle is assumed to be the same
in morphogenesis, recombination processes in solid or liquid! POth statesA andB. The phase space coordinates of each

phases, as well as high-energy reaction processes in astiarticle are given by its position, its velocity, and its color
physical system& (X,y,vx,vy,C) with ce {A,B}. Since energy is conserved at

We shall focus here on the simplest diffusion-reactionthe elastic collisions, the magnitude of the velocity is a con-

(©)

process with a linear chemical reaction law, stant of motiony = \/vxz-i—vyz, so that the coord_inates reduce
to (x,y,¢,c)=(X,c), wherep=arctang,/v,) is the angle
A=B, (20 between the velocity and theaxis.

which already provides a nontrivial dynamics. As a vehicle ~ The motion induces a time evolution of the phase-space
of our study we shall use multibaker models, which are deProbability densities, or concentrations, for each color,
terministic versions of discrete Markov processes. The deter- f(X,A)
ministic dynamics of a multibaker has therefore the same (X)= ’
finite and positive Kolmogorov—Sinai entropy per unit time f(X,B)
as the corresponding discrete Markov process. The models
we propose are spatially extended generalizations of a bakefhe mean phase-space density, defined by the average of the
type model of isomerization previously studied by Elskensconcentrations, does not distinguish between the colors.
and Kapral® Thus, we may expect that

This paper is organized in the following way: In Sec. Il, ~ 1
we construct multibaker models of diffusion reaction by FX) = 2[f(XA)+1(X,B)] )

starting from a diffusive-reactive Lorentz gas. In Sec. Ill, weeyolves in time exactly as in the non-reactive Lorentz gas, as
focus on the diffusive properties of the multibakers. By em-stydied elsewher®-??The dynamics of reaction should ap-

ploying quasiperiodic boundary conditions we show that forpear in the difference between the concentrations
the simplest model the diffusive properties are the same as

those of the previously discussed dyadic multibaker of diffu- ~ 9(X)=F(X,A)—f(X,B), (5

sion. We then demonstrate that under parametric variation Qfich is expected to follow a macroscopic relaxation toward
this model the diffusion coefficient exhibits a self-similar ;¢4 if there is equipartition of particles between both colors.
structure reminiscent of fractal curves. In Sec. IV, we de- It has been explained elsewhere that the flow dynamics

scrib_e_the react_ive properties. _With guasiperiodic bo_undary)f the Lorentz gas can be reduced to a Birkhoff mapping
conditions, we first study the simplest model and derive thg,om collision to collision?2 Each collision can be repre-

dispersion relation of the chemiodynamic modes. We explicggnteq by two variables: the anglegiving the position of
itly construct the phase-space distribution of these mOdeﬁ'npact on the perimeter of the disk as= cosd,y=sin6) and
and define the reaction rate by comparison with phenomenol, angles between the velocity after the collision and the
ogy. We then show that the reaction rate behaves in a highlyymal at impact. The sine of the velocity angte=siné
iregular manner if we consider the parameter-dependenpyether with the position anglé are the so-called Birkhoff
model. Conclusions are drawn in Sec. V. coordinates, in which the mapping is area-preserving. All the

: 3

Il. DETERMINISTIC MODELS OF DIFFUSION- collision events with the disk of labélare thus represented
REACTION PROCESSES by the rectangle
A. Definition of the models Ri={(0,w,);: 0<6<27w, -—l<w=<+1}. (6)

In order to motivate the introduction of the multibaker The dynamics of collisions can therefore be written as the
models, we first consider a reactive Lorentz gas in which @irkhoff mapping
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1= w L0 1 2 3 4 5 6 .. neighboring catalysts in less than two dimensions, but not in

systems of dimensions higher than two. In particular, in a

L=3 D . D D . D D . one-dimensional system the reaction rate should behave as
D

n] nlnisl [={=g . a0

where D is the diffusion coefficient and. is the distance

between the reactive sites or catalysts.

L=5 D . D I:] D I:] . I:] A main goal of our work is to investigate the dynamical
properties of our diffusion-reaction model in order to know
whether this expected macroscopic behavior is confirmed

t=¢ [ BT ILCICI0T0E] B -~ from the microscopic dynamics or not. We shall also con-
sider a parametric variation of this model with a more com-

i plicated dynamics. This is due to an extra dependency on a
shift parameter which is introduced when the half squares are
glued back into the chain. When this continuous parameter
varies it induces topological changes in the trajectory dy-
namics which are reminiscent of the topological changes in-

FIG. 2. Geometry of a reactive multibaker or bakery map for various dis-
tancesL between catalysts.

(On+1,®ne1ln41:Cne 1) =®(0n,@0,10,Cn), (7) " duced by varying the disk radius in the Lorentz &2 The
which is known to be area-preserving’ time-reversal Symmeparametric extension of the multibaker model shows that the
ric, and of hyperbolic character. diffusion coefficient as well as the reaction rate may vary in

