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Chaotic and fractal properties of deterministic diffusion-reaction processes
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We study the consequences of deterministic chaos for diffusion-controlled reaction. As an example,
we analyze a diffusive-reactive deterministic multibaker and a parameter-dependent variation of it.
We construct the diffusive and the reactive modes of the models as eigenstates of the Frobenius–
Perron operator. The associated eigenvalues provide the dispersion relations of diffusion and
reaction and, hence, they determine the reaction rate. For the simplest model we show explicitly that
the reaction rate behaves as phenomenologically expected for one-dimensional diffusion-controlled
reaction. Under parametric variation, we find that both the diffusion coefficient and the reaction rate
have fractal-like dependences on the system parameter. ©1998 American Institute of Physics.
@S1054-1500~98!02102-8#
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Matter is most often the stage of reactions which evolve
on a reactive time scale intermediate between the long
time scale of hydrodynamic transport and the short time
scale of microscopic chaos. This chaos is generated by th
collisions between the atoms and molecules of the fluid
beyond a temporal horizon caused by the Lyapunov in-
stability of motion. Under nonequilibrium conditions,
long-time trajectories organize themselves in phase spac
to form fractal structures and unusual invariant or con-
ditionally invariant measures, the consequences of which
have just started to be explored. In this perspective, we
study here simple models of diffusion-reaction processe
in order to confront the phenomenology with the new
approach based on deterministic chaos.

I. INTRODUCTION

Irreversible phenomenological equations such as
Navier–Stokes or diffusion-reaction equations descr
transport and reaction processes in fluid flows or chem
reactions occurring on macroscopic spatio-temporal sca
For instance, spatial inhomogeneities of sizeL in the density
are damped by diffusion over a time scale of the order
Tdiff;L 2/D, whereD is the diffusion coefficient. In typica
laboratory experiments, the sizeL of the inhomogeneities is
of the order of millimeters, centimeters, or larger so that
relaxation timeTdiff is macroscopic.

Recent works have studied the relationship betw
these macroscopic processes and the much faster proce
chaos in the microscopic motion of atoms or molecules
the fluid.1–7 The defocusing character of the collisions b
tween the particles of the fluid is at the origin of a very hi
dynamical instability in the microscopic motion. This inst
bility, which is a major phenomenon at the center of t
current interest, is characterized by a spectrum of posi
Lyapunov exponents, as shown by many recent numer
and analytical studies.8–10 The maximum Lyapunov expo
nent of a dilute gas of particles of diameterd is typically of
the order of
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wherel is the mean free path between the collisions, anv
is the mean velocity of the particles.11,12 Consequently, the
time scale over which the dynamical instability develops
the motion of a particle due to the collisions with the su
rounding particles is of the order of the inverse of the ma
mum Lyapunov exponent which takes the valueTchaos

;lmax
21 ;10210 s for a gas at room temperature and pressu
The microscopic time scale is in contrast with the ma

roscopic time scale of transport and reaction processes.
presence of two different time scales is an essential featur
the recent establishment of quantitative relationships
tween macroscopic transport and microscopic chaos in b
the thermostated-system and the escape-
approaches.2–5,9,13–15 Indeed, in both approaches transpo
coefficients are related todifferencesbetween two character
istic quantities of chaos: The thermostated-system met
works with the difference between the maximum and
absolute value of the minimum Lyapunov exponent,2,4,9

whereas the escape-rate approach employs the differenc
tween the positive Lyapunov exponents and t
Kolmogorov–Sinai entropy.3,5,13–15 In this sense, the non
equilibrium property of transport is related to a slight disb
ance between the dynamical instability, which is the cau
and the induced temporal disorder, which is the effect.
equilibrium, the effect exactly compensates the cause. Aw
from equilibrium, temporal disorder is slightly reduced to t
benefit of transport, which appears as an extra effect of
dynamical instability beside the temporal disorder. In th
scheme, the fluid appears at the stage of a highly cha
motion of its constituent particles, which animates differe
possible transport processes if the system is maintained
of equilibrium.

The hypothesis of microscopic chaos12 or the chaotic
hypothesis16 replace the old stochastic hypotheses in no
equilibrium statistical mechanics. Previously, the stocha
hypotheses assumed that transport processes arise from
chastic effects, such as the Langevin white noise which
© 1998 American Institute of Physics
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an infinite Kolmogorov–Sinai entropy per unit time. How
ever, these processes thus have a much larger tempora
order than allowed by Newton’s deterministic equations
motion.17 The new chaotic hypothesis has the enormous
vantage of assuming a temporal disorder which is now co
patible with the determinism of a microscopic Newtoni
dynamics. In this regard, the chaotic hypothesis overwhe
the previous stochastic hypotheses, which nevertheless
mains of great usefulness in their domain of validity.

The purpose of the present paper is to describe sev
consequences of the hypothesis of microscopic chao
diffusion-reaction systems. This class of physico-chem
processes has not yet been explored in the perspectiv
understanding their kinetics on the sole assumption of mic
scopic chaos, without involving stochastic Langevin or bir
and-death processes. The diffusion-reaction systems are
ticularly important in various fields of chemical physic
such as chemical kinetics, homogeneous and heterogen
catalyses, pattern formation in nonequilibrium reactions a
in morphogenesis, recombination processes in solid or liq
phases, as well as high-energy reaction processes in a
physical systems.18

We shall focus here on the simplest diffusion-react
process with a linear chemical reaction law,

A
B, ~2!

which already provides a nontrivial dynamics. As a vehi
of our study we shall use multibaker models, which are
terministic versions of discrete Markov processes. The de
ministic dynamics of a multibaker has therefore the sa
finite and positive Kolmogorov–Sinai entropy per unit tim
as the corresponding discrete Markov process. The mo
we propose are spatially extended generalizations of a ba
type model of isomerization previously studied by Elske
and Kapral.19

This paper is organized in the following way: In Sec.
we construct multibaker models of diffusion reaction
starting from a diffusive-reactive Lorentz gas. In Sec. III, w
focus on the diffusive properties of the multibakers. By e
ploying quasiperiodic boundary conditions we show that
the simplest model the diffusive properties are the same
those of the previously discussed dyadic multibaker of dif
sion. We then demonstrate that under parametric variatio
this model the diffusion coefficient exhibits a self-simil
structure reminiscent of fractal curves. In Sec. IV, we d
scribe the reactive properties. With quasiperiodic bound
conditions, we first study the simplest model and derive
dispersion relation of the chemiodynamic modes. We exp
itly construct the phase-space distribution of these mo
and define the reaction rate by comparison with phenome
ogy. We then show that the reaction rate behaves in a hig
irregular manner if we consider the parameter-depend
model. Conclusions are drawn in Sec. V.

