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Cell movement—for example, during embryogenesis or tumor
metastasis—is a complex dynamical process resulting from an
intricate interplay of multiple components of the cellular migration
machinery. At first sight, the paths of migrating cells resemble
those of thermally driven Brownian particles. However, cell mi-
gration is an active biological process putting a characterization in
terms of normal Brownian motion into question. By analyzing the
trajectories of wild-type and mutated epithelial (transformed
Madin–Darby canine kidney) cells, we show experimentally that
anomalous dynamics characterizes cell migration. A superdiffusive
increase of the mean squared displacement, non-Gaussian spatial
probability distributions, and power-law decays of the velocity
autocorrelations is the basis for this interpretation. Almost all
results can be explained with a fractional Klein–Kramers equation
allowing the quantitative classification of cell migration by a few
parameters. Thereby, it discloses the influence and relative impor-
tance of individual components of the cellular migration apparatus
to the behavior of the cell as a whole.

data analysis � fractional dynamics � non-Brownian motion

Nearly all cells in the human body are mobile at a given time
during their life cycle. Embryogenesis, wound-healing, im-

mune defense, and the formation of tumor metastases are well
known phenomena that rely on cell migration. Extensive exper-
imental work revealed a precise spatial and temporal coordina-
tion of multiple components of the cellular migration machinery
such as the actin cytoskeleton, cell-substrate and cell–cell inter-
actions, and the activity of ion channels and transporters (1–4).
These findings are the basis for detailed molecular models
representing different microscopic aspects of the process of cell
migration such as the protrusion of the leading edge of the
lamellipodium, or actin dynamics (5). Mathematical continuum
models, in contrast, focus on collective properties of the entire
cell to explain requirements for the onset of motion and some
typical features of cell motility (6). These models are usually
limited to small spatiotemporal scales. Therefore, they provide
little information about how the integration of protrusion of the
lamellipodium, retraction of the rear part, and force transduc-
tion onto the extracellular matrix lead to the sustained long-term
movement of the entire cell. This process is characterized by
alternating phases of directed migration, changes of direction,
and polarization. The coordinated interaction of these phases
suggests the existence of intermittency (7) and of strong spatio-
temporal correlations. It is therefore an important question
whether the long-term movement of the entire cell can still be
understood as a simple diffusive behavior like usual Brownian
motion (8, 9) or whether more advanced concepts of dynamic
modeling have to be applied (10, 11).

Results and Discussion
We performed migration experiments and analyzed the trajec-
tories of two migrating transformed renal epithelial Madin–
Darby canine kidney (MDCK-F) cell strains: wild-type (NHE�)
and NHE-deficient (NHE�) cells (12). The cells were observed
for up to 1,000 min. Fig. 1a depicts the contours and the path of
a migrating MDCK-F NHE� cell monitored for 480 min. At first
sight, the cell’s trajectory resembles those of normal Brownian

particles. Brownian motion in terms of the Ornstein–Uhlenbeck
process (13, 14) is characterized by a mean squared displace-
ment, msd (for definition, see Eq. 1), proportional to �t2 at short
times corresponding to ballistic motion and �t for long time
intervals designating normal diffusion. Our experimental data
show that both types of MDCK-F cells behave differently.
Consistent with earlier observations, MDCK-F NHE� cells
move less efficiently than NHE� cells (12, 15, 16), resulting in a
reduced msd for all times. As displayed in Fig. 1b, their msd
exhibits a crossover between three different dynamical regimes.
For short times (�4 min; phase I), the increase of the msd differs
from a ballistic t2 scaling. The logarithmic derivative of the msd
(Eq. 2) shown in Fig. 1c characterizes this first region with an
exponent �(t) below �1.8. In the subsequent intermediate phase
II (up to �20 min), the msd reaches its strongest increase with
a maximum exponent of �(t) � 1.8. When the cell has approx-
imately moved beyond a squared distance larger than its mean
squared radius, r (indicated by arrows in Fig. 1b), the exponent
�(t) of the msd gradually decreases below 1.5.

