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Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der theoretischen Analyse einfacher
eindimensionaler Modelle für deterministische Diffusion. Diese Modelle beste-
hen aus einer periodischen Anordnung identischer Streuzentren, in denen sich
wechselwirkungsfreie Punktteilchen bewegen. Der mikroskopische chaotische
Streuprozeß dieser Teilchen kann durch Variation eines einzelnen Systempara-
meters kontinuierlich verändert werden, wodurch eine Parameterabhängigkeit für
den makroskopischen Diffusionskoeffizienten des Systems erzeugt wird.
Zur Berechnung dieses Diffusionskoeffizienten werden eine Reihe analytischer
und numerischer Methoden entwickelt, die auf Grundlagen der Theorie chaotis-
cher dynamischer Systeme und der Transporttheorie der statistischen Mechanik
beruhen. Der erhaltene parameterabhängige Diffusionskoeffizient besitzt eine
überraschend komplexe fraktale Struktur, die im Rahmen dieser Arbeit zum er-
stenmal in einem dynamischen System nachgewiesen wurde.
Eine eingehende Analyse der deterministischen Diffusion, die zur Entste-
hung dieses fraktalen Diffusionskoeffizienten führt, zeigt, daß das System
makroskopische dynamische Eigenschaften besitzt, die denjenigen eines ein-
fachen statistischen Diffusionsprozesses entsprechen. Auf einer feinen Skala
dagegen tauchen Strukturen auf, die durch die deterministischen mikroskopischen
Eigenschaften der Streuzentren bestimmt werden.
Um die Struktur des fraktalen Diffusionskoeffizienten zu verstehen, werden
qualitative und quantitative Methoden entwickelt. Diese setzen die Abfolge
von Oszillationen der Stärke des Diffusionskoeffizienten in Beziehung zur
mikroskopischen Kopplung der einzelnen Streuer untereinander, die sich bei
Variation des Systemparameters ändert. Auf der Grundlage einer neudefinierten
Klasse von fraktalen Funtionen werden systematische analytische und numerische
Näherungsmethoden vorgeschlagen, die ein besseres Verständnis bestimmter De-
tails des fraktalen Diffusionskoeffizienten ermöglichen. Es werden einfache Mod-
elle der Zufallsbewegung und deren Anwendbarkeit auf den Prozeß determin-
istischer Diffusion diskutiert. Dies führt zur Voraussage von universalen Geset-
zen für den parameterabhängigen Diffusionskoeffizienten auf einer groben Skala.
Darüberhinaus gibt es Hinweise auf einen dynamischen Phasenübergang, der in
Analogie zu ähnlichen Phänomenen in dynamischen Systemen als eine Krise in
deterministischer Diffusion gedeutet werden kann.
Es ist zu vermuten, daß fraktale Diffusionskoeffizienten, zusammen mit den für
sie charakteristischen dynamischen Eigenschaften, in einer Vielzahl dynamischer
Systeme zu finden sind. Da derartige Systeme bis zu einem gewissem Grad bere-
its experimentell realisiert werden konnten, sollten diese Ergebnisse nicht nur zur
Klärung physikalischer Grundlagenfragen beitragen, die den mikroskopischen
Ursprung makroskopischer Transportphänomene betreffen, sondern sie könnten
unter Umständen auch langfristig Bedeutung für spezielle Anwendungen, wie
zum Beispiel in der Halbleitertechnologie, gewinnen.
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Abstract
A theoretical analysis of simple one-dimensional models for deterministic diffu-
sion has been performed. The models which are in the center of this investigation
consist of arrays of identical scatterers, in which point particles get scattered
without interacting with each other. The microscopic chaotic scattering process
of these particles can be changed continuously by switching a single control
parameter. This induces a parameter dependence for the macroscopic diffusion
coefficient of the system.
For the calculation of this diffusion coefficient, new analytical and numerical
methods are developed. They are based on the theory of chaotic dynamical
systems and on the theory of transport of statistical mechanics. The computed
parameter-dependent difffusion coefficient shows a surprisingly complex fractal
structure, which is obtained here for the first time in a dynamical system.
A detailed analysis of the process of deterministic diffusion which leads to this
fractal diffusion coefficient shows that the system has macroscopic dynamical
properties analogous to the ones of a simple statistical diffusion process. On a
fine scale, however, structures appear which are inherent to the deterministic
microscopic properties of the scatterers.
To explain the structure of the fractal diffusion coefficient, qualitative and
quantitative methods are developed. These methods relate the sequence of
oscillations in the strength of the parameter-dependent diffusion coefficient to
the microscopic coupling of the single scatterers, which changes by varying the
control parameter. By employing a newly-defined class of fractal functions, a sys-
tematic analytical and numerical approximation procedure is introduced, which
provides a better understanding of certain details of the parameter-dependent
diffusion coefficient. Simple random walk models are applied to the process of
deterministic diffusion. This leads to the prediction of universal laws for the
parameter-dependent diffusion coefficient on a large scale. Moreover, there is
evidence for the existence of a dynamical phase transition. In analogy to related
phenomena recently discovered in dynamical systems, this transition can be
understood as a crisis in deterministic diffusion.
It is supposed that fractal diffusion coefficients, and characteristic properties of
their underlying diffusion processes, are obtained for a variety of deterministic
dynamical systems. To a certain extent, such systems could already be realized
experimentally. Thus, the results presented in this work should not only give
more insight into fundamental questions concerning the microscopic origin
of macroscopic transport, but they could also become important for special
technological applications as, e.g., in the field of semi-conductor devices.
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1
Introduction