A caricature of this mapping is provided by a multibaker @ highly irregular fashion as a function of a parameter. This
model (Fig. 2) in which we suppose that the rectangular do-iS an important consequence of deterr_nmlstu_: chaos which
mains Eq.(6) representing the disks are replaced by squareg/ready appears on the level of one-dimensional maps, as

will be discussed in Sec. Il B.
S={(x,y,l): 0=x<1, Osys1}, (8)
. B. The Frobenius—Perron operator and quasiperiodic
wherel 7 is the label of the square. Each square of the,gyndary conditions
multibaker model corresponds to a disk of the Lorentz gas. . , .
Now, the collision dynamics is simplified by replacing the ~ Sinceé Boltzmann’s work, it is well known that transport
complicated Birkhoff map Eq(7) by a baker-type map with and reaction-rate processes should be conceived in a statisti-
horizontal stretching by a factor of 2, followed by cutting the cal sense becgusg the individual trajectories are af_fected by
elongated square into two. The collisions from disk to diskthe famous Poincareecurrences. We therefore consider the
are replaced by jumps of the particle from square to squaere evolution of stat|st|.c.al ensembles of trajectories as rep-
according to the transition rule—1—1 if x<1/2 andl—|  resented by the probability densities E8g). They evolve in
+1 if x>1/2 between next-neighboring squares. The squaredMe according to the Frobenius—Perron equation
are arranged such thgt they form a one-dimensional chain. frra(,y,1,0)=f D L(xy,l,0)]
One out ofL squares is assumed to be a catalyst where the
golor changes fros= A (respectivelyB) to its complement E(ﬁft)(x,y,l ,c)  (te?). (11

c=B (respectivelyA). The map of the model is thus We choose quasiperiodic boundary conditions by assuming

that the solution of the Frobenius—Perron equation is quasi-

1 o S
(2X,X,| —1c¢'|, Osxs—- periodic on the chain with a wave numberMoreover, we
D(x,y,1,c)= 2 2 ) suppose that the solution decays exponentially with a decay-
A y+1 1 ’ ing factor y=exps where|x|<1 or Res<0,
2x—1,T,I+1,c’ , §<xsl
_ fu(x,y,1,¢)~ x'exp(ikl). 12
wherec’=c if I=0,=L,*2L,... andc’=c otherwise. ' X exH

This map is area-preserving, time-reversal symmetric, andhe decay rates is calculated by solving the eigenvalue
chaotic with a positive Lyapunov exponent. =In2 and a  problem of the Frobenius—Perron operator. We note that the
negative one\_= —In2, such as the multibaker map.2° Frobenius—Perron operator is in general nonunitary so that
In our model, the reaction is controlled by the diffusion root vectors associated with possible Jordan-block structures
if the reactive sites are diluted in the system. This importanfnay exist beyond the eigenvectors. We shall focus here on
case of chemical reactions has been much studied in the lithe eigenvectors because they control the slowest decay on
erature since Smoluchowski’'s seminal wéfKt is known  the longest time scaléé*®
that the macroscopic reaction rate is determined by the time For quasiperiodic solutions, the Frobenius—Perron op-
taken by particles to diffuse toward the reactive site. A crosserator reduces to the following Frobenius—Perron operator
over occurs at dimension two which is the Hausdorff dimen-Q, which depends on the wave numbeand acts on func-
sion of a Brownian path. Accordingly, the flux of reactantstions which are defined only ih successive squares of the
toward a catalyst is sensitive to the presence of the nexihain,
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1 X kL 1 x+1
fir1(X,y,0c)=146 57V fy E,Zy,l,c +e -6 y=35 fy T,Zy—l,L—l,c ,
1 X 1 x+1
fii1(x,y,10)=20 E—y fi E,Zy,z,c +6 y—E fi T,Zy—l,Op ,
1 X 1 X+1
N f'[+l(x!y121C): 0(5 _y) ft<512y13ac +6 y— E ft(TaZV_ 1,1,0) ’
Q= 13
1 X 1 X+1
ft+1(x,y,L—2,c)=0 E—y ft E,Zy,L—l,c + 6 y—z ft T,Zy—l,L—B,c ,
KL 1 X - 1 x+1
fir1(x,y,L—1,c)=€e""6 57y fi E,Zy,o,c +6 y=35 fi T,Zy—l,L—Z,c .
\
|
We notice that there is a reaction, i.e., a change of color, for x V)= (O X
particles passing the cdl=0 so that a concentration with 71X Y) = (QTm) (%0Y)
| =0 andc appears in the second and in the last line. We also _ otk 2mil) g = _ X 2y
notice that there is a factor expikL) in the first line for the o 2 Y| %
particle coming from the previous segment of lengtim the
P . ] . . _ 1 X+1
infinite chain, where the concentration functions are multi- +e|(k+2wv/L)0(y_ _) M ,2y—1>,
plied by the factor expfikL). On the other hand, there is a 2 2
factor exp{kL) in the last line for the particle coming from (15)

the next segment where the concentration functions are mul- . . ) )

tiplied by exp{kL). Otherwise, this Frobenius—Perron opera-Wh'Ch is the Frobenius—Perron equation for the dyadic multi-

tor is the same as in the infinite dyadic multibaker modelP@ker map based on quasiperiodic boundary condtfons

studied in Refs. 23-25. The respective Frobenius—Perron operator has been analyzed
As we discussed in Sec. Il A, the presence of two chemiin detail elsewheré!*Its decay rates are

cal componentsc=A or B implies that the Frobenius—

- 27y
Perron operato@, acts on 2. functions which can be lin- Smi(K)=In Xm,(k)=—min 2+In C05< k+ T) (16)
early combined to separate the functional space in two
subspaces on which two decoupled Frobenius—Perron operaith m=0,1,2,3...,»=0,1,2 ... ,L—1, and with a degen-

tors would act. The first subspace is defined by Bjjwhere  eracy of (n+1). The eigenvectors
the Frobenius—Perron operator reduces to the diffusive 5
Frobenius—Perron operator of the multibaker map. The sec-  (Q® ¥m,) (X,y;K) =€y (x,y;K), 17
ond sybspace is defined b.y HG) Whlqh gives a d|ffe.rent and some root vectors have been constructed in Refs. 24 and
evolution operator of reactive type. Diffusive properties are__ . . :
o : . : . : 5 in terms of the cumulative functions
studied in Sec. I, while reactive properties will be discusse
in Sec. IV.