We next extracted the probability that the cells reach a given
position x at time t from the experimental data. This corresponds
to the temporal development of the spatial probability distribu-
tion function p(x, t) delivering information beyond the msd. Fig.
2 a and b reveals the existence of non-Gaussian p(x, t) distribu-
tions for different points in time. The transition from a peaked
distribution at short times t � 1 min to rather broad distributions
at long times t � 120 min and t � 480 min in Fig. 2 a and b
suggests again the existence of distinct dynamical processes
acting on different time scales. The shape of the distributions can
be quantified by calculating the kurtosis according to Eq. 5,
which is displayed as a function of time in Fig. 2c. The kurtosis
rapidly decays from values of �7–9 to reach a constant value of
�2.3 for both cell types in the long time limit. Such a behavior
implies a transition of p(x, t) from a peaked to a flat form also
visible from Fig. 2 a and b. The time-dependent deviation of the
kurtosis from the value of 3, which would correspond to a
Gaussian distribution (as, e.g., for the Ornstein–Uhlenbeck
process), is another strong manifestation of the anomalous
nature of cell migration.

To gain further insight into the origin of the anomalous
dynamics, we calculated the velocity autocorrelation function
vac(t) (defined in Eq. 4) that characterizes the correlation of the
velocity (Eq. 3) at time t with its value at time t � 0 (Fig. 3). As
for the msd in Fig. 1b, the double-logarithmic plot displays
transitions between three regimes characterized by different
time scales for both cell types. After a pronounced dip at short
times, the autocorrelation function shows a gradual transition
during intermediate times to a power-law-like decay at long
times. In contrast, the Ornstein–Uhlenbeck realization of
Brownian motion would imply a purely exponential decay of the
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velocity autocorrelation function for all times. The nontrivial
behavior of the velocity autocorrelation function stresses the
existence of long-range correlations in time of the underlying
dynamical process of cell migration. We would like to emphasize
at this point that no chemotactic or other physical gradients were
imposed on the cells examined in our study. Thus, our analysis
shows that the so-called ‘‘random migration’’ does actually not
proceed as randomly as one might expect.

To generalize the interpretation of our data, we sought an
integrative mathematical model. The experimental results posed
extensive constraints on the choice of such a model. A full theory
should generate a power-law behavior of the msd including
transitions between different time scales, non-Gaussian proba-
bility distributions, and a velocity autocorrelation function with
a power-law decay for long times. Conventional Langevin,
Fokker–Planck, and Klein–Kramers equations (17) provide de-
scriptions of ordinary Brownian motion [e.g., the Ornstein–
Uhlenbeck process (13, 14)] that do not match these constraints.
The anomalous nature of cell migration demands for the inclu-
sion of temporal memory in the above equations that can be
achieved by introducing fractional derivatives (18–21). We

therefore modeled our msd data with the fractional Klein–
Kramers equation in Eq. 6 (18), which includes the Ornstein–
Uhlenbeck process as special case (� � 1). The inclusion of an
uncorrelated noise term delivers the formula for the msd as given
in Eq. 10. The continuous blue and orange lines in Fig. 1b
represent the resulting fits with parameter values as given in
Table 1 for MDCK-F NHE� and NHE� cells. There is excellent
agreement of data and model for all times. The shallow initial
slope of the msd curve is due to the estimated noise level � � 0.78
�m and 0.47 �m for NHE� and NHE� cells, respectively. The
values of � are much larger than the measurement uncertainty
of �pos � 0.1 �m showing the influence of ‘‘biological noise’’
generated by lamellipodial activity. The time scale �� � (1/��)1/�

(Table 1 and Eqs. 6–8) characterizes the transition of the
Mittag-Leffler function from stretched exponential to power-
law behavior for t �� ��. The resulting time scales �� � 18.7 min
for NHE� and �� � 15.2 min for NHE� are comparable with the
times at which the cells cross their mean squared radii (458 �m2

and 211 �m2 for NHE� and NHE� cell, respectively). For larger
times, the msd shows a transition to a power law of �t2�� (see
Eq. 8) thus describing superdiffusion of �t1.25 for NHE� and
�t1.28 for NHE� cells. The enhanced thermal velocity, vth

2 , and
the slightly reduced value of �� generate a diffusion coefficient

Fig. 1. Summary of migration experiments. (a) Overlay of a migrating
MDCK-F NHE� cell with its path covered within 480 min. The cell frequently
changes its shape and direction during migration. (b) Double-logarithmic plot
of the mean squared displacement (msd) as a function of time. Experimental
data points for both cell types are symbolized by triangles and circles. Differ-
ent time scales are marked as phases I, II, and III as discussed in the text. The
solid blue and orange lines represent the fit to the msd of the fractional
Klein–Kramers (FKK) equation including a noise term (Eq. 10). Green lines
show the results of the Ornstein–Uhlenbeck (OU) model plus noise (Eq. 11).
The corresponding parameters of the theoretical models are given in Tables 1
and 2. The dashed black lines indicate the uncertainties of the msd values
according to Eq. 15. (c) Logarithmic derivative �(t) (Eq. 2) of the msd for
MDCK-F NHE� and NHE� cells. Data and model curves are marked as in b.