II. DETERMINISTIC MODELS OF DIFFUSION-
REACTION PROCESSES

A. Definition of the models

In order to motivate the introduction of the multibak
models, we first consider a reactive Lorentz gas in whic
is-
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point particle undergoes elastic collisions on hard dis
which are fixed in the plane. The disks may form a rand
or a regular configuration~Fig. 1!. A fraction of the disks are
supposed to be catalysts where the point particle change
state, or color, fromA to B or vice versa at the instant of th
collision. The mass of the particle is assumed to be the s
in both statesA andB. The phase space coordinates of ea
particle are given by its position, its velocity, and its col
(x,y,vx ,vy ,c) with cP$A,B%. Since energy is conserved a
the elastic collisions, the magnitude of the velocity is a co
stant of motion,v5Avx

21vy
2, so that the coordinates reduc

to (x,y,w,c)5(X,c), wherew5arctan(vy /vx) is the angle
between the velocity and thex axis.

The motion induces a time evolution of the phase-sp
probability densities, or concentrations, for each color,

f~X!5S f ~X,A!

f ~X,B!D . ~3!

The mean phase-space density, defined by the average o
concentrations, does not distinguish between the col
Thus, we may expect that

f̃ ~X!5 1
2 @ f ~X,A!1 f ~X,B!# ~4!

evolves in time exactly as in the non-reactive Lorentz gas
studied elsewhere.20–22 The dynamics of reaction should ap
pear in the difference between the concentrations

g~X!5 f ~X,A!2 f ~X,B!, ~5!

which is expected to follow a macroscopic relaxation towa
zero if there is equipartition of particles between both colo

It has been explained elsewhere that the flow dynam
of the Lorentz gas can be reduced to a Birkhoff mapp
from collision to collision.22 Each collision can be repre
sented by two variables: the angleu giving the position of
impact on the perimeter of the disk as (x5cosu,y5sinu) and
the anglef between the velocity after the collision and th
normal at impact. The sine of the velocity angleÃ5sinf
together with the position angleu are the so-called Birkhoff
coordinates, in which the mapping is area-preserving. All
collision events with the disk of labell are thus represente
by the rectangle

Rl5$~u,Ã,l !: 0<u,2p, 21<Ã<11%. ~6!

The dynamics of collisions can therefore be written as
Birkhoff mapping

FIG. 1. Examples of reactive Lorentz-type models:~a! on a regular lattice;
~b! on a random lattice.
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~un11 ,Ãn11 ,l n11 ,cn11!5F~un ,Ãn ,l n ,cn!, ~7!

which is known to be area-preserving, time-reversal symm
ric, and of hyperbolic character.

A caricature of this mapping is provided by a multibak
model~Fig. 2! in which we suppose that the rectangular d
mains Eq.~6! representing the disks are replaced by squa

Sl5$~x,y,l !: 0<x<1, 0<y<1%, ~8!

where l PZ is the label of the square. Each square of
multibaker model corresponds to a disk of the Lorentz g
Now, the collision dynamics is simplified by replacing th
complicated Birkhoff map Eq.~7! by a baker-type map with
horizontal stretching by a factor of 2, followed by cutting th
elongated square into two. The collisions from disk to d
are replaced by jumps of the particle from square to squ
according to the transition rulel→ l 21 if x<1/2 andl→ l
11 if x.1/2 between next-neighboring squares. The squa
are arranged such that they form a one-dimensional ch
One out ofL squares is assumed to be a catalyst where
color changes fromc5A ~respectively,B) to its complement
c̄5B ~respectively,A). The map of the model is thus

F~x,y,l ,c!5H S 2x,
y

2
,l 21,c8D , 0<x<

1

2

S 2x21,
y11

2
,l 11,c8D ,

1

2
,x<1

, ~9!

where c85 c̄ if l 50,6L,62L, . . . and c85c otherwise.
This map is area-preserving, time-reversal symmetric,
chaotic with a positive Lyapunov exponentl15 ln2 and a
negative onel252 ln2, such as the multibaker map.23–26

In our model, the reaction is controlled by the diffusio
if the reactive sites are diluted in the system. This import
case of chemical reactions has been much studied in the
erature since Smoluchowski’s seminal work.27 It is known
that the macroscopic reaction rate is determined by the t
taken by particles to diffuse toward the reactive site. A cro
over occurs at dimension two which is the Hausdorff dime
sion of a Brownian path. Accordingly, the flux of reactan
toward a catalyst is sensitive to the presence of the n

FIG. 2. Geometry of a reactive multibaker or bakery map for various
tancesL between catalysts.
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neighboring catalysts in less than two dimensions, but no
systems of dimensions higher than two. In particular, in
one-dimensional system the reaction rate should behave

k;
D

L2
, ~10!

where D is the diffusion coefficient andL is the distance
between the reactive sites or catalysts.

A main goal of our work is to investigate the dynamic
properties of our diffusion-reaction model in order to kno
whether this expected macroscopic behavior is confirm
from the microscopic dynamics or not. We shall also co
sider a parametric variation of this model with a more co
plicated dynamics. This is due to an extra dependency o
shift parameter which is introduced when the half squares
glued back into the chain. When this continuous parame
varies it induces topological changes in the trajectory
namics which are reminiscent of the topological changes
duced by varying the disk radius in the Lorentz gas.20–22The
parametric extension of the multibaker model shows that
diffusion coefficient as well as the reaction rate may vary
a highly irregular fashion as a function of a parameter. T
is an important consequence of deterministic chaos wh
already appears on the level of one-dimensional maps
will be discussed in Sec. II B.

B. The Frobenius–Perron operator and quasiperiodic
boundary conditions

Since Boltzmann’s work, it is well known that transpo
and reaction-rate processes should be conceived in a sta
cal sense because the individual trajectories are affecte
the famous Poincare´ recurrences. We therefore consider t
time evolution of statistical ensembles of trajectories as r
resented by the probability densities Eq.~3!. They evolve in
time according to the Frobenius–Perron equation

f t11~x,y,l ,c!5 f t@F21~x,y,l ,c!#

[~ P̂f t!~x,y,l ,c! ~ tPZ!. ~11!

We choose quasiperiodic boundary conditions by assum
that the solution of the Frobenius–Perron equation is qu
periodic on the chain with a wave numberk. Moreover, we
suppose that the solution decays exponentially with a dec
ing factorx5exps whereuxu<1 or Res<0,

f t~x,y,l ,c!;x texp~ ikl !. ~12!