x y
oy = [ ax [ ay v, ¢y, 8
IIl. DIFFUSIVE DYNAMICS For small eno_ugh wave n_umbeks _these cumulative func-
o _ _ tions are continuous functions which are products of a mo-
A. Diffusive modes of the dyadic multibaker nomial inx with a nondifferentiable de Rham function yn

In this section, we consider the diffusive dynamics of theAccordingly, the eigenvectorsjo, are complex singular
dyadic multibaker model Eq9) with quasiperiodic bound- Measures for small enough .
ary conditions. The subspace of diffusion is defined by the ~We observe that the decay rate with=0 and »v=0
mean density of Eqi4). For hydrodynamic modes of wave Vanishes quadratically ds—0 in agreement with the ex-

numberk we thus write pected diffusive behavior,
- 1 k> k*
Ty D= 5RO LA+ fi(x,y.1LB)] soo(k)=In cosk=— 7~ 35+, (19

which shows that the diffusion coefficient B=1/2.
Eex;{i n(XY), (14 The nonequilibrium steady states corresponding to a uni-
form density gradieng for the mean density of Eq4) have
and the new function obeys the simpler evolution equation also been constructéllt has been shown that the nonequi-

14
k+ ZﬂTE |
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librium steady state of the infinite system corresponds to a

- . . . Ma(X) s
singular invariant measure represented by a continuous but 3 ’
nondifferentiable cumulative function _

X y 15
Fustxy )= [ “ax [ ay Tty ) : 7
0 0 t
=glxy+gxT(y), (20 N4
whereT(y) is the Takagi function obtained as a solution of / “
the iteratioR® Vi
5T(2y)+y, O=y=<} LAY
T(y)= (21 [y
3T(2y—1)—y+1, 3<y<Ll. s

The Takagi function is nondifferentiable because its formal

T =3, serves as a control parameter in the periodically continued piecewise
Lebowitz—McLennan type of formuta inear map,

a7 o .
dy & I, 22 . o _
striking analogies between the diffusive and the reactive
whereM (y) = (2y) (modulo 1, andj(y)==*1 if y<1/2 or  properties in regard to their parametric sensitivity.
y>1/2, respectively, is theimp velocity The singular char- For this purpose, we summarize the main methods and
acter of the diffusive steady state turns out to be a generdpsults concerning the parametric variation of the diffusive
feature in finite-dimensional deterministic chaos of large spadynamics in multibakers and in simple one-dimensional
tial extension, as shown elsewhéfe® maps. To study parameter-dependent transport in multibaker
Moreover, this singular character of the steady staténodels like Eq.(9) such one-dimensional maps are crucial,
measure plays a fundamental role in the explanation of thbecause they govern the dynamics of multibakers projected
entropy production of irreversible thermodynamics. In par-onto thex axis. We therefore start with a brief review on
ticular, the expected entropy production can be derived fronparameter-dependent diffusion in one-dimensional maps. We
the Takagi function in the case of the multibaker mM&phe  then show how all the methods and results obtained for one-
presence of this singularity solves the famous paradox of thdimensional maps carry over to a two-dimensional
constancy of the Gibbs entropy, which can be set up wheparameter-dependent multibaker which we introduce and
we do not recognize that the out-of-equilibrium invariantdiscuss at the end of this section.
measure is very different from the equilibrium one on fine
scales in phase space. '_I'he out-of-qu?lib_rium invaria_nt M3 Fractal forms in a Green —
sure becomes singular if the nonequilibrium constraints are ) ) ) _ )
imposed at distances larger than several mean free paths. Chains of one-dimensional chaotic maps are the simplest
This is probably a paradoxical aspect of the local equiIibriumdyne_‘m'claI systems in which deterministic diffusion can be
hypothesis that a nonequilibrium system appears in Ioca‘?tufj'ed? Oqe may think of them as determlnllstlc generali-
equilibrium on the largest scales of phase space althougF2tions of simple random walks on the real line, where the
intrinsic correlations exist on finer scales which are due tdull microscopic history of the particles is taken into account.
the chaotic dynamics. The singular character of the invarianil 9éneral, the microscopic dynamics is affected by changes
measure explains that there is an entropy production in larg&f S0me control parameters. Hence, in contrast to the discus-
nonequilibrium systems where the chaotic dynamics reSion of the previous section where no parameter has been

moves the signature of determinism down to extremely finvaried, we will be interested here in the resulting parameter
scales in phase space. dependence of the diffusion coefficiéntt—3>As mentioned

before, the parameters to be considered may be physically
related to, for instance, varying the density or the shape of
scatterers. An example of such systems is the chain of piece-
wise linear maps depicted in Fig. 3. This map is of the gen-
eral formx;, ;=M (X;), and it is periodic by satisfying the

In this section, we describe an important consequence afondition M 4(x+1)=M,(x) + 1. The slopea serves as the
deterministic chaos which shows up when a system parancontrol parameter and is trivially related to the Lyapunov
eter is varied. Under such circumstances, the diffusion coefexponent of the map via =Ina. The parameter-dependent
ficient of maps like a parameter-dependent multibaker exhibeliffusion coefficient can be obtained by the Green—Kubo
its a fractal structure by changing the parameter. In the samfgrmulal-23:32:35
way as outlined in this section, we will show later that the - 1
same behavior appears in the reactive transport properties of _{; : t _ T2
our parameter-dependent multibaker. We thus emphasize the D(a)—<1a(x)§0 Ja[Ma(X)]> 2<Ja(x)>’ 3

Kubo formula

B. Diffusion coefficients in parameter-dependent
models
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FIG. 4. (a), (b) Invariant probability densitieg ,(x) on the unit interval for the map of Fig. 3 modulo 1. The slopads2.5004 for(a) anda=3.49997 for
(b). (c), (d) Generalized Takagi functiorE,(x) for the same map a=3 in (c) and ata=4 in (d).