Fig. 2. Time-dependent development of the spatial probability distribution
p(x, t). (a and b) Experimental data for NHE� and NHE� cells, respectively, at
different time points t � 1, 120, and 480 min in a semilogarithmic represen-
tation. The continuous blue and orange lines show the solutions of the
fractional diffusion equation as given in Eq. 9 with the parameter set obtained
by the msd fit in Table 1. Analogously, the green lines depict the Gaussian
Ornstein–Uhlenbeck functions. For t � 1 min, the probability distribution of
the data points shows a peaked structure clearly deviating from a Gaussian
form. (c) The kurtosis of the distribution function p(x, t) varies as a function of
time and saturates at �2.3 for long times. Being different from the value of 3
(greenline,OU), thekurtosisconfirmsthedeviationfromaGaussian(Ornstein–
Uhlenbeck) probability distribution. The continuous blue and orange lines
(FKK) represent the kurtosis modeled with the fractional Klein–Kramers equa-
tion including a Gaussian noise term.
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for NHE� cells that is twice as large as that for NHE� cells. Thus,
our model quantitatively confirms the importance of the
Na�/H� exchanger for directed migration (15, 16). The loga-
rithmic derivative of the model Eq. 10 in Fig. 1c emphasizes the
influence of the noise term for short times generating the
deviation from a ballistic initial increase of the msd in agreement
with the experimental data. Without the noise term (� � 0), �(t)
would be 2 for short times. In addition, Fig. 1c shows a
continuous transition of �(t) to the estimated exponent 2 � �
(Table 1) for long times.

To show that the predictions of the fractional Klein–Kramers
equation correspond more closely with the experimental data
than those from simpler dynamical models, we included a
quantitative analysis of the Ornstein–Uhlenbeck process (13, 14,
17). The application of Eq. 11 to the experimental msd data
delivers the Ornstein–Uhlenbeck parameters in Table 2. At first
sight, the double-logarithmic plot in Fig. 1b shows only small
differences between the fractional model and the conventional
Ornstein–Uhlenbeck process. However, the logarithmic deriva-
tive shown in Fig. 1c is clearly in favor of the fractional
Klein–Kramers equation, especially in phases II and III. For
longer times, the Ornstein–Uhlenbeck process shows a too fast

decay of the exponent �(t) toward values near 1 corresponding
to normal diffusion.

The probability distribution p(x, t) of the fractional Klein–
Kramers equation is only known in the limit of long times (t ��
��) given by the solution of the corresponding fractional diffu-
sion equation (19) in terms of Fox functions (Eq. 9). Fig. 2 a and
b compares these model solutions (using the parameters of Table
1) with data for times t � 120 and 480 min for MDCK-F NHE�

and NHE� cells, respectively. There is a good agreement be-
tween data and model for longer times. The rather peaked
solutions in Fig. 2 a and b for the shortest time t � 1 min cannot
be explained with these functions. For comparison, we have also
added the Gaussian probability distributions of the Ornstein–
Uhlenbeck process (green lines in Fig. 2 a and b), which can
explain neither the peaked short time nor the long time behavior.
Fig. 2c illustrates that the kurtosis of the fractional Klein–
Kramers equation deviates for short times, too. However, for
longer times, data and theoretical kurtosis converge in agree-
ment with the observation of p(x, t) and the Fox functions in Fig.
2 a and b toward a value of �2.3. In contrast, the Ornstein–
Uhlenbeck process has a constant value of 3 over the entire time
range.

Finally, in Fig. 3 we compare the velocity autocorrelation
function of the fractional Klein–Kramers equation with the cell
data. On the double-logarithmic plot, the Mittag-Leffler func-
tion given by Eq. 7 (using the same parameters of Table 1 from
the msd fit) nicely interpolates between the experimental data
values, again showing the crossover between stretched exponen-
tial and power-law behavior within the same time scales as the
msd in Fig. 1b. In contrast, the velocity autocorrelation function
of the Ornstein–Uhlenbeck process (green lines in Fig. 3) decays
too fast, �exp(��1 t) (see Eq. 7), thereby missing the long-range
correlations of the fractional model. The obvious deviations of
the first data point at t � 1 min for both cell types from the
fractional Klein–Kramers model can be explained with the
contribution of the uncorrelated ‘‘biological noise’’ to the ve-
locity autocorrelation function as given by Eq. 12. Using the
values of � from Table 1, the differences between the model
solutions and the data points at t � 1 min are estimated as 1.23
�m2/min2 and 0.45 �m2/min2 for MDCK-F NHE� and NHE�

cells, respectively. This agrees quite well with the observed
differences in Fig. 3 and is also the case for the corrections at t �
0 min, which are not visible in the double-logarithmic plots.