The decay rates is calculated by solving the eigenvalu
problem of the Frobenius–Perron operator. We note that
Frobenius–Perron operator is in general nonunitary so
root vectors associated with possible Jordan-block struct
may exist beyond the eigenvectors. We shall focus here
the eigenvectors because they control the slowest deca
the longest time scales.24,25

For quasiperiodic solutions, the Frobenius–Perron
erator reduces to the following Frobenius–Perron opera
Q̂k which depends on the wave numberk and acts on func-
tions which are defined only inL successive squares of th
chain,

-
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Q̂k[

¦

f t11~x,y,0,c!5uS 1

2
2yD f tS x

2
,2y,1,cD1e2 ikLuS y2

1

2D f tS x11

2
,2y21,L21,cD ,

f t11~x,y,1,c!5uS 1

2
2yD f tS x

2
,2y,2,cD1uS y2

1

2D f tS x11

2
,2y21,0,c̄D ,

f t11~x,y,2,c!5uS 1

2
2yD f tS x

2
,2y,3,cD1uS y2

1

2D f tS x11

2
,2y21,1,cD ,

A

f t11~x,y,L22,c!5uS 1

2
2yD f tS x

2
,2y,L21,cD1uS y2

1

2D f tS x11

2
,2y21,L23,cD ,

f t11~x,y,L21,c!5eikLuS 1

2
2yD f tS x

2
,2y,0,c̄D1uS y2

1

2D f tS x11

2
,2y21,L22,cD .

~13!
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We notice that there is a reaction, i.e., a change of color,
particles passing the celll 50 so that a concentration wit
l 50 andc̄ appears in the second and in the last line. We a
notice that there is a factor exp(2ikL) in the first line for the
particle coming from the previous segment of lengthL in the
infinite chain, where the concentration functions are mu
plied by the factor exp(2ikL). On the other hand, there is
factor exp(ikL) in the last line for the particle coming from
the next segment where the concentration functions are m
tiplied by exp(ikL). Otherwise, this Frobenius–Perron ope
tor is the same as in the infinite dyadic multibaker mo
studied in Refs. 23–25.

As we discussed in Sec. II A, the presence of two che
cal componentsc5A or B implies that the Frobenius–
Perron operatorQ̂k acts on 2L functions which can be lin-
early combined to separate the functional space in
subspaces on which two decoupled Frobenius–Perron op
tors would act. The first subspace is defined by Eq.~4! where
the Frobenius–Perron operator reduces to the diffus
Frobenius–Perron operator of the multibaker map. The s
ond subspace is defined by Eq.~5! which gives a different
evolution operator of reactive type. Diffusive properties a
studied in Sec. III, while reactive properties will be discuss
in Sec. IV.

III. DIFFUSIVE DYNAMICS

A. Diffusive modes of the dyadic multibaker

In this section, we consider the diffusive dynamics of t
dyadic multibaker model Eq.~9! with quasiperiodic bound-
ary conditions. The subspace of diffusion is defined by
mean density of Eq.~4!. For hydrodynamic modes of wav
numberk we thus write

f̃ t~x,y,l !5
1

2
@ f t~x,y,l ,A!1 f t~x,y,l ,B!#

[expF i S k12p
n

L D l Gh t~x,y!, ~14!

and the new function obeys the simpler evolution equatio
r

o

-

l-
-
l

i-

o
ra-

e
c-

e
d

e

h t11~x,y!5~Q̂k
~D !h t!~x,y!

[e1 i ~k12pn/L !uS 1

2
2yDh tS x

2
,2yD

1e2 i ~k12pn/L !uS y2
1

2Dh tS x11

2
,2y21D ,

~15!

which is the Frobenius–Perron equation for the dyadic mu
baker map based on quasiperiodic boundary condition24.
The respective Frobenius–Perron operator has been ana
in detail elsewhere.24,25 Its decay rates are

smn~k!5 ln xmn~k!52mln 21 ln cosS k1
2pn

L D ~16!

with m50,1,2,3, . . . ,n50,1,2, . . . ,L21, and with a degen-
eracy of (m11). The eigenvectors

~Q̂k
~D !cmn!~x,y;k!5esmn~k!cmn~x,y;k!, ~17!

and some root vectors have been constructed in Refs. 24
25 in terms of the cumulative functions

F0n~x,y;k!5E
0

x

dx8E
0

y

dy8c0n~x8,y8;k!. ~18!

For small enough wave numbersk, these cumulative func-
tions are continuous functions which are products of a m
nomial in x with a nondifferentiable de Rham function iny.
Accordingly, the eigenvectorsc0n are complex singular
measures for small enoughk.

We observe that the decay rate withm50 and n50
vanishes quadratically ask→0 in agreement with the ex
pected diffusive behavior,

s00~k!5 ln cosk52
k2

2
2

k4

12
•••, ~19!

which shows that the diffusion coefficient isD51/2.
The nonequilibrium steady states corresponding to a u

form density gradientg for the mean density of Eq.~4! have
also been constructed.26 It has been shown that the nonequ
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librium steady state of the infinite system corresponds t
singular invariant measure represented by a continuous
nondifferentiable cumulative function

Fst st~x,y,l !5E
0

x

dx8E
0

y

dy8 f̃ st st~x8,y8,l !

5glxy1gxT~y!, ~20!

whereT(y) is the Takagi function obtained as a solution
the iteration28

T~y!5H 1
2 T~2y!1y, 0<y< 1

2

1
2 T~2y21!2y11, 1

2,y<1.
~21!

The Takagi function is nondifferentiable because its form
derivative is infinite almost everywhere. It is given by
Lebowitz–McLennan type of formula29

dT

dy
5(

t50

`

j @Mt~y!#, ~22!

whereM (y)5(2y) ~modulo 1!, and j (y)561 if y,1/2 or
y.1/2, respectively, is thejump velocity. The singular char-
acter of the diffusive steady state turns out to be a gen
feature in finite-dimensional deterministic chaos of large s
tial extension, as shown elsewhere.22,26

Moreover, this singular character of the steady st
measure plays a fundamental role in the explanation of
entropy production of irreversible thermodynamics. In p
ticular, the expected entropy production can be derived fr
the Takagi function in the case of the multibaker map.30 The
presence of this singularity solves the famous paradox of
constancy of the Gibbs entropy, which can be set up w
we do not recognize that the out-of-equilibrium invaria
measure is very different from the equilibrium one on fi
scales in phase space. The out-of-equilibrium invariant m
sure becomes singular if the nonequilibrium constraints
imposed at distances larger than several mean free p
This is probably a paradoxical aspect of the local equilibri
hypothesis that a nonequilibrium system appears in lo
equilibrium on the largest scales of phase space altho
intrinsic correlations exist on finer scales which are due
the chaotic dynamics. The singular character of the invar
measure explains that there is an entropy production in la
nonequilibrium systems where the chaotic dynamics
moves the signature of determinism down to extremely fi
scales in phase space.

B. Diffusion coefficients in parameter-dependent
models

In this section, we describe an important consequenc
deterministic chaos which shows up when a system par
eter is varied. Under such circumstances, the diffusion c
ficient of maps like a parameter-dependent multibaker ex
its a fractal structure by changing the parameter. In the s
way as outlined in this section, we will show later that t
same behavior appears in the reactive transport propertie
our parameter-dependent multibaker. We thus emphasize
a
ut
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striking analogies between the diffusive and the react
properties in regard to their parametric sensitivity.