where the averagé)zfédxga(x)(-) has to be taken over step functions, although for arbitrary parameter value they
the invariant probability densitg,(x) on the unit interval. may consist of infinitely many step$33>°The sum of jump
ja(X) gives the integer number of boxes a particle has travelocities, as the second ingredient of the Green—Kubo for-
versed after one iteration starting at positioand is thus the mula Eq.(23), gives the integer displacement of a particle
parameter-dependent extension of the jump velocity introaftert iterations starting at initial positior. Since the sys-
duced in Eq.(22) above. Thus, the complete microscopic tem is chaotic, this function is highly irregular in To deal
dynamics is divided into two parts in E(R3): theintra-cell  with this quantity, it is more convenient to define functions
dynamicsthat is, the dynamics within a single box, which is T,(x) via
represented by the invariant probability density, and the
inter-cell dynamicgjiven by the sum of the jump velocities, dT, _ .
which contains the history of the particles travelling between WEZO JalMa(x)], (25)

the single boxes of the chain.

For computing the diffusion coefficient both parts can bewhich is a parametric extension of E22). The functions
treated separately. The invariant probability density is ob-T,(x) now give the integral of the displacement of particles
tained by solving the Frobenius—Perron equation for the maghich start in a certain subinterval, and they behave much
restricted to the unit intervaiVl ,(x) =M ,(x)(mod1), more regular inx than the sums of jumps. Employing
Ta(x)=lim;_..T,(x), it can be shown that these functions
are obtained in terms of the recursion relation

©

Qa,t+l(x):J dz04(2) S[x—Ma(2)]. (29)

To do this, Eq.(24) can be written as a matrix equation, Tai(X)=ta(x)+ ET‘,,It_l[l'\w/la(x)], (26)
. ' a @

where the Frobenius—Perron operator has been transformed
into a transition matriX:>>323¢For maps of the type consid- with t,(x) being determined bylt,/dx=j,(x) and by re-
ered here, exact transition matrices can be constructed whequiring thatT,(0)=T,(1)=0. T,(x) can be computed by
ever a so-called Markov partition exists. This is the case foiterating Eq.(26) numerically. For two special values of the
a dense set of parameter valie®n the real line. The in- slope the results have been plotted in Figs) 4nd 4d). The
variant probability density can then be calculated either byfunctionsT,(x) are self-similar on the unit interval and scale
solving the eigenvalue problem of the transition matrix,with the slopea. Fora=2, Eq.(26) appears as a special case
which in simple cases can be performed analytically, or byof Eq. (21). Therefore, functions likd 4(x) may be denoted
solving the Frobenius—Perron equation by iterating the tranasgeneralized Takagi functions
sition matrices numericall/. The numerically exact result for the parameter-

In Figs. 4a) and 4b), typical invariant probability den- dependent diffusion coefficient is shown in Fig. 5 fora
sities are plotted at two values of the slope. They are steg<8. Naively, one may have expected thHafa) increases
functions on the unit interval, where the regions of the func-monotonically by increasing the slope. But this is only the
tions being piecewise constant correspond to the single cellsase on a sufficiently coarse grained scale, wiigf&) can
of the respective Markov partitions. For piecewise linearin fact be qualitatively matched to the results of two simple
maps, the invariant probability densities should always beandom walk modeld® On a fine scale, howeve(a)
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FIG. 6. Dynamics of one cell of an area-preserving time-reversible multi-
05t 1 baker with a nontrivial parameter-dependehcérojection of the dynamics
onto the horizontal axis reduces the system to the symmetric one-
dimensional piecewise linear map shown to the left whichier0 is the

0 L L . L L Bernoulli shift.

FIG. 5. Parameter-dependent diffusion coefficibift) for the map of Fig. .
3 and blowup of the initial region. The main graph consists of 7908 singleHere, the two rectangles of the left and of the right half of the

data points, the magnification of 979. In both cases error bars are too smagiquare are “sliding” along the upper and the lower horizon-
to be visible. tal channel of the periodically continued map governed by a
parametemh, as shown in Fig. 6. It should be noted that for

shows a complicated structure with different regions exhib1=0-5 and shifting the coordinate system hy=0.5 the
iting different kinds of self-similarity. A numerical estima- Model reduces to the simple dyadic multibaker of E®).
tion shows that the curve has a fractal dimension which istThe dynamics of the probability density(x,y,!) of the full
very close to, but greater than one. multibaker ®(x,y,l) is determined by the Frobenius—
This highly irregular behavior db(a) is caused by cor- Perron equation THl(x,y,I):~ft[¢>g1(x,y,l)], where
relations of increasingly higher order in the microscopic dy-(I)h‘l(x,y,I) is the inverse map. A projection of this two-
namics of the map. For instance, in the initial regiondimensional Frobenius—Perron equation onto the unstable
2=<a=3, which has been magnified in Fig. 5, the fine struc-direction by integrating over the stablg direction via
ture can be physically explained by relating local extrema orpt(x,|)Efdy~ft(x,y,|)lu23 shows that the dynamics of the
the curve to characteristics of the microscopic scattering proprobability densityo,(x,!) is determined by the Frobenius—
cess in one box as it changes with the paramat? If  perron equation of the simple one-dimensional map included
strongerbackscatteringsets in by making larger, the curve  in Fig. 6, which is a kind of Bernoulli map shifted symmetri-
exhibits a local maximum, if strongéorward scatteringoc— cally by a heighth. This one-dimensional map governs the
curs, it goes through a local minimum. dynamics of the multibaker map projected on thexis. By
More generally, the fractal character Bf(a) can be extending the system periodically, we recover a chain of
understood by analyzing the Green—Kubo E29).****Two  one-dimensional maps of the type of the one shown in Fig. 3.