In summary, we have shown that a variety of anomalous
dynamical properties characterizes the migration process of
MDCK-F cells. In all of these quantities, we observe a crossover
between anomalous dynamics on different time scales that
reminds one of intermittent behavior as claimed to be important
for optimal search strategies of foraging animals (7). The
fractional Klein–Kramers equation amended by an uncorrelated
noise term models the msd and velocity autocorrelation function
for all times as well as the long time dynamics of the probability
distribution p(x, t). Thus, our approach offers a theoretical

Fig. 3. Decay of the velocity autocorrelation function. The points represent
the experimental data for MDCK-F NHE� (a) and NHE� (b) cells. The continu-
ous blue and orange curves display the velocity correlation function of the
Klein–Kramers equation (FKK) given by the Mittag-Leffler function in Eq. 7
with the parameters of Table 1. The uncertainties of the fractional Klein–
Kramers model estimation are indicated as dashed black lines. The green lines
display the exponential decay of the Ornstein–Uhlenbeck process (OU).
Whereas the fractional velocity autocorrelation function of the Klein–
Kramers equation reliably models the experimental data, the Ornstein–
Uhlenbeck process fails to do so.

Table 1. Parameter estimation: Fractional Klein–Kramers equation

Cell type

Parameter

�, 1 ��, 1/min� vth
2 , �m2/min2 �, �m ��, min

D�,
�m2/min2��

NHE� 0.754 � 0.015 0.110 � 0.010 0.680 � 0.015 0.783 � 0.008 18.68 � 2.50 6.18 � 0.58
NHE� 0.717 � 0.017 0.142 � 0.015 0.437 � 0.012 0.474 � 0.008 15.22 � 2.45 3.08 � 0.34

Parameters and their uncertainties (SD) were estimated with Bayesian data analysis applied to the experimental data and the msd
of the fractional Klein–Kramers equation (FKK) supplemented with an uncorrelated noise term as given in Eq. 10, for both cell types
MDCK-F NHE� and NHE�. A reliable parameter estimation can be performed for this and the Ornstein–Uhlenbeck model. However, the
predictions of the fractional Klein–Kramers equation taking into account anomalous dynamics are superior to the Ornstein–Uhlenbeck
process, as shown in the figures.
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framework that allows the classification of the dynamics of cell
migration with a few physical parameters that can be calculated
from the cells’ trajectories. These can be compared for different
cell types and under different experimental conditions. We
probed our model by comparing migration of wild-type and
NHE-deficient MDCK-F cells. The defect in directional migra-
tion induced by NHE deficiency (12, 15) can clearly be detected
by analyzing the dynamics of MDCK-F cell migration. However,
it is remarkable that the general pattern of anomalous dynamics
is not changed by NHE deficiency. This observation indicates
that the dynamics of cell migration is organized on a level of
complexity that is above that of individual components of the
cellular migration machinery. However, our model may allow the
identification of those components of the cellular migration
apparatus that govern the long-term behavior of migrating cells.

Materials and Methods
Cell Culture. Experiments were carried out on transformed Madin–Darby
canine kidney (MDCK-F) cells and on NHE-deficient MDCK-F cells (12) referred
to as NHE� and NHE� MDCK-F cells. Cells were kept at 37°C in humidified air
containing 5% CO2 and grown in bicarbonate-buffered minimal essential
medium (MEM) (pH 7.4) with Earle’s salts (Biochrom) supplemented with 10%
FCS (Biochrom).

Migration Experiments. Cells were seeded at low density (to avoid collisions
between cells during the experiment) in tissue culture flasks (Falcon) 1–2 days
before the experiments. They were incubated in Hepes-buffered (20 mmol/
liter, pH 7.4) MEM supplemented with 10% FCS during the course of the
experiments. The flasks were placed in a heating chamber (37°C) on the stage
of an inverted microscope equipped with phase-contrast optics (Axiovert 40;
Zeiss). Migration was monitored with a video camera (Hamamatsu) controlled
by HiPic software (Hamamatsu). Images were taken in 1-min time intervals
during a time range of up to 1,000 min. N � 13 trajectories of each cell type
were used for the analysis consisting of �10,000 data points for each group.