For this purpose, we summarize the main methods
results concerning the parametric variation of the diffus
dynamics in multibakers and in simple one-dimensio
maps. To study parameter-dependent transport in multiba
models like Eq.~9! such one-dimensional maps are cruci
because they govern the dynamics of multibakers projec
onto thex axis. We therefore start with a brief review o
parameter-dependent diffusion in one-dimensional maps.
then show how all the methods and results obtained for o
dimensional maps carry over to a two-dimension
parameter-dependent multibaker which we introduce
discuss at the end of this section.

1. Fractal forms in a Green –Kubo formula

Chains of one-dimensional chaotic maps are the simp
dynamical systems in which deterministic diffusion can
studied.31 One may think of them as deterministic genera
zations of simple random walks on the real line, where
full microscopic history of the particles is taken into accou
In general, the microscopic dynamics is affected by chan
of some control parameters. Hence, in contrast to the dis
sion of the previous section where no parameter has b
varied, we will be interested here in the resulting parame
dependence of the diffusion coefficient.6,32–35As mentioned
before, the parameters to be considered may be physic
related to, for instance, varying the density or the shape
scatterers. An example of such systems is the chain of pi
wise linear maps depicted in Fig. 3. This map is of the g
eral formxt115Ma(xt), and it is periodic by satisfying the
conditionMa(x11)5Ma(x)11. The slopea serves as the
control parameter and is trivially related to the Lyapun
exponent of the map vial5 lna. The parameter-dependen
diffusion coefficient can be obtained by the Green–Ku
formula1,23,32,35

D~a![K j a~x!(
t50

`

j a@Ma
t ~x!#L 2

1

2
^ j a

2~x!&, ~23!

FIG. 3. A simple model for deterministic diffusion. The slopea, herea
53, serves as a control parameter in the periodically continued piece
linear map.
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FIG. 4. ~a!, ~b! Invariant probability densities%a(x) on the unit interval for the map of Fig. 3 modulo 1. The slope isa.2.5004 for~a! anda.3.49997 for
~b!. ~c!, ~d! Generalized Takagi functionsTa(x) for the same map ata53 in ~c! and ata54 in ~d!.
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where the averagê•&[*0
1dx%a(x)(•) has to be taken ove

the invariant probability density%a(x) on the unit interval.
j a(x) gives the integer number of boxes a particle has
versed after one iteration starting at positionx and is thus the
parameter-dependent extension of the jump velocity in
duced in Eq.~22! above. Thus, the complete microscop
dynamics is divided into two parts in Eq.~23!: the intra-cell
dynamics, that is, the dynamics within a single box, which
represented by the invariant probability density, and
inter-cell dynamicsgiven by the sum of the jump velocities
which contains the history of the particles travelling betwe
the single boxes of the chain.

For computing the diffusion coefficient both parts can
treated separately. The invariant probability density is
tained by solving the Frobenius–Perron equation for the m
restricted to the unit interval,M̃a(x)[Ma(x)(mod1),

%a,t11~x!5E dz%a,t~z!d@x2M̃a~z!#. ~24!

To do this, Eq.~24! can be written as a matrix equatio
where the Frobenius–Perron operator has been transfo
into a transition matrix.6,23,32,36For maps of the type consid
ered here, exact transition matrices can be constructed w
ever a so-called Markov partition exists. This is the case
a dense set of parameter valuesa on the real line. The in-
variant probability density can then be calculated either
solving the eigenvalue problem of the transition matr
which in simple cases can be performed analytically, or
solving the Frobenius–Perron equation by iterating the tr
sition matrices numerically.37

In Figs. 4~a! and 4~b!, typical invariant probability den-
sities are plotted at two values of the slope. They are s
functions on the unit interval, where the regions of the fun
tions being piecewise constant correspond to the single c
of the respective Markov partitions. For piecewise line
maps, the invariant probability densities should always
-
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step functions, although for arbitrary parameter value th
may consist of infinitely many steps.32,38,39The sum of jump
velocities, as the second ingredient of the Green–Kubo
mula Eq.~23!, gives the integer displacement of a partic
after t iterations starting at initial positionx. Since the sys-
tem is chaotic, this function is highly irregular inx. To deal
with this quantity, it is more convenient to define functio
Ta(x) via

dTa

dx
[(

t50

`

j a@Ma
t ~x!#, ~25!

which is a parametric extension of Eq.~22!. The functions
Ta(x) now give the integral of the displacement of particl
which start in a certain subinterval, and they behave m
more regular inx than the sums of jumps. Employin
Ta(x)5 limt→`Ta,t(x), it can be shown that these function
are obtained in terms of the recursion relation

Ta,t~x!5ta~x!1
1

a
Ta,t21@M̃a~x!#, ~26!

with ta(x) being determined bydta /dx[ j a(x) and by re-
quiring that Ta(0)5Ta(1)50. Ta(x) can be computed by
iterating Eq.~26! numerically. For two special values of th
slope the results have been plotted in Figs. 4~c! and 4~d!. The
functionsTa(x) are self-similar on the unit interval and sca
with the slopea. Fora52, Eq.~26! appears as a special ca
of Eq. ~21!. Therefore, functions likeTa(x) may be denoted
asgeneralized Takagi functions.

The numerically exact result for the paramete
dependent diffusion coefficient is shown in Fig. 5 for 2<a
<8. Naively, one may have expected thatD(a) increases
monotonically by increasing the slope. But this is only t
case on a sufficiently coarse grained scale, whereD(a) can
in fact be qualitatively matched to the results of two simp
random walk models.33 On a fine scale, however,D(a)
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shows a complicated structure with different regions exh
iting different kinds of self-similarity. A numerical estima
tion shows that the curve has a fractal dimension which
very close to, but greater than one.

This highly irregular behavior ofD(a) is caused by cor-
relations of increasingly higher order in the microscopic d
namics of the map. For instance, in the initial regi
2<a<3, which has been magnified in Fig. 5, the fine stru
ture can be physically explained by relating local extrema
the curve to characteristics of the microscopic scattering p
cess in one box as it changes with the parametera:6,32 If
strongerbackscatteringsets in by makinga larger, the curve
exhibits a local maximum, if strongerforward scatteringoc-
curs, it goes through a local minimum.

