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Suppression and enhancement of diffusion in disordered dynamical systems
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The impact of quenched disorder on deterministic diffusion in chaotic dynamical systems is studied. As a
simple example, we consider piecewise linear maps on the line. In computer simulations we find a complex
scenario of multiple suppression and enhancement of normal diffusion, under variation of the perturbation
strength. These results are explained by a theoretical approximation, showing that the oscillations emerge as a
direct consequence of the unperturbed diffusion coefficient, which is known to be a fractal function of a control
parameter.
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Recently there has been growing interest in the field
disordered dynamical systems, thus trying to bring togethe
two, at first view, very different directions of research@1,2#:
Diffusion on disordered lattices with quenched~static! ran-
domness is a traditional problem of statistical physics, wh
can be studied by probabilistic methods being develope
the theory of stochastic processes@3–5#. However, diffusion
can also be generated from deterministic chaos in nonlin
equations of motion@6,7# making it possible to assess ch
otic and fractal properties of diffusion by methods of d
namical systems theory@8–10#. Hence, understanding th
dynamics of disordered dynamical systems poses the c
lenge of suitably combining these different concepts a
ideas. To our knowledge, only very few cases of respec
models have been studied so far. Examples include ran
Lorentz gases for which Lyapunov exponents have been
culated by means of kinetic theory and by computer simu
tions @10,11#, numerical studies of diffusion on disordere
rough surfaces and in disordered deterministic ratchets@12#,
as well as numerical and analytical studies of chaotic m
on the line with quenched disorder@2,13#.

In this work we will focus on the most simple example
the latter class of models, which are piecewise linear m
on the line. In case of mixing dynamics, unperturbed map
this type exhibit normal diffusion@7,14–17#. However, add-
ing quenched disorder in the form of a local bias with g
bally vanishing drift profoundly changes the dynamics, lea
ing to subdiffusion in a complicated potential landsca
@2,13#. Here we will consider a different type of static ra
domness, which is multiplicative, preserves the local symm
try of the model, and is not related to Levy distributions@18#,
thus not resulting in anomalous diffusion. Consequently, h
we denote with suppression and enhancement of diffus
the variation of thenormaldiffusion coefficient. Another im-
portant aspect is that in previous work the disordered m
were always exhibiting the Bernoulli property@2,13#, there-
fore the diffusive properties were in agreement with exp
tations from stochastic theory. In our case we start from
unperturbed model that is known to exhibit strong dynami
correlations, resulting in a fractal diffusion coefficient as
function of the control parameter@15–17#. Adding uncorre-
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lated static randomness enables to study in which way th
dynamical correlations survive, or are getting destroyed, a
function of the perturbation strength, and to which exte
simple random walk theory may still be applicable for u
derstanding perturbed chaotic diffusion.

The unperturbed model is defined by the equation of m
tion

xn115Ma~xn!, ~1!

whereaPR is a control parameter andxn is the position of a
point particle at discrete timen. Ma(x) is continued periodi-
cally beyond the interval@21/2,1/2) onto the real line by a
lift of degree 1, Ma(x11)5Ma(x)11. We assume tha
Ma(x) is antisymmetric with respect tox50, Ma(x)5
2Ma(2x). The map we study as an example is defined
Ma(x)5ax, where the uniform slopea serves as a contro
parameter. The Lyapunov exponent of this map is given
l(a)5 ln a implying that for a.1 the dynamics is chaotic
We now modify this system by adding a random variab
Da( i ), i PZ, to the slope on each interval@ i 21/2,i 11/2)
yielding Ma

( i )(x)5@a1Da( i )#x. We assume that the random
variablesDa( i ) are independent and identically distribute
according to a distributionxa(Da), wherea is again a con-
trol parameter. In the following we will consider two differ
ent types of such distributions, namely, random variables
tributed uniformly over an interval of size@2a,a#,

xa~Da!5Q~a1Da!Q~a2Da!/~2a!, ~2!

and dichotomous ord-distributed random variables,

xa~Da!5@d~a1Da!1d~a2Da!#/2. ~3!