“Was ist Physik? Ist sie der Gehorsam des
Denkens gegenüber der Wirklichkeit?” [vW95]

C.F. von Weizsäcker

The project of connecting transport theory to the theory of dynamical systems is
a quite recent field of research. It was basically started about fifteen years ago,1

initiated by the developments of what is popularly known as chaos theory. The
theory of chaos itself is not much older [Cvi89], although its roots may be dated
back to H. Poincaré and his work about the turn of the century, or even earlier,
to J.C. Maxwell’s and L. Boltzmann’s discussions of microscopic scattering
processes in the framework of developing kinetic theory.
The modern theory of chaos may be said to be initiated, at least for non-mathe-
maticians, by the famous article of E.N. Lorenz Ref. [Lor63] about thirty years
ago [Gle88]. Since then, the mathematical theory of dynamical systems has been
employed with increasing succes as a suitable tool to analyze the dynamics not
only of physical systems, but also of dynamical systems important in many other
branches of science. The reason for this success is that the complete dynamics
of even simple models is usually highly nonlinear and difficult to describe by
conventional methods. Thus, an arsenal of refined methods, as provided by the
theory of dynamical systems, is needed if one wants to achieve an understanding
of the dynamics beyond the range of linear approximations.
Transport theory, on the other hand, is a traditional branch of non-equilibrium
statistical mechanics and deals basically with the calculation of quantities which
are called transport coefficients, as, e.g., viscosity, thermal conductivity, or
diffusion coefficients. These quantities are employed to describe the macroscopic
behaviour of physical systems like gases or liquids with respect to the variation
of certain parameters as, e.g., temperature, density of a fluid, or applied external
fields. This way, certain parts of transport theory are of great practical importance
for chemists, materials scientists, and engineers.
In the picture of classical physics, any macroscopic transport is caused mechan-
ically by microscopic dynamics. If one follows this line of reductionism, one
may raise the question about the intrinsic connection between the microscopic
“chaotic” dynamics of a physical system and its macroscopic statistical be-