More generally, the fractal character ofD(a) can be
understood by analyzing the Green–Kubo Eq.~23!.32,35 Two
basic components in the formula are responsible for the f
tal character of the curve: On the one hand, the diffus
coefficient is given in terms of sums of jumps, which, a
cording to Eq.~25!, are related to fractal generalized Taka
functions as shown in Figs. 4~c! and 4~d!. This goes togethe
with the jump velocity j a(x) having a discontinuity which
varies with the parametera and which reveals in a sense th
fractal character of the generalized Takagi functions. On
other hand, a second source of irregularity are the stepw
discontinuities in the density of the invariant measure%a(x)
as shown in Figs. 4~a! and 4~b!. The irregular behavior of the
diffusion coefficient results from a combination of these
fects, which are connected in the Green–Kubo formula
integrating the respective generalized Takagi functions o
the respective invariant density. Thus, actually this beha
finds its origin in the nonrobustness of the topology of t
trajectories under parametric perturbations.

2. A time-reversible area-preserving multibaker with
fractal diffusion coefficients

The same phenomenon of a fractal diffusion coeffici
appears in a parameter-dependent generalization of
diffusive-reactive multibaker model introduced above.34 This
two-dimensional area-preserving map is sketched in Fig

FIG. 5. Parameter-dependent diffusion coefficientD(a) for the map of Fig.
3 and blowup of the initial region. The main graph consists of 7908 sin
data points, the magnification of 979. In both cases error bars are too s
to be visible.
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Here, the two rectangles of the left and of the right half of t
square are ‘‘sliding’’ along the upper and the lower horizo
tal channel of the periodically continued map governed b
parameterh, as shown in Fig. 6. It should be noted that f
h50.5 and shifting the coordinate system byDx50.5 the
model reduces to the simple dyadic multibaker of Eq.~9!.
The dynamics of the probability densityf̃ t(x,y,l ) of the full
multibaker Fh(x,y,l ) is determined by the Frobenius
Perron equation f̃ t11(x,y,l )5 f̃ t@Fh

21(x,y,l )#, where
Fh

21(x,y,l ) is the inverse map. A projection of this two
dimensional Frobenius–Perron equation onto the unstabx
direction by integrating over the stabley direction via
% t(x,l )[*dy f̃t(x,y,l )1,23 shows that the dynamics of th
probability density% t(x,l ) is determined by the Frobenius
Perron equation of the simple one-dimensional map inclu
in Fig. 6, which is a kind of Bernoulli map shifted symmetr
cally by a heighth. This one-dimensional map governs th
dynamics of the multibaker map projected on thex axis. By
extending the system periodically, we recover a chain
one-dimensional maps of the type of the one shown in Fig
Concerning time-reversibility, we follow the definition tha
there must exist an involutionG in phase space,G+G51,
which reverses the direction of time viaG+F+G5F21.40

For the special case ofh taking multiples of 1/2 involutions
G can be found which are related to a simple mirroring
phase space.41 For generalh, it can be shown that the system
has strong time-reversible properties, although the existe
of an involutionG remains an open question.34,40

To compute the parameter-dependent diffusion coe
cient of this multibaker we use that the projected dynamic
governed by a one-dimensional map, and thus we apply
same methods as outlined above. The result is shown in
7. The diffusion coefficient is again a nontrivial function o
the parameterh and shares many characteristics of the cu
presented in Fig. 5, for example, a certain random walk-l
behavior on a coarse grained scale.33 But it also exhibits
some new features, especially that the diffusion coefficien
constant in intervals 0.51m<h<11m, mPN0. This is due
to the fact that the transition matrices corresponding to
spective Markov partitions, and thus the respective symb
dynamics of the map, do not change in this parameter in
val. It is worth mentioning that in contrast to the speci
model of Fig. 3 the invariant probability density of the pr
jected one-dimensional map here is always uniform for

e
all

FIG. 6. Dynamics of one cell of an area-preserving time-reversible mu
baker with a nontrivial parameter-dependenceh. Projection of the dynamics
onto the horizontal axis reduces the system to the symmetric o
dimensional piecewise linear map shown to the left which forh50 is the
Bernoulli shift.
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parameter values ofh. Therefore, the only contributions t
the fractality ofD(h) come from the inter-cell dynamics a
described by the Takagi functionsTa(x).

Along the same lines as above, we can also cons
parametric variations of a bias in one-dimensional maps
in multibaker models.34,38,42,43In these systems, the dete
ministic dynamics appears in form of currents which a
fractal functions of the bias, in certain parameter regions
mean current can run opposite to the bias, and the diffus

FIG. 7. Parameter-dependent diffusion coefficientD(h) for the multibaker
of Fig. 6 and blowup of the initial region. The main graph consists of 6
data points, the magnification of 514. In both cases the single points
been connected with lines, error bars are too small to be visible.
s

er
d

e
n

coefficient can be zero with nonzero current.34,38,42 In this
regard, it is interesting to point out that drift currents whi
are irregularly fluctuating by varying the bias have also be
observed numerically in other deterministic models.44 More-
over, we notice that certain biased maps can be relate
so-called ratchets.42,45

IV. REACTIVE DYNAMICS

A. Reactive modes of the dyadic multibaker

In this section, we turn to the study of the chemiod
namic or reactive modes of our simple dyadic model Eq.~9!
of diffusion-controlled reaction. Contrary to the total numb
of particles,NA1NB , which is a constant of motion, th
numbers of particles of each chemical species are not c
served. Accordingly, we should not expect that the reac
modes have a vanishing decay rate ask→0. This is in con-
trast to the diffusive modes which are related to the c
served total number of particles and for which the decay r
~19! vanishes atk50.

Here, we consider the subspace defined by the differe
between the particle concentrations in the multibaker,

g~x,y,l ![ f ~x,y,l ,A!2 f ~x,y,l ,B!. ~27!

Thus, we employ the fact that the dynamics of the conc
tration difference can be decoupled from the mean den
for this model, as has been mentioned before, compare
Eq. ~5!.

With quasiperiodic boundary conditions, the differen
of chemical concentration evolves in time according to
reactive evolution operator

ve
R̂k[

¦

gt11~x,y,0!5uS 1

2
2yDgtS x

2
,2y,1D1e2 ikLuS y2

1

2DgtS x11

2
,2y21,L21D ,

gt11~x,y,1!5uS 1

2
2yDgtS x

2
,2y,2D2uS y2

1

2DgtS x11

2
,2y21,0D ,

gt11~x,y,2!5uS 1

2
2yDgtS x

2
,2y,3D1uS y2

1

2DgtS x11

2
,2y21,1D ,

A

gt11~x,y,L22!5uS 1

2
2yDgtS x

2
,2y,L21D1uS y2

1

2DgtS x11

2
,2y21,L23D ,

gt11~x,y,L21!52eikLuS 1

2
2yDgtS x

2
,2y,0D1uS y2

1

2DgtS x11

2
,2y21,L22D .