SinceuDau<a, we denotea as the perturbation strength. A
an example, we sketch in Fig. 1 the map resulting from
disorder of Eq.~2! as applied to the slopea53. In the ab-
sence of any bias, the diffusion coefficient is defined
D(a,a)5 lim

n→`
^xn

2&/(2n), where the brackets denote a

ensemble average over moving particles for a given confi
ration of disorder. An additional disorder average is not n
essary because of self-averaging@4#. Note that for locally
symmetric quenched disorder and (a2a).2, there is no
©2002 The American Physical Society03-1
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physical mechanism leading to infinitely high reflecting b
riers as they are responsible for Golosov localization@2,4#.
Thus diffusion must be normal, as is confirmed by compu
simulations. Hence, the central question is what happen
the parameter-dependent diffusion coefficientD(a,a) under
variation of the two control parametersa anda.

For the unperturbed case,a50, the diffusion coefficient
has been computed in Refs.@15,16# showing thatD(a,0) is a
fractal function of the slopea as a control parameter. Thi
function is depicted in Fig. 1, as well as results from co
puter simulations for different values of the perturbati
strengtha in case of uniform disorder@19#. As expected, this
irregular structure gradually disappears by increasinga.
However, it is remarkable that even for large perturbat
strengtha, oscillations are still visible as a function ofa
indicating that the underlying dynamical correlations a
very robust against this type of perturbation. Note, furth
more, the nonanalytical behavior ofD(a,a) for a.0 and
small a, thus indicating the existence of a dynamical pha
transition, which was not present in the unperturbed cas

Before we proceed to more detailed simulation results
briefly repeat what is known for diffusion in lattice mode
with random barriers@3–5,20#. In the most simple version
the quenched disorder is defined on a one-dimensional p
odic lattice with transition rates between neighboring sitei
and i 11 having the symmetryG i ,i 115G i 11,i[Gk for a
given random distribution ofGk . In this situation an exac
expression for the stochastic diffusion coefficient has b
derived reading@5,20#

d5$1/G%21l 2, ~4!

with the brackets defining the disorder average$1/G%
51/N(k50

N 1/Gk at chain lengthN and for a distancel be-
tween sites. The double-inverse demonstrates that the hig
barriers dominate diffusion in one dimension, thusGk→0

FIG. 1. Diffusion coefficientD(a,a) for the piecewise linear
map shown in the figure. The slopea is perturbed by static disorde
of maximum strengtha as defined in Eq.~2!. The bold black line
depictsD(a,0). The symbols represent computer-simulation res
for a.0, the corresponding lines are obtained from the theoret
approximation, Eq.~5!. The parameter values area50.1 ~circles!,
a50.4 ~squares!, anda51.0 ~diamonds!.
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naturally leads to a vanishing diffusion coefficient. This sc
nario is translated to the map under consideration as follo
Eq. ~1! can be understood as a time-discrete Langevin eq
tion, xn115xn2]V(xn)/]xn @2,7#. Under proper integration
of Ma

( i )(x) the corresponding potentialV(x) is reminiscent
of a random barrier model with the perturbation strengtha
determining the highest barriers. Hence, simple random-w
theory predicts suppression of diffusion for the chaotic m
viz., D(a,a) being a monotonical decreasing function ofa.

To check this hypothesis, we choose fixed values oa
corresponding to the two extreme situations of starting fr
a local maximum or minimum, respectively, of the unpe
turbedD(a,0) in Fig. 1. We first focus on the local minimum
at a56 for a<0.5 with uniform and dichotomous disorde
see Fig. 2. In sharp contrast to the prediction of the sim
random-walk theory outlined above, in both cases we
serve enhancement of diffusion as a function ofa. Moreover,
this enhancement does not appear in the form of a sim
functional dependence ona: In ~a!, smoothed-out oscilla-
tions are visible on smaller scales, whereas in~b! the result-
ing function is clearly nonmonotonic and wildly fluctuating
exhibiting multiple suppression and enhancement in differ
parameter regions. Results on larger scales ofa are depicted

s
al

FIG. 2. Diffusion coefficientD(a,a) as a function of the per-
turbation strengtha at slopea56: ~a! disorder distribution, Eq.~2!,
~b! disorder distribution, Eq.~3!. The circles represent results from
computer simulations, the lines are obtained from the approxi
tion, Eq. ~5!.
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in Fig. 3 for dichotomous disorder. Figure 3~b! shows that
choosinga at a local maximum ofD(a,0) leads to suppres
sion of diffusion fora,1.0, whereas a local minimum gen
erates enhancement in the same parameter region ofa. We
emphasize that in both cases the diffusion coefficient
creases on a very coarse scale by increasinga, thus recov-
ering qualitative agreement with the simple random-w
prediction, Eq.~4! @21#. Indeed, for (a2a)→2, barriers are
formed that a particle cannot cross anymore implying
existence of localization.