1see, e.g., Refs. [Lic92, Mei92, Wig92, Dor95a, Cvi95] and further references therein
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haviour. The essential new feature of the theory of dynamical systems is now that
it allows a description of the deterministic dynamics of a chaotic system, i.e., the
movements of all single particles of, e.g., a gas are taken into account completely,
without any approximation, and are characterized by evaluating respectively
defined dynamical systems quantities. This is in contrast to the mainstream of
previous traditional approaches to transport theory, where always a suitable
“coarse graining” has been employed in one way or the other. A famous coarse
graining is, e.g., Boltzmann’s hypothesis of molecular chaos, which provides the
key for the derivation of the powerful Boltzmann equation of transport theory
and, furthermore, has led to heated discussions about the origin of the second law
of thermodynamics in the framework of the atomic theory of matter [Bru76].
The modern theory of chaotic dynamical systems thus provides an opportunity
to “take microscopic dynamics seriously” in the calculation of macroscopic
statistical quantities in the sense that the complete, usually highly nonlinear
deterministic dynamics of a system can be taken into account. Applied to the
problem of computing transport coefficients, this alliance between transport
theory and the theory of deterministic dynamical systems leads, as a deterministic
theory of transport, to the evaluation of quantities like deterministic diffusion
coefficients (see Section 2.1 for a detailed definition), which have been moved
into the focus of many investigations in recent literature. It may be stated as
the main goal of a deterministic theory of transport to investigate the precise
relation between microscopic deterministic dynamics and macroscopic statistical
transport by analyzing models of physical dynamical systems with respect to
their chaotic properties.
However, confronted with the analysis of the complete dynamics of a chaotic
system, one has to pay a price: The chaotic model has to be sufficiently “simple”
so that the methods of dynamical systems theory can be applied to their full
extent. Thus, there is much reason for the common tendency in nonlinear
dynamics to “reduce” complex, i.e., usually high-dimensional systems to less
complex, i.e., usually low-dimensional models, which are supposed to be simple
enough to enable a detailed analysis. This leads to an “abstraction from reality”,
anticipating that the simple model one arrives at still contains “some” essential
features of the original system, and at least for physicists the challenge must
be to “invert” this direction after a succesful analysis of the supposedly simple
model to get back to physical reality. This working principle may explain the
existence of a large variety of one- and two-dimensional dynamical systems in
the literature, as, e.g., coupled map lattices and cellular automata. There is of
course a great danger that physicists stick too much to the fascinating properties
of chaotic dynamical systems, without keeping any connection to actual physical
problems in mind anymore.
Nevertheless, paraphrasing von Weizsäcker, in this work it shall be taken the
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risk to be a bit “disobedient” to physical reality. It deals with a supposedly
simple, quite abstract model for deterministic diffusion which may be physically
motivated in a long line, starting from quite realistic physical systems described
by Newton’s equations of motion [Hes92a, Hes92b, Kla92, Coh93, Dor77] over
certain two-dimensional models [Woo71, Mac83b, Kon89, Gas90] to finally the
type of one-dimensional model to be considered here [Fuj82, Gas92a, Gas92d].
The hope of the author, as a physicist, is still that some results of the following
investigations may turn out to be helpful to gain a better understanding of
“real” physical systems, and that in the long run some of the features described
here may be discovered in certain physical experiments [Gei85, Wei95, Fle95].
Connections to experimental aspects, as far as they occur, will be pointed out
in the course of the investigations, and some possible first steps on a “road to
reality” will be briefly sketched in the final chapter.
It shall be concluded with some brief remarks about the contents of this work,
and about the style in which these pages are written. This book consists of
four main chapters in which different facettes of deterministic diffusion will be
discussed. Chapter 2 starts with a definition of the model to be investigated and
leads to the most important result of this work: the existence of fractal diffusion
coefficients. Chapter 3 is concerned with the dynamics of deterministic diffusion,
i.e., an analysis of the time-dependent behaviour of diffusing particles in the
model system will be performed. In Chapter 4, a relative of the first map under
consideration will be introduced, motivated by a phenomenon recently discovered
in dynamical systems theory, which is called a crisis in chaotic scattering. The
methods developed before will be applied to answer the question whether this
phenomenon is of any importance for the process of deterministic diffusion.
Finally, in Chapter 5 a refined approach to compute fractal diffusion coefficients
will be presented by employing some newly-defined fractal functions, which can
be used to generate a systematical series of numerical and analytical approxima-
tions for fractal diffusion coefficients.
This work has been written in a rather “soft” and introductory manner. It is
directed basically to physicists as potential readers, although it has been tried to
give some clues to mathematically oriented researchers by formulating certain
conjectures. For the main conjectures, which are labeled as such in the following
chapters, either numerical evidence has been obtained or a sketch of a proof
could be worked out. If there was a choice, always a more “physically intuitive”
approach has been preferred to introduce important theoretical objects and
techniques instead of favorizing a strictly formal way (see especially Section
2.3). The specialist might be a bit disappointed about that treatment, but it is
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intended to give details2 in a series of subsequent papers.3 In the comprehensive
work presented here, any of these details have been either skipped or just
briefly mentioned in footnotes with further references. This way, only a limited
background of dynamical systems theory and transport theory is required, as
provided by some introductionary texts.4 More special notations will again be
briefly explained in footnotes with suitable references.
Section 2.1.2 provides an introduction of the model to be considered, which
should even be understandable to non-physicists. The hurried reader may be
referred to the respective introductions and conclusions of the single chapters,
which contain brief motivations of the problems and the main results, and to the
final chapter. Although it has been tried to write the single chapters in a way that
they can be read separately, certain cross-references could not be avoided.