basic components in the formula are responsible for the fracconcerning time-reversibility, we follow the definition that
tal character of the curve: On the one hand, the difoSiOﬁhere must exist an involutiofs in phase Spac@oG:l,

coefficient is given in terms of sums of jumps, which, ac-which reverses the direction of time vi@e®-G=@ 140
cording to Eq.(25), are related to fractal generalized Takagi For the special case ®f taking multiples of 1/2 involutions
functions as shown in Figs(€) and 4d). This goes together G can be found which are related to a simple mirroring in
with the jump velocityj,(x) having a discontinuity which phase spac#.For generah, it can be shown that the system
varies with the parameter and which reveals in a sense the has strong time-reversible properties, although the existence
fractal character of the generalized Takagi functions. On thef an involutionG remains an open questiéh*°

other hand, a second source of irregularity are the stepwise To compute the parameter-dependent diffusion coeffi-
discontinuities in the density of the invariant measgegx)  cient of this multibaker we use that the projected dynamics is
as shown in Figs. (@) and 4b). The irregular behavior of the governed by a one-dimensional map, and thus we apply the
diffusion coefficient results from a combination of these ef-same methods as outlined above. The result is shown in Fig.
fects, which are connected in the Green—Kubo formula viaz, The diffusion coefficient is again a nontrivial function of
integrating the respective generalized Takagi functions ovethe parameten and shares many characteristics of the curve
the respective invariant density. Thus, actually this behaviopresented in Fig. 5, for example, a certain random walk-like
finds its origin in the nonrobustness of the topology of thebehavior on a coarse grained scieBut it also exhibits

trajectories under parametric perturbations. some new features, especially that the diffusion coefficient is
. . . . . constant in intervals 0-bm<h<1+m, meN,. This is due
2. A time-reversible area-preserving multibaker with to the fact that the transition matrices corresponding to re-

fractal diffusion coefficients spective Markov partitions, and thus the respective symbolic

The same phenomenon of a fractal diffusion coefficientdynamics of the map, do not change in this parameter inter-
appears in a parameter-dependent generalization of theal. It is worth mentioning that in contrast to the specific
diffusive-reactive multibaker model introduced abd¢@his  model of Fig. 3 the invariant probability density of the pro-
two-dimensional area-preserving map is sketched in Fig. §ected one-dimensional map here is always uniform for all
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coefficient can be zero with nonzero curréht®#2In this
regard, it is interesting to point out that drift currents which
are irregularly fluctuating by varying the bias have also been
observed numerically in other deterministic modéislore-
over, we notice that certain biased maps can be related to
so-called ratchet&*°

IV. REACTIVE DYNAMICS

A. Reactive modes of the dyadic multibaker

45F
st
35 |
3|
25t
2 b
15}
Ll
05t

D(h)

In this section, we turn to the study of the chemiody-
namic or reactive modes of our simple dyadic model @j.
of diffusion-controlled reaction. Contrary to the total number
of particles,Np+Ng, which is a constant of motion, the
numbers of particles of each chemical species are not con-
served. Accordingly, we should not expect that the reactive
FIG. 7. Parameter-dependent diffusion coefficibith) for the mulibaker ~ modes have a vanishing decay ratekas0. This is in con-
of Fig. 6 and blowup of the initial region. The main graph consists of 638¢rast to the diffusive modes which are related to the con-
data points, the magnification of 514. In both cases the single points have d | b f icl d f hich the d
been connected with lines, error bars are too small to be visible. serve tF’ta number of particles and for which the decay rate
(19) vanishes ak=0.

Here, we consider the subspace defined by the difference

between the particle concentrations in the multibaker,

parameter values di. Therefore, the only contributions to
the fractality ofD(h) come from the inter-cell dynamics as g(xy.H=1(xy.1LA) = T(xy.1.B). (27)
described by the Takagi functiofig(x). Thus, we employ the fact that the dynamics of the concen-

Along the same lines as above, we can also consideration difference can be decoupled from the mean density
parametric variations of a bias in one-dimensional maps antbr this model, as has been mentioned before, compared to
in multibaker model$**84243|n these systems, the deter- Eq. (5).
ministic dynamics appears in form of currents which are  With quasiperiodic boundary conditions, the difference
fractal functions of the bias, in certain parameter regions thef chemical concentration evolves in time according to the
mean current can run opposite to the bias, and the diffusioreactive evolution operator

h

1

( 0)= X kL x+1
gt+l(x!y1 )_6 —Y |0 Evzyvl te 0 y_i Ot Tvzy_lvl—_l )

X 1 Xx+1
O+ 1(Xy, )= 0( —Y) 9t(§,2y,2) - 6’()/— E) gt(T!Zy_ 1,0) ,

+46

NI NP NP

X 1 x+1
2 gt+l(xiy12):0( _y) gt(§12y13 y— E) gt(Tizy_li:L)i (28)

+6

1 X 1 X+1
Or+1(X,y,L—=2)=10 5 7Y|0 5,2y,L—1 Y= 5% T,Zy—l,L—S ,

KL 1 X 1 X+1
gt+1(X!yIL_1)=_e 0 E_y Ot Evzyvo +0 y_z Ot T,Zy_l,L—Z .