Data Analysis. Image segmentation was performed with Amira software
(Visage Imaging/Mercury Computer Systems). The outlines of individual cells
at each time step were marked throughout the entire image stack and taken
for all further processing. In addition, we assessed the accuracy of the seg-
mentation by repeated segmentation. The normally distributed experimental
uncertainty amounts to �pos � 0.1 �m (data not shown). Quantitative data
analysis and calculation of parameters were performed with programs devel-
oped by us. The x and y coordinates of the cell center (in micrometers) were
determined as geometric means of equally weighted pixel positions within
the cell outlines as function of time. The combined trajectories of a cell
population allow the calculation of the mean squared displacement, msd, that
describes the mean of the squared distances between a common starting
point at time t0 and the actual positions of a cell population at time t,

msd	t
 � ��x	t 	 t0
 
 x	t0

2 	 �y	t 	 t0
 
 y	t0


2�, [1]

where �. . .� denotes a combined average over all starting times t0 and cell
paths. The increase of the msd can be quantified by the logarithmic derivative

�	t
 �
d ln msd	 t


d ln t
[2]

leading to a time-dependent increase msd(t) � t�(t).

The velocity of migrating cells in x and y direction [vx/y(t) (�m/min)] was
calculated from trajectories as the difference quotient of two cell positions at
times t � � and t

vx	t
 �
x	t 	 �
 
 x	t


�
and vy	 t
 �

y	 t 	 �
 
 y	 t

�

[3]

with the observation time interval of � � 1 min. These velocities were used to
calculate the velocity autocorrelation function

vac(t) � �vx	 t 	 t0
vx	 t0
� 	 �vy	 t 	 t0
v	 t0
� , [4]

where �. . .� denotes an average as in Eq. 1.
The position of the cells can also be used to calculate the probability

p(x, y, t) of finding a cell at position (x, y) for time t. Because we did not find
any correlations between x and y direction in the velocity autocorrelation
function (data not shown), we reduced the discussion to p(x, t) given as
average of x and y positions.

The kurtosis is defined as the ratio of moments by

� � �x4	t
���x2	t
�2. [5]

It can be interpreted as shape index of the probability distribution function
p(x, t) and takes the value of 3 for Gaussian functions.

Fractional Klein–Kramers Equation. The anomalous properties of cell dynamics
were assessed with the fractional Klein–Kramers equation (FKK) for the
probability distribution P(x, v, t) in position x, velocity v, and time t as pro-
posed by Barkai and Silbey (18) but without external forces:

�P	x, v, t

�t

� 

�

�x
�vP	x, v, t


	
�1��

�t1�� ��� �

�v
v 	

kBT
M

�2

�v2� P	x , v , t
 . [6]

�� denotes the damping term, kB is the Boltzmann constant, T is the temper-
ature, M is the mass of the particle, and � defines the order of the fractional
time derivative of Riemann–Liouville type (see, for example, ref. 20). For � �

1, the above equation reduces to the ordinary Klein–Kramers equation (17).
The fractional Klein–Kramers equation of Eq. 6 implies that the velocity
correlation function is given by the so-called Mittag-Leffler function (22) E�:

�vx	t
vx0� � vth
2 E�	
��t�
 f vac(t)FKK�2D � 2v th

2 E�	
��t�
 .

[7]

In the case of the Ornstein–Uhlenbeck limit (� � 1), E� reduces to an expo-
nential decay �exp(��1 t). The mean squared displacement of the fractional
Klein–Kramers equation is represented by the generalized Mittag-Leffler
function (22) E�,�:

msd	t
FKK�1D � 2v th
2 t2E�,3	
��t�
 �

2D� t2��

�	3 
 �

for t 3 � .