2These details are: some formal definitions (Markov partitions and transition matrices, see Chapter
2); the derivation of various specific analytical results obtained by the so-called transition matrix
method (see Chapters 2 and 4); some details to the derivation of the Green-Kubo formula employed
in Chapter 5; and the proof of the corollary, or the respective theorem, of Chapter 5.

3It is planned to publish slightly extended versions of the four chapters mentioned above as separate
articles in different journals.

4A choice are, e.g., the following references: [Ott93, Pei92, Sch89, Lev89, Eck85, Dor95a, Dor77,
Rei87, Hes92b, Hes92a].
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Simple maps with fractal diffusion
coefficients

Low-dimensional dynamical systems provide a good starting point to investigate
fundamental problems of dynamical systems theory. Thus, there exists a large
literature about such models, which includes various investigations about trans-
port in simple low-dimensional maps. Certain groups have early been interested
in the behaviour of deterministic diffusion coefficients by switching a single pa-
rameter value, especially Geisel et al. [Gei82, Gei84, Gei85], Grossmann et al.
[Gro82, Fuj82, Gro83a], and Kapral et al. [Sch82]. However, in their articles usu-
ally a more statistical approach to compute parameter-dependent diffusion coeffi-
cients has been preferred. On the other hand, refined new methods of dynamical
systems theory like cycle expansion [Cvi91a, Cvi91b, Art91, Art93, Art94] or
other techniques [Cla93, Bre94, Vol94, Tel95] have been reported in recent liter-
ature, and they have been applied to the problem of transport in one and two di-
mensions. Moreover, for simple systems fundamental relations between dynami-
cal systems quantities and transport coefficients have been discovered by Gaspard
et al. [Gas90, Gas92a, Gas92d]. However, in case of all these new dynamical
systems methods the problem about the parameter dependence of diffusion coef-
ficients has not been appreciated in more detail.
The idea of this chapter is to bring these different lines of research together by
applying new methods of dynamical systems theory to the problem of parameter-
dependent diffusion coefficients in simple models. In Section 2.1, the term de-
terministic diffusion will be explained, and the dynamical system to be analyzed
will be introduced in detail. In Section 2.2, some background about the approach
to be employed here will be briefly discussed, and in Section 2.3, a method will
be presented which enables for the first time the computation of diffusion co-
efficients for a broad range of parameter values. The results for these diffusion
coefficients turn out to be surprisingly complex so that additional investigations,
as performed in Section 2.4, are required as an attempt to understand the origin of
this unexpected non-trivial diffusive behaviour.1

1A summary of this chapter has already been published as a letter, see Ref. [Kla95b].
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2.1 A simple model for deterministic diffusion