To theoretically explain the simulation results, we mod
Eq. ~4! in a straightforward way such that it can be applied
our disordered deterministic map under consideration.
first note that for uniform transition rates,Gk5const., it
is d(Gk ,l )5Gkl

2. Using this familiar expression for th
random-walk diffusion coefficient on the unperturbed lattic
we rewrite Eq.~4! asd5$1/d(Gk ,l )%21. In the case of our
map, the transition rates and the distance between sites
both somewhat combined in the action of the slopea as a
control parameter. Therefore, the unperturbed diffusion co
ficient is correctly rewritten by replacingd(Gk ,l )[d(a).
The key question is: What function shall be used for

FIG. 3. Diffusion coefficientD(a,a) as a function of the per-
turbation strengtha for dichotomous disorder, Eq.~3!, at two dif-
ferent slopesa: ~a! a56, ~b! a57. The circles represent resul
from computer simulations, the lines are obtained from the appr
mation, Eq.~5!.
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parameter-dependent diffusion coefficientd(a) in case of de-
terministic dynamics? Here we proposeto identify the func-
tion d(a) with the exact, unperturbed deterministic diffusio
coefficientpreviously defined asD(a,0). Providing this in-
formation, the exact formula, Eq.~4!, for stochastic dynam-
ics becomes anapproximationthat can straightforwardly be
applied to deterministic dynamics in disordered systems
the disorder distributionsxa(Da) are bounded by the pertur
bation strengtha, and by taking the continuum limit for the
random variable, our final result reads

Dapp~a,a!5F E
2a

a

d~Da!
xa~Da!

D~a1Da,0!G21

. ~5!

This expression represents the central formula of our pa
The results obtained from it are depicted in Figs. 1 to 3 in
form of lines. For small enougha the agreement betwee
theory and simulations is excellent, thus confirming the
lidity of this equation. For largera our theory still correctly
predicts the oscillations generated from dichotomous dis
der; however since Eq.~5! is approximate it should not be
surprising to detect quantitative deviations.

We now show that this formula provides a physical exp
nation for the complex dependence of the diffusion coe
cient on the perturbation strength. Fora→0, Taylor expan-
sion leads to

Dapp~a,a!5E
2a

a

d~Da!xa~Da!D~a1Da,0!. ~6!

We remark that Eq.~6! can be proven without advocating Eq
~5!, by starting from the definition of the diffusion coefficien
@22#. In this limit the perturbed diffusion coefficient reduce
to an average of the exact diffusion coefficient over t
neighborhood@a2a,a1a# weighted by the respective dis
order distributionxa(Da). Consequently, ifa is chosen at a
local minimum, the result must be the enhancement of
fusion by increasinga and suppression at a local maximum
respectively@23#. On these grounds it is clear that the frac
parameter dependence ofD(a,0) must reappear in the per
turbed diffusion coefficient, hence leading to multiple su
pression and enhancement on all scales.

We conclude with a few remarks.
~a! It would be important to have a proof of Eq.~5! for

dynamical systems, as well as to obtain higher-order cor
tions for explaining the deviations between simulation a
theory as visible in Fig. 3.

~b! Our results might be important to understand diffusi
on a stepped surface with a disordered arrangemen
Ehrlich-Schwoebel barriers, as has been analyzed on the
sis of a random trap/random barrier model@24#. Our map
provides a generalization of such a model in terms of co
lated random walks and thus enables to study the impac
memory effects on surface diffusion.

~c! One could think of applying our approach to system
such as those studied in Ref.@12#, or to the periodic Lorentz
gas@8–10#, which is a model close to experiments on antid

i-
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lattices@25#. Knowing the density-dependent diffusion coe
ficient in the unperturbed case@26# leads us to predicting
local and global suppression of the diffusion coefficient
this model in case of static density fluctuations.
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