~28!
Eq.
orm

ene-

e

Our goal here is to obtain the eigenvalues and eigenstate
this reactive evolution operator

R̂k$C~x,y,l !% l 50
L215es~k!$C~x,y,l !% l 50

L21 , ~29!

with x(k)5exp@s(k)#. We define the cumulative functions

Gt~x,y,l !5E
0

x

dx8E
0

y

dy8gt~x8,y8,l !, ~30!
ofwhich obey a set of equations which can be derived from
~28!. We suppose that the leading eigenstates are unif
along the unstable directionx, which is justified by the fact
that the hyperbolic dynamics smoothens out any heterog
ities along the unstable direction,

C~x,y,l !5D~y,l !, ~31!

whereD(y,l ) is a Schwartz distribution. We note that th
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further eigenstates and root states do depend onx and require
a more detailed analysis. The cumulative functions of
leading eigenstates are thus

Geigenstate~x,y,l ![xC~y,l !

with
se
e C~y,l !5E
0

y

dy8D~y8,l !. ~32!

Replacinggt(x,y,l ) by D(y,l ) andgt11(x,y,l ) by xD(y,l )
in Eq. ~28! and integrating over the interval@0,y#, we obtain
the following iterative equations for the new function
C(y,l ):
C~y,0!5H 1

2x
C~2y,1!, y,1/2,

1

2x
@C~1,1!1exp~2 ikL !C~2y21,L21!#, y.1/2,

C~y,1!5H 1

2x
C~2y,2!, y,1/2,

1

2x
@C~1,2!2C~2y21,0!#, y.1/2,

C~y,2!5H 1

2x
C~2y,3!, y,1/2,

1

2x
@C~1,3!1C~2y21,1!#, y.1/2, ~33!

]

C~y,L22!5H 1

2x
C~2y,L21!, y,1/2,

1

2x
@C~1,L21!1C~2y21,L23!#, y.1/2,

C~y,L21!5H 2
exp~ ikL !

2x
C~2y,0!, y,1/2,

1

2x
@2exp~ ikL !C~1,0!1C~2y21,L22!#, y.1/2.

The eigenvalue can be obtained by settingy51 in Eq. ~33!, which leads to the eigenvalue equation

S 22x 1 0 0 ••• 0 0 exp~2 ikL !

21 22x 1 0 ••• 0 0 0

0 1 22x 1 ••• 0 0 0

0 0 1 22x ••• 0 0 0

A A A A � A A A

0 0 0 0 ••• 1 22x 1

2exp~ ikL ! 0 0 0 ••• 0 1 22x

D S C~1,0!

C~1,1!

C~1,2!

C~1,3!

A

C~1,L22!

C~1,L21!

D 50. ~34!
The characteristic determinant has been calculated for
eral values of the distanceL between the reactive sites,

L53: 4x31x1cos~3k!50, ~35!

L54: 8x42212cos~4k!50, ~36!
v- L55: 16x524x323x1cos~5k!50, ~37!

L56: 32x6216x426x2111cos~6k!50,

A ~38!



418 Chaos, Vol. 8, No. 2, 1998 P. Gaspard and R. Klages
FIG. 8. Dispersion relations of the diffusive modes~solid lines! and of the reactive modes~dotted lines! for the dyadic reactive multibaker with~a! L53; ~b!
L54; ~c! L57; ~d! L58.
tiv
di
ra

s
io

e

nt

io

iv
in
The corresponding dispersion relations of the reac
modes are depicted in Fig. 8 together with those of the
fusive modes. Figure 8 shows that the slowest decay
which gives the reaction rate appears atk50 for L odd and
at k56p/L for L even. The cumulative function
$C(y,l )% l 50

3 of the eigenstate corresponding to the react
rate atk50 are depicted in Fig. 9 for the model withL53
by solving Eq.~33! iteratively. Near its maximum values, th
dispersion relation behaves quadratically like

L odd: s~r!~k,L !52k̃~L !2D ~r!~L !k21O~k4!

at k50, ~39!

L even: s~r!~k,L !52k̃~L !2D ~r!~L !~k7p/L !2

1O@~k7p/L !4#

at k56p/L. ~40!

An analytical calculation of the reaction ratek̃(L) and a
numerical calculation of the reactive diffusion coefficie
D (r)(L) vs L reveal that

k̃~L !52 ln cos
p

L
5

p2

2L2
1O~L24!, ~41!

D ~r!~L !;
1

L
. ~42!

The reaction rate thus behaves as expected for diffus
controlled reaction in one dimension, compared to Eq.~10!.
These results, combined with the results for the diffus
modes, show that, on macroscopic scales, the coarse-gra
density and the concentration difference

r~ l !5E
0

1

dxE
0

1

dy f̃~x,y,l !, ~43!

s~ l !5E
0

1

dxE
0

1

dyg~x,y,l !5G~1,1,l !, ~44!
e
f-
te

n

n-

e
ed

FIG. 9. Cumulative functions$C(y,l )% with l 50,1,2 of the reactive eigen-
state at vanishing wave numberk50 in the reactive multibaker modelL
53.
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behave like

diffusive mode:
]r

]t
.D

]2r

] l 2
, ~45!

reactive mode:
]s

]t
.D ~r!

]2s

] l 2
2k̃s ~L odd!. ~46!

Corrections with higher-order spatial derivatives cou
also be taken into account in the dynamics of the reac
mode. For a model withL odd, this behavior corresponds
a macroscopic diffusion-reaction system with

]rA

]t
.

D1D ~r!

2

]2rA

] l 2
1

D2D ~r!

2

]2rB

] l 2
2

k̃

2
~rA2rB!,

~47!

]rB

]t
.

D2D ~r!

2

]2rA

] l 2
1

D1D ~r!

2

]2rB

] l 2
1

k̃

2
~rA2rB!,

~48!

where rA5r1s/2 and rB5r2s/2. According to these
macroscopic equations, the diffusion coefficient of each s
cies isDA5DB5(D1D (r))/2, the cross-diffusion coefficien
is DAB5DBA5(D2D (r))/2, while the reaction rate of Eq
~2! is given by the logarithm of the absolute value of t
leading eigenvalue of the reactive evolution operator as

k5
k̃

2
52

1

2
ln cos

p

L
52

1

2
ln ux~k50!u. ~49!

We remark that, according to the microscopic analysis,
macroscopic equations of a diffusion-reaction system do
necessarily follow the simple assumption often carried
that the cross-diffusion coefficients vanish,DAB5DBA50.
This particular case is only recovered ifD5D (r), which is
not fulfilled here. The origin of this difference holds in th
fact that the diffusion coefficientDA associated with the stat
A of a particle is in general different from the diffusion c
efficient of the particle itself which may be in two possib
statesA or B. In this regard, the cross-diffusion appears
importance in reacting systems.

Besides, the models withL even follow more compli-
cated diffusion-reaction equations where the reactive di
sion coefficientD (r) has a different status because it is as
ciated with a nonvanishing wave numberk56p/L.
Nevertheless, the part of the diffusion-reaction process wh
is responsible for the reactive exponential decay is confirm
by the microscopic analysis.