Our goal here is to obtain the eigenvalues and eigenstates wfich obey a set of equations which can be derived from Eq.

this reactive evolution operator (28). We suppose that the leading eigenstates are uniform
along the unstable directian which is justified by the fact
RAW(x,y,D}d=es{w(x,y,)} 4, (29)  thatthe hyperbolic dynamics smoothens out any heterogene-

ities along the unstable direction,
with x(k)=exds(k)]. We define the cumulative functions
Y (x,y,H=D(y,l), (3D

X y
Gx,,lzfdx’fd’ X"y, 30 _ o
(¥ 0 0 y'a(xynh (30 whereD(y,l) is a Schwartz distribution. We note that the



Chaos, Vol. 8, No. 2, 1998 P. Gaspard and R. Klages 417

further eigenstates and root states do dependamd require y o )
a more detailed analysis. The cumulative functions of the C(y,|)=f0dy D(y',1). (32
leading eigenstates are thus

G ooy, =xC(y.) Replacingg,(x,y,1) by D(y,l) andg;.1(x,y,1) by xD(y.I)
eigenstateX, Y, 1) =XTAY, in Eq. (28) and integrating over the interved,y], we obtain
the following iterative equations for the new functions
with C(y.l):

1
§C(2y,l), y<1/2,
C(y,0) =9 1
Z[0(1,1)+exp(—i|<L)C(2y—1,L—1)], y>1/2,
\
(1
ZC(Zy,Z), y<1/2,
C(y,1)= 1
—[C(1,2-C(2y—-1,0], y>1/2,
\ 2x
(1
Zc:(zy,e,), y<1/2,
C(y,2)={
1
—[C(1,39+C(2y-1,1)], y>1/2, (33
\ 2x
(1
ZC(zy,L—l), y<1/2,
CyL-2=1 ,
—[C(1L-1)+C(2y—1L—-3)], y>1/2,
\ 2x
([ exp(ikL)
—TC(Zy,O), y<1/2,
ClyL-1=3 ,
Z[—exqikL)C(l,O)vLC(Zy—1,L—2)], y>1/2.

The eigenvalue can be obtained by settyrrgl in Eq. (33), which leads to the eigenvalue equation

—2x 1 0 0 0 0 exg —ikL) C(1,0
-1 —2x 1 0 0 0 0 C(1,)
0 1 —2x 1 0 0 0 C(1,2
0 0 1 —2x 0 0 0 C(1,3 ~0 (34)
0 0 1 —2x 1 C(1L-2)
—exp(ikL) 0 0 0 ..o 0 1 —2x C(1L-1)
|
The characteristic determinant has been calculated for sev- | =5: 16y°—4y%—3y+cog5k)=0, (37
eral values of the distande between the reactive sites,
— A 6__ 4 _ 2 —
L=3: 4X3+X+0033k):0, (35) L=6: 32,\/ 16X 6)( +1+C05(6k)—0,

L=4: 8y*—2+2cog4k)=0, (36) : (39
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FIG. 8. Dispersion relations of the diffusive modeslid lineg and of the reactive modédotted line$ for the dyadic reactive multibaker witta) L =3; (b)
L=4;(c)L=7;(d) L=8.

The corresponding dispersion relations of the reactive
modes are depicted in Fig. 8 together with those of the dif-
fusive modes. Figure 8 shows that the slowest decay rate
which gives the reaction rate appearkatO for L odd and
at k=xa/L for L even. The cumulative functions
{C(y,l)},a=0 of the eigenstate corresponding to the reaction
rate atk=0 are depicted in Fig. 9 for the model with=3
by solving Eq.(33) iteratively. Near its maximum values, the
dispersion relation behaves quadratically like

L odd: s(k,L)=—x(L)—D"(L)k?+O(k%
at k=0, (39

CO.y)

L even: s"(k,L)=—x(L)—DM(L)(kF m/L)?
+O[(kF 7/L)*]
at k=+m/L. (40)

CLy)

An analytical calculation of the reaction ratéL) and a
numerical calculation of the reactive diffusion coefficient
DO(L) vsL reveal that

~ au 772
k(L)=—1In COTZE+O(L’4), (41)

1
DO(L)~ - (42)

The reaction rate thus behaves as expected for diffusion-
controlled reaction in one dimension, compared to ).
These results, combined with the results for the diffusive
modes, show that, on macroscopic scales, the coarse-grained
density and the concentration difference

1 1 .
p(|)=f0 dxf0 dyf(x,y,l), (43 y

FIG. 9. Cumulative function§C(y,l)} with 1=0,1,2 of the reactive eigen-

1 1
0—(|):f dxf dyg(x,y,)=G(1,1)), (449 state at vanishing wave numbke=0 in the reactive multibaker modél
0 0 =3.
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behave like over, we will give some illustrative features of the time-
5 72 dependent dynamics of the reaction process for typical
diffusive mode: —~D, (45) ~ Parameters. , ,
at 912 Analogous to Sec. IV A, we start with the difference of
) chemical concentratiorg(x,y,l) as defined in Eq27). We
. do Jcoc ~ again use the property that parallel to tkeaxis the two-
 — =DM —— > . . : :
reactive mode: at D Jl2 xo (L odd. (46) dimensional reactive multibaker can be projected onto a one-

. o . o dimensional map, as has been pointed out befee Fig. 6.
Corrections with higher-order spatial derivatives couldThe time evolution of the projected reactive patx,!)

also be taken into account in the dynamics of the reactives gy q(x,y,|) of the multibaker is then determined by the
mode. For a model with odd, this behavior corresponds t0 yeactive evolution equation of a respective one-dimensional

a macroscopic diffusion-reaction system with map,
dpa D+D" #?py D-DO #%pg « -1
~ — (pa— x,1)=RM(h,L)¢_1(x,1). 50
p > 2 + > 2 2(pA PB), &(x,1) (h,L)Zi—1(x,1) (50)

(47 Here, RM(h,L) represents the one-dimensional reactive
evolution operator, and;(x,1)=0(x,I,A)—@«(x,1,B) is

the difference betweefA- andB-particle densities in the cor-
responding one-dimensional map. As has been done for the
(48 purely diffusive case, we again write this equation as a ma-

where pp=p+o/2 and pg=p— /2. According to these trix equation, where instead &)(h,L) a topological tran-
macroscopic equations, the diffusion coefficient of each spesition matrix T(h,L) acts onto a particle density vectdy.
cies isD,=Dg=(D+D")/2, the cross-diffusion coefficient The matrixT(h,L) is structured such that in case of reactive
is Dag=Dga=(D—D®M)/2, while the reaction rate of Eq. scattering centers the elements in the corresponding columns
(2) is given by the logarithm of the absolute value of theof the matrix have a negative sign, and thus a particle
leading eigenvalue of the reactive evolution operator as  changes color by leaving a reaction cell. Otherwise, the ma-
trix is the same as discussed for the diffusive case.