[8]

The mean thermal velocity vth
2 � kBT/M is related to the generalized diffusion

coefficient D� by the relation D� � vth
2 /��. In the limit of large damping (��3

�), the fractional Klein–Kramers equation reduces to a fractional diffusion

Table 2. Parameter estimation: Ornstein–Uhlenbeck process

Cell type

Parameter

�, 1 � 1, 1/min vth
2 , �m2/min2 �, �m �1, min D1, �m2/min

NHE� 1 � — 0.028 � 0.001 0.549 � 0.019 0.830 � 0.007 36.22 � 0.70 19.88 � 0.95
NHE� 1 � — 0.029 � 0.001 0.339 � 0.012 0.522 � 0.005 34.09 � 0.70 11.57 � 0.58

Parameters and their uncertainties (SD) were estimated with Bayesian data analysis applied to the Ornstein–Uhlenbeck (OU) result
in Eq. 11, for both cell types MDCK-F NHE� and NHE�. The missing anomalous features of the Ornstein–Uhlenbeck process imply the
modification of the parameters.
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equation (FDE) (19, 20) where the spatial probability distribution functions
p(x, t) are given by a Fox function H (19, 20):

p	x, t
FDE �
1

�4D� t2��

H12
20� x2

4D� t2�� � 	��2, 2 
 �

	0, 1
 	1�2, 1
� .

[9]

Eq. 8 can be extended to include uncorrelated noise of variance �2 generated
by measurement errors (23) or by biological activity; e.g., by the fluctuating
lamellipodium (t � 0)

msd	t
FKK�2D�noise � 4v th
2 t2E�,3	
�� t�
 	 	2�
2. [10]

Eq. 10 reduces to the Ornstein–Uhlenbeck result for � � 1 with the noise term

msd	t
OU�2D�noise �
4v th

2

�1
2 	�1 t 
 1 	 e��1t
 	 	2�
2. [11]

In a similar way, uncorrelated noise also influences the velocity autocorrela-
tion function. The fluctuations �i affect the velocity calculation in Eq. 3 at both
positions x(ti) and x(ti � �) separated by the measurement interval �. Per-
forming the average for the calculation of the velocity autocorrelation func-
tion eliminates all linear terms �i while quadratic noise terms deliver a mod-
ification of the velocity autocorrelation function at times t � 0 and t � �:

vac	 t
FKK�2D�noise � vac	 t
FKK�2D 	
4�2

�2 �	 t , 0




2�2

�2 �	 t , �
 [12]

with the Kronecker delta �(t, t�) � 1 for t � t� and 0 elsewhere. All other times
are unaffected, if the noise source is uncorrelated.

Bayesian Data Analysis. The parameters of the FKK model in Eq. 6 and their
uncertainties were estimated with Bayesian data analysis (24) (for a recent
review, see ref. 25) applied to the corresponding two-dimensional mean
squared displacement of Eq. 10 (or Eq. 11 for the Ornstein–Uhlenbeck pro-
cess). Bayesian data analysis offers a logically consistent link between data and
models. It allows a reliable estimation of the model parameters taking the
uncertainties of the experimental data into account. The expectation value of
the nth moment of the parameters �̂ � {�, ��, vth

2 , �} in Eq. 10 is given by
integrating over the posterior probability function for these parameters
p(�̂ � data). The later is proportional to the product of likelihood p(data � �̂)
and prior function p(�̂):

��i
n� �

�	
k�1

4

d�k�i
np	data��̂
p	�̂


�	
k�1

4

d�k p	data��̂
p	�̂


. [13]

Assuming normally distributed errors, the likelihood function p(data��̂) is
given by

p	data��̂
 � 
	
i�1

N 1
�2�2	ti


�
exp�


1
2 

i�1

N 
 data	 t i
 
 msd	 �̂ , t i


�	 t i

� 2� , [14]

where msd(�̂, ti) corresponds to Eq. 10 for the FKK model. A constant prior p(�̂)
was applied because of the lack of advance information about the values of
the parameters. The four-dimensional integral in Eq. 13 was evaluated nu-
merically by Markov chain Monte Carlo sampling. Thus, application of Eq. 13
with n � 1 delivers the expectation values of the four parameters � (1), ��

(1/min�), vth
2 (�m2/min2), and � (�m) based on the available experimental msd

data at time points ti. The error �(ti) was estimated as

�	ti
 � data	ti
��NTpath�t i , [15]

where N is the number of cell paths. The quotient of path length Tpath (� 500
min) and actual time ti estimates the number of more or less independent
measurement intervals during the calculation of the combined expectation
value in Eq. 1 [also see Qian et al. (26) for the discussion of statistical errors of
the msd]. In addition, Eq. 13 allows for the estimation of the uncertainties of
the parameter with n � 2 via

��k � ���k
2� 
 ��k�2. [16]

In addition, we applied this formalism to simulated data of the Ornstein–
Uhlenbeck process with a number of data that are comparable with the
experiments. These simulations showed that the presented Bayesian data
analysis delivers an agreement of estimated and actually used simulation
parameters within the uncertainties (data not shown).
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