B. Reaction rates in the parameter-dependent
multibaker

We now discuss the parameter-dependent reactive m
baker by taking the shift parameterh into account, as it has
already been done for the purely diffusive case~see Fig. 6!.
Thus, in addition to the integer periodicityL of the reaction
cells of the multibaker the reaction ratek will also depend on
h. One may then raise the question how the reaction
k(h,L) changes with respect to varyingh for fixed L. More-
e

e-

e
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t

f

-
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h
d
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te

over, we will give some illustrative features of the tim
dependent dynamics of the reaction process for typicah
parameters.

Analogous to Sec. IV A, we start with the difference
chemical concentrationsg(x,y,l ) as defined in Eq.~27!. We
again use the property that parallel to thex axis the two-
dimensional reactive multibaker can be projected onto a o
dimensional map, as has been pointed out before~see Fig. 6!.
The time evolution of the projected reactive partz t(x,l )
[*dyg(x,y,l ) of the multibaker is then determined by th
reactive evolution equation of a respective one-dimensio
map,

z t~x,l !5R̂~1!~h,L !z t21~x,l !. ~50!

Here, R̂(1)(h,L) represents the one-dimensional react
evolution operator, andz t(x,l )[% t(x,l ,A)2% t(x,l ,B) is
the difference betweenA- andB-particle densities in the cor
responding one-dimensional map. As has been done for
purely diffusive case, we again write this equation as a m
trix equation, where instead ofR̂(1)(h,L) a topological tran-
sition matrix T(h,L) acts onto a particle density vectorzt .
The matrixT(h,L) is structured such that in case of reacti
scattering centers the elements in the corresponding colu
of the matrix have a negative sign, and thus a parti
changes color by leaving a reaction cell. Otherwise, the m
trix is the same as discussed for the diffusive case.

We first discuss some details of the time evolution of t
reactive modes. By integrating overz t(x,l ) or its respective
vector representation we obtain the difference between
total number ofA andB particles at discrete timet which is
j t[( l*dxz t(x,l ). From the corresponding phenomenolog
cal time-continuous reaction equation, Eq.~46!, one would
expect that for the reactive multibakerj t decays exponen
tially after a suitable coarse graining according toj t

5j0exp(2k̃t). If this is the case, we can define the reacti
rate of the reactive multibaker in analogy to the phenome
logical equation ask(h,L)5k̃/2.

To computek(h,L) according to this definition, we
solve the matrix formulation of Eq.~50! by iterating the tran-
sition matricesT(h,L) numerically. As an initial particle
density we choosez0(x,l ) to be uniform in one reactive cel
of the multibaker, which corresponds to having onlyA par-
ticles in this cell with the number ofB particles being locally
zero, and we make the chain long enough such that
evolving density is not affected by boundary conditions. F
ures 10~a! and 10~b! give two typical examples ofz t(x,l ) for
certain parameter values ofh after t540 iterations. They
show how the ‘‘perturbation’’z0(x,l ), which is a local initial
deviation from the equilibrium statez t(x,l )50(t→`),
spreads out along thex axis by exhibiting a rather comple
fine structure with oscillations around zero. Figures 10~c!
and 10~d! contain half-logarithmic plots ofuj tu with respect
to the discrete timet. These plots reflect a different dynam
cal behavior ofj t for different magnitudes of the reactio
rate. Fork(h,L) close to zero, see the upper two curves
Fig. 10~c!, j t decays apparently nonexponentially for sm
timest. Only for larger times it eventually reaches expone
tial decay. Thus, the system shows that it is close to state
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FIG. 10. ~a!, ~b! Densities corresponding to the difference in the number ofA andB particles per total number of particles aftert540 iterations of the map.
In ~a! (L52,h.0.2429) the reaction rate is close to zero, whereas in~b! (L53,h.0.1496) it is locally maximal inh. ~c!, ~d! Half-logarithmic plots of the
total differencej t in the number ofA andB particles of the system as it varies in timet. In ~c! the corresponding reaction ratesk(h,L) are close to zero for
the upper two curves (k,0.006), for the lower curve the reaction rate has an intermediate value (k.0.02), whereas in~d! it is locally maximal inh (k
.0.05). The parameters for the upper curve in~c! correspond to~a!, the curve in the middle is atL53,h.0.247, and the lowest one is atL53,h
.0.4472. Case~d! corresponds to~b!.
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theh parameter where it is nonreacting. For the lowest cu
in Fig. 10~c!, which corresponds to an intermediate react
rate, j t provides initially strong periodic fluctuations. The
are partly due to the complex deterministic dynamics of
reactive baker in one cell of the chain, as has already b
observed and explained for a one-dimensional purely di
sive case.32 Apart from such strong periodic oscillations on
fine scale, in Fig. 10~d! j t exhibits an interesting crossove
between a fast decay for smaller times and a slower de
for larger times, where again it approaches exponential
havior. This may reflect the fact that for larger reaction ra
k(h,L)@0 the reaction is controlled by the diffusive dynam
ics. These features ofj t should be compared to the chara
teristics of the respective probability densitiesz t(x,l ) in Fig.
10.

To obtain quantitative values for the reaction rate, E
~50! has been analyzed by solving the eigenvalue problem
the corresponding transition matrixT(h,L), analogously to
what has been done in Sec. IV A for the dyadic react
multibaker. In general, the spectra ofT(h,L) are extremely
complicated.46 However, as has been argued in Sec. IV A
special cases, and supported by our observation of long-
exponential decay ofj t for the general case, we expect th
in the limit of infinite time, the reaction in the multibake
will always be governed by the slowest eigenmodes and t
respective eigenvalues. This motivates us to define
parameter-dependent reaction ratek(h,L) via the maximum
of the absolute value of the eigenvalues ofT(h,L),

k~h,L ![2 1
2 lnuxmax~h,L !u, ~51!

analogous to Eq.~49!. Numerically, we find that for large
regions of theh parameter a certain fundamental domainLF

of the multibaker is sufficient to obtain the correct leadi
e
n
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eigenvaluexmax(h,L). This domain must always includ
multiples of two reactive centers, and its length is defined
the numberLF[2L Int(11h) of cells of the multibaker. In
these regions, solutions for the eigenvalue problem
T(h,L) defined on the domainLF lead to a maximum eigen
value xmax(h,L) as obtained by solving the correspondin
eigenvalue problem for longer and longer chain lengthsmL
→`, mPN. However, especially for smallL and large
k(h,L) this fundamental domain only provides an appro
mation to the exact results which are then obtained by m
ing the chain lengthmL large enough such that the error
xmax(h,L) with respect tomL is sufficiently small. Figure 11
shows some typical largest eigenmodesc(x,l ) on the funda-
mental domain in cases where it gives the correct co
sponding largest eigenvaluek(h,L). For large reaction rates
to a certain respect the largest eigenmodes behave like
functions, see Fig. 11~a!, whereas for smaller reaction rate
the largest eigenmodes approach two-periodic steplike fu
tions as shown in Fig. 11~b!. Figure 11~c! depicts the larges
eigenmodes for a parameter value ofh which is just at the
borderline of a nonreactingh region, but where the system i
nevertheless already highly reactive. Here, the eigenmo
appear to be especially complicated.46