We first discuss some details of the time evolution of the
reactive modes. By integrating ovéf(x,l) or its respective

We remark that, according to the microscopic analysis, thiector representation we obtain the difference between the

dpg D—D 9?pp D+D 5%pg
—_ +
ot 2 Il? 2 12

N X1

+ 5 (pa—ps)»

K=

1 T 1
=—§In co$=—zln |x(k=0)]. (49

N X1

. . e . otal number ofA andB particles at discrete timewhich is
macroscopic equations of a diffusion-reaction system do no

. ; : . =2, fdx¢(x,1). From the corresponding phenomenologi-
necessarily follow the simple assumption often carried Oucal time-continuous reaction equation, B46), one would
that the cross-diffusion coefficients vanidb,g=Dga=0. q ' '

This particular case is only recoveredDi=D®, which is expect that for the reactive multibakér decays exponen-

not fulfilled here. The origin of this difference holds in the tially afterN a sw.tak.)le coarse graining agcordmg go_
fact that the diffusion coefficierd , associated with the state = $0€XP(~«1). If this is the case, we can define the reaction
A of a particle is in general different from the diffusion co- "ate of the reactive multibaker in analogy to the phenomeno-
efficient of the particle itself which may be in two possible logical equation as(h,L)=«/2. _ o
statesA or B. In this regard, the cross-diffusion appears of =~ TO compute«(h,L) according to this definition, we
importance in reacting systems. solve the matrix formulation of Eq50) by iterating the tran-
Besides, the models with even follow more compli- sition matricesT(h,L) numerically. As an initial particle
cated diffusion-reaction equations where the reactive diffudensity we chooséy(x,1) to be uniform in one reactive cell
sion coefficienD("” has a different status because it is asso-0f the multibaker, which corresponds to having oAlypar-
ciated with a nonvanishing wave numbee==7/L. ticlesin this cell with the number d particles being locally
Nevertheless, the part of the diffusion-reaction process whichero, and we make the chain long enough such that the
is responsible for the reactive exponential decay is confirme@Vvolving density is not affected by boundary conditions. Fig-

by the microscopic analysis. ures 10@a) and 1@b) give two typical examples of;(x,) for
certain parameter values of after t=40 iterations. They

show how the “perturbation’Zy(x,l), which is a local initial
deviation from the equilibrium statg(x,I)=0(t—x),
spreads out along the axis by exhibiting a rather complex
fine structure with oscillations around zero. FiguregclO
We now discuss the parameter-dependent reactive multend 1@d) contain half-logarithmic plots of¢;| with respect
baker by taking the shift parameterinto account, as it has to the discrete timé. These plots reflect a different dynami-
already been done for the purely diffusive césee Fig. 8. cal behavior of¢; for different magnitudes of the reaction
Thus, in addition to the integer periodicity of the reaction rate. Forx(h,L) close to zero, see the upper two curves in
cells of the multibaker the reaction ratewill also depend on  Fig. 10(c), & decays apparently nonexponentially for small
h. One may then raise the question how the reaction ratémest. Only for larger times it eventually reaches exponen-
x(h,L) changes with respect to varyitgfor fixed L. More-  tial decay. Thus, the system shows that it is close to states of

B. Reaction rates in the parameter-dependent
multibaker
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FIG. 10. (a), (b) Densities corresponding to the difference in the numbek ahdB particles per total number of particles after40 iterations of the map.
In (a) (L=2h=0.2429) the reaction rate is close to zero, wherea®)ifL = 3,h=0.1496) it is locally maximal irh. (c), (d) Half-logarithmic plots of the
total difference, in the number ofA andB patrticles of the system as it varies in tirndn (c) the corresponding reaction rategh,L) are close to zero for
the upper two curves<<0.006), for the lower curve the reaction rate has an intermediate vah®.02), whereas ird) it is locally maximal inh («
=0.05). The parameters for the upper curve(i correspond to(a), the curve in the middle is dt=3h=0.247, and the lowest one is &t=3h
=0.4472. Caséd) corresponds tgb).