2.1.1 What is deterministic diffusion?

In a first approach, one may think about diffusion as a simple random walk
[Wax54, Wan66, vK92, Rei87, Tod92]. In Fig. 2.1, a one-dimensional model of
such a random walk is sketched. One starts by choosing an initial position x0 of a
point particle on the real line, e.g., x0 = 0, as is shown in the figure. The dynamics
of the particle is then determined by fixing a probability density ρ̃(s) such that

p(s) = ρ̃(s)ds (2.1)

gives the transition probability p(s) for the particle to travel from its old position
x0 over a distance s = x1− x0 to its new position x1. The same procedure can be
applied to any further changes in the position of the particle. For sake of sim-
plicity, it is assumed that the probability density ρ̃(s) is symmetric with respect to
s = 0. The quantity of interest is here the orbit of the particle, which is represented
by a collection of points {x0,x1,x2, . . . ,xn} on the real line. n refers to the discrete
time, which is given by the number of iterations, or “jumps”, of the particle.
For performing a simple random walk, it is assumed that the probability density
ρ̃(s) is independent of the position xn of the particle and of the discrete time n, i.e.,
it is fixed in time and space. If other words, there is no history in the dynamics of
the particle, i.e., the single iteration steps are statistically independent from each
other. This is called a Markov process in statistical physics [Wax54, vK92].
A random walk can be employed as a simple model for diffusion: One starts with
an ensemble of particles at, e.g., x0 = 0, and applies the iteration procedure intro-
duced above to each of the particles. If one separates the real line into a number of
subintervals of size ∆x, the number np of particles in any such small interval after
n iterations can be counted. Divided by the total number NP of particles, these re-
sults determine the probability density ρn(x), which is given schematically in Fig.
2.2 for a sufficiently large number of particles. This quantity can be interpreted as
the probability to encounter one particle at a displacement x after n iterations.

0 1 2-1-2

x
s

FIGURE 2.1. A simple one-dimensional random walk model, in contrast to deterministic
dynamics.
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x

nρ (x)

time n 1

n3

n2

FIGURE 2.2. Probability densities for an ensemble of particles in the simple random walk
model of Fig. 2.1 after certain numbers of iteration n1 < n2 < n3 (see text).

The reader should note the fundamental difference between the two probabil-
ity densities involved here: While ρ̃(s) defines the model inherently, ρn(x) is a
dynamical quantity produced by the model. To put it in more physical terms,
ρ̃(s) determines the microscopic scattering rules the particles suffers at position
x, whereas ρn(x) provides information about the macroscopic distribution of an
ensemble of particles, or of the position of one particle as a mean value, respec-
tively.
The diffusion coefficient D can now be obtained by the second moment of the
probability density ρn(x) via

D = lim
n→∞

< x2 >

2n
, (2.2)

where
< .. . >:=

Z
dxρn(x) . . . (2.3)

represents the probability density average. If one has Gaussian probability densi-
ties as the ones shown in Fig. 2.2, the diffusion coefficient of Eq. (2.2) is well-
defined. This is the case for a stochastic diffusion process as the one modeled
above by a simple random walk.
In contrast to this traditional picture of diffusion as an uncorrelated random walk,
the modern theory of dynamical systems enables to consider diffusion as a deter-
ministic dynamical process: In a plot of time n versus position x, Fig. 2.3 shows
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x

n

0 1 2-1-2

10

20

30

40

FIGURE 2.3. Sketch of the movement of a point particle in one dimension, generated by a
deterministic dynamical system.

the orbit of a point particle with initial condition x0 = 0, as it may be generated
by a chaotic dynamical system

xn+1 = M(xn) . (2.4)

M(x) is here a one-dimensional map which prescribes how a particle gets mapped
from position xn to position xn+1.2 The map M(x) plays now the role of the
model-inherent probability density ρ̃(s) of the previous random walk. By defining
M(x) and using Eq. (2.4), one obtains the full microscopic equations of motion
of the system. Thus, the decisive new fact which distinguishes this dynamical
process from the one of a simple random walk is that here the complete history of
the particle is taken into account. This is emphasized in Fig. 2.3 by connecting the
single points of the orbit of the moving particle by lines. If the resulting macro-
scopic process of an ensemble of particles, governed by a deterministic dynamical
system like map M(x), turns out to obey a law like Eq. (2.2), i.e., if a diffusion co-
efficient exists for the system,3 one denotes this process as deterministic diffusion.

2More details about such a map will be given in Section 2.1.3.
3This is not in advance clear, even in supposedly “simple” dynamical systems, see, e.g., Section

2.3.2.
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a

x

M  (x)a

0 1 2 3

1

2

3

FIGURE 2.4. Illustration of a simple model for deterministic diffusion, see the dynamical
system map L , Eqs.(2.5) to (2.8), for the particular slope a = 3.

It may be remarked that, according to the picture of classical determinism, it
seems more natural to start with the actual equations of motion of the particles
for describing a diffusion process than to employ an approximation like a random
walk, where any correlations in time and space have been neglected. However, as
will be shown in this work, and as is shown in recent literature, this task is not that
simple and has never been successfully performed in the general case of Newton’s
equations of motion so far.

2.1.2 Physical motivation of the deterministic model

Fig. 2.4 shows the model which shall be considered in this chapter. One can see
part of a “chain of boxes”, which continues periodically in both directions to in-
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finity, and the trajectory4 of a moving point particle. The movement of the particle
obeys the following rules: Choose any point on the x-axis as an initial condition.
Draw a vertical line at this point. If this (dotted) line hits one of the inclined (full)
lines which exceed the box boundaries, the particle gets scattered horizontally un-
til it hits the (dashed) diagonal which goes straight through all the boxes, where
the particle gets reflected again vertically. The number of times the particle is scat-
tered by an inclined line will be called the number of iterations of the particle.5

One can play this game for any other initial condition, and one will obtain all
kinds of different trajectories. Especially, one will observe that, after a certain
number of iterations, the distance between the respective coordinate of the parti-
cle on the x-axis and its initial condition will vary drastically, even if one changes
the initial condition only a little bit. Thus, one encounters a sensitive dependence
on initial conditions. The diffusion coefficient in this model is determined by the
square of the displacement of the particle in the x-direction, averaged over a large
set of initial conditions and divided by two times the number of iterations in the
limit of very large iteration numbers.6

Now, one can vary the “scattering rules” smoothly by stretching or squeezing the
inclined lines such that they remain parallel, and that still any vertical line hits
an inclined line at precisely one point. The question one might ask is how the
diffusion coefficient in this model, which shall be assumed to exist as a working
hypothesis, changes by varying the scattering rules this way.
It has been proposed to compare the dynamics in this chain of boxes to the process
of Brownian motion:7 If a particle stays in a box for a few iterations, its internal
box motion is supposed to be getting randomized and may resemble the micro-
scopic fluctuations of a Brownian particle, whereas its external jumps between the
boxes could be interpreted as sudden “kicks” the particle suffers by some strong
collision. This suggests that “jumps between boxes” contribute most to the actual
value of the diffusion coefficient.

4A trajectory is considered here as a continuous version of the orbit of the moving particle, although
this distinction is quite arbitrary.

5Note that actually there is no independent movement of the particle in the y-direction, since the
rules are that it just gets reflected at the diagonal, which “transfers” the y- to the x-coordinate. Thus,
the movement of the particle is essentially one-dimensional.

6Under certain quite general conditions, this expression for the diffusion coefficient is identical to
the one given previously by Eq. (2.2); it is called the Einstein formula of diffusion, since it was first
derived by A. Einstein in Ref. [Ein05] at the beginning of this century (see also Refs. [Sta89, vK92,
Wax54]).

7The irregular movement of a microscopic particle suspended in a liquid is called Brownian motion
after the botanist R. Brown, who has first studied this process in detail experimentally around 1828. For
a survey about the history of Brownian motion see, e.g., Ref. [Bru76, Sta89]; for a brief introduction
into basic concepts see, e.g., Ref. [Wan66]; for fundamental physical and mathematical aspects of
Brownian motion, see, e.g., Refs. [Wax54, vK92]; see also Ref. [Man82].
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Such a picture may be helpful to get a