In Fig. 12~a! the reaction ratek(h,L) as defined via Eq.
~51! has been computed for a series of reaction center p
odicitiesL. For h50.25 there is no reaction rate in the sy
tem. In this case, the iteration method confirms that the
ference in the number of particlesj t oscillates periodically
around zero instead of decaying exponentially. An analy
of the eigenvalue spectra of the corresponding transition
trices reveals that at thish parameter the respective reactiv
multibakers are not ergodic.46 For all otherh of Fig. 12 the
reaction rate is well-defined and shows a complicated st
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ture. By increasingL the reaction ratek(h,L) decreases al
most everywhere, as one can expect intuitively, excep
certain small parameter regions ofh. Figure 12~b! gives the
full result for k(h,L) at L52. This structure repeats itse
with a periodicity of 2m<h<212m, mPN0. In certain in-
tervals ofh the four peaks depicted in Fig. 12~b! are very
similar, or even identical, however, there does not appea
be a simple scaling law by which the full peaks can
mapped onto each other. The plateau regions with zero r
tion rate correspond to the respective regions observe
Fig. 7 for the diffusion coefficient of the system. They sha
the same characteristics as discussed above for the sin
case ofh50.25, except that ath51 the system is ergodic
but not mixing. Topologically, these regions are of the sa
origin as explained for the diffusive case. In Fig. 7~c! the
reaction rate has been computed forL53. In contrast to the
two-periodic case the change from a nonreactive region
reactive region occurs forL53 apparently discontinuousl
in the reaction rate by varyingh around 1. This correspond
to the system ath51 andL53 being mixing, whereas fo
the sameh andL52 it was ergodic, but not mixing. We not
that for L54 there are even two of such discontinuous tra

FIG. 11. Examples of largest eigenmodesc(x,l ) for the reactive multibaker
corresponding to the largest eigenvaluexmax(h,L) parallel to thex axis in
the fundamental domainLF as described in the text. For~a! (L52,h
.0.1496) the reaction ratek(h,L) is very large (k.0.12), for ~b! (L
52,h.0.4947) it is very small (k.0.003). In both cases, there exist on
two real largest eigenmodes where the second ones are shifted by a pha
~c! (L56,h51) both largest eigenmodes have been plotted~thick line for
the one and thin line for the other, respectively!.
in

to

c-
in

lar

e

a

-

sitions. The detailed irregular structure of the curves, as w
as the phase-transition-like behavior shown in Fig. 12~c!, can
be understood in more detail by analyzing the eigenva
spectra of the reactive evolution operator and how th
change under parameter variation, as will be discus
elsewhere.46

Apart from varyingh, other parameter dependencies c
be studied in this reactive multibaker as well. For examp
the distance between the single reaction centers could
changed by allowingL to be continuous, the positions of th
reaction centers could be shifted by keepingL fixed, and the
size of the reaction centers could be increased or decrea
In all these cases we expect nontrivial parameter depen
cies to be typical which are similar to the one depicted
Fig. 12.46

V. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed simple determinis
models of diffusion-controlled reaction. The models fulfi
the chaotic hypothesis mentioned in Sec. I, which allows
a much sharper analysis of the phenomenological founda
of diffusion-reaction processes than with the old stocha
assumption. In this regard, for the simplest model we h
been able to derive the exact dispersion relations not onl
the diffusive modes but also of the reactive modes. The

e. In

FIG. 12. ~a! Reaction ratek(h,L) at different integer values of the reactio
cell periodicity:L52 ~upper curve!, L53 ~middle!, L54 ~lower curve!. ~b!
Reaction rate for 0<h<2 at L52. ~c! Reaction rate for 0<h<3 at L53.
In all cases, error bars are too small to be visible.
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active modes indeed decay exponentially, as it should be
nonconserved quantities. The reaction rate behaves likk
;D/L2, as expected for diffusion-controlled reactions in o
dimension. The reaction rate introduces a new time sc
Treact;k21;L2/D, with respect to purely diffusive system
This reactive time depends on the concentration;1/L of
catalysts and, therefore, it takes a fixed value in a gi
diffusion-reaction system. This time scale of reaction is
termediate between the short time scale of the Lyapu
instability Tchaos;lmax

21 and the long time scale of diffusio
Tdiff;L 2/D. An important difference between diffusion an
reaction is that the evolution operator is positive in the d
fusive subspace and is thus of Frobenius–Perron type
though the evolution operator~28! has both signs in the re
active subspace. By analyzing this deterministic evolut
operator, we have found that the spatial dynamics of
reactive modes appears significantly different from the st
dard assumption of macroscopic diffusion-reaction mod
due to the particular importance of cross diffusion. On
other hand, the eigenstates associated with the reactive
diffusive modes are expressed as singular Schwartz distr
tions, also in contrast with the phenomenological mod
which have always suggested that the eigenstates are re
functions. In a sense, we may say that this singular chara
of the exact eigenmodes renders their relaxation compa
with the deterministic dynamics of the particles, in full r
spect to the mechanical Liouville theorem of volume pres
vation. This result previously observed for diffusion is he
shown to hold also for reaction.

Moreover, the macroscopic transport coefficients such
the diffusion coefficient and the reaction rate both turn ou
exhibit a highly irregular behavior as a function of a cont
parameter of the system. In this way, we have pursued
early work by Elskens and Kapral who studied the isom
ization rate for the simplest values of their mod
parameter.19 The irregular behavior has its origin in the to
pological instability of the trajectories in phase space a
also in the singular character as represented by Takagi f
tions. It appears as a fundamental result because the t
logical instability of phase-space dynamics is a common f
ture to many systems including the Lorentz gas, the ha
sphere gas, and nonhyperbolic systems which are
nonrobust under parametric perturbations. However, we m
expect that the transport coefficients would have an irreg
behavior only if the systems fulfill certain additional criteri
as being spatially periodic, being sufficiently low
dimensional, and being such that particle-particle inter
tions are not of main importance. Physical systems of
kind could—to a certain extent—already be realized exp
mentally in form of so-called antidot lattices.47 On the other
hand, the detailed fractal character of parameter-depen
transport coefficients may disappear by increasing the n
ber of degrees of freedom, or by including strong stocha
perturbations.48 We have moreover observed that the re
tion rate is not only a highly irregular function of the param
eter but also presents discontinuities which are reminisc
of nonequilibrium phase transitions. The parametric sens
ity seems thus enhanced at the level of the reactive prope
as compared with the diffusive ones.
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