theh parameter where it is nonreacting. For the lowest curvesigenvalue yma(h,L). This domain must always include
in Fig. 10(c), which corresponds to an intermediate reactionmultiples of two reactive centers, and its length is defined by
rate, & provides initially strong periodic fluctuations. They the numbet-=2L Int(1+h) of cells of the multibaker. In
are partly due to the complex deterministic dynamics of thahese regions, solutions for the eigenvalue problem of
reactive baker in one cell of the chain, as has already been(h,L) defined on the domaib¢ lead to a maximum eigen-
observed and eXpIained for a one-dimensional purely difoVa|ue Xmax(hal—) as obtained by So|\/ing the Corresponding
sive case? Apart from such strong periodic oscillations on a eigenvalue problem for longer and longer chain lengtts
fine scale, in Fig. 1@) ¢; exhibits an interesting crossover ., meN. However, especially for smalL and large
between a fast decay for smaller times and a slower decay(h,l_) this fundamental domain 0n|y provides an approxi-
for larger times, where again it approaches exponential bemation to the exact results which are then obtained by mak-
havior. This may reflect the fact that for larger reaction raté§ng the chain lengtmL large enough such that the error in
«(h,L)>0 the reaction is controlled by the diffusive dynam- , (1 ) with respect tanL is sufficiently small. Figure 11
iCS. These features @ft Should be Compared to the Cha.ra.C' ShOWS some typ|ca| |argest eigenmodﬁxJ) on the funda-
teristics of the respective probability densitigéx,!) in Fig.  mental domain in cases where it gives the correct corre-
10. sponding largest eigenvalug€h,L). For large reaction rates,
To obtain quantitative values for the reaction rate, Eqtg a certain respect the largest eigenmodes behave like sine
(50) has been analyzed by solving the eigenvalue problem ofynctions, see Fig. 1), whereas for smaller reaction rates,
the corresponding transition matrik(h,L), analogously t0  the largest eigenmodes approach two-periodic steplike func-
what has been done in Sec. IV A for the dyadic reactiveions as shown in Fig. 1b). Figure 11c) depicts the largest
multibaker. In general, the spectra Bh,L) are extremely  gigenmodes for a parameter valuetofvhich is just at the
complicated® However, as has been argued in Sec. IV A forporderline of a nonreactini region, but where the system is
special cases, and supported by our observation of long-timgevertheless already highly reactive. Here, the eigenmodes
exponential decay of; for the general case, we expect that, appear to be especially complicat€d.
in the limit of infinite time, the reaction in the multibaker In Fig. 12a) the reaction ratex(h,L) as defined via Eq.
will always be governed by the slowest eigenmodes and theii51) has been computed for a series of reaction center peri-
respective eigenvalues. This motivates us to define thggicitiesL. Forh=0.25 there is no reaction rate in the sys-
parameter-dependent reaction raf#,L) via the maximum  tem_ |n this case, the iteration method confirms that the dif-

of the absolute value of the eigenvaluesTg¢h,L),
x(h,L)=—=3In[xmath,L)|, (51

analogous to Eq(49). Numerically, we find that for large
regions of theh parameter a certain fundamental domiagn

ference in the number of particle€s oscillates periodically
around zero instead of decaying exponentially. An analysis
of the eigenvalue spectra of the corresponding transition ma-
trices reveals that at this parameter the respective reactive
multibakers are not ergodf€.For all otherh of Fig. 12 the

of the multibaker is sufficient to obtain the correct leadingreaction rate is well-defined and shows a complicated struc-
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FIG. 12. (a) Reaction ratec(h,L) at different integer values of the reaction
FIG. 11. Examples of largest eigenmodgs,|) for the reactive multibaker g periodicity:L =2 (upper curv L=3 (middle), L=4 (lower curve. (b)
corresponding to the largest eigenvalug,(h,L) parallel to thex axis in Reaction rate for &h<2 atL=2. (c) Reaction rate for &h=<3 atL=3.
the fundamental domaih as described in the text. Fdg) (L=2h In all cases, error bars are too small to be visible.
=0.1496) the reaction rate(h,L) is very large =0.12), for (b) (L
=2h=0.4947) it is very small £=0.003). In both cases, there exist only

two real largest eigenmodes where the second ones are shifted by a phase. In. . .
(©) (L=6h=1) both largest eigenmodes have been plotthitk line for sitions. The detailed irregular structure of the curves, as well

the one and thin line for the other, respectiyely as the phase-transition-like behavior shown in FigclLZan
be understood in more detail by analyzing the eigenvalue

] . ] spectra of the reactive evolution operator and how they
ture. By increasind. the reaction ratec(h,L) decreases al- change under parameter variation, as will be discussed
most everywhere, as one can expect intuitively, except i|sewherd®
certain small parameter regions lof Figure 12b) gives the Apart from varyingh, other parameter dependencies can
full result for «(h,L) atL=2. This structure repeats itself pe stydied in this reactive multibaker as well. For example,
with a periodicity of In<h<2+2m, me No. In certain in-  he distance between the single reaction centers could be
tervals ofh the four peaks depicted in Fig. @2 are very  changed by allowind. to be continuous, the positions of the
similar, or even identical, however, there does not appear tg,ction centers could be shifted by keepinfixed, and the
be a simple scaling law by which the full peaks can begjze of the reaction centers could be increased or decreased.
mapped onto each other. The plateau regions with zero reag, 5| these cases we expect nontrivial parameter dependen-

tion rate correspond to the respective regions observed ifies to pe typical which are similar to the one depicted in
Fig. 7 for the diffusion coefficient of the system. They sharerjq 1246

the same characteristics as discussed above for the singular

case ofh=_(_).25, except _that dr=1 the ;ystem is ergodic, V. DISCUSSION AND CONCLUSIONS

but not mixing. Topologically, these regions are of the same

origin as explained for the diffusive case. In Figc)7the In this paper, we have analyzed simple deterministic
reaction rate has been computed ffor 3. In contrast to the models of diffusion-controlled reaction. The models fulfill
two-periodic case the change from a nonreactive region to the chaotic hypothesis mentioned in Sec. |, which allows us
reactive region occurs fdr =3 apparently discontinuously a much sharper analysis of the phenomenological foundation
in the reaction rate by varyiniy around 1. This corresponds of diffusion-reaction processes than with the old stochastic
to the system ah=1 andL=3 being mixing, whereas for assumption. In this regard, for the simplest model we have
the samér andL =2 it was ergodic, but not mixing. We note been able to derive the exact dispersion relations not only of
that forL=4 there are even two of such discontinuous tran-the diffusive modes but also of the reactive modes. The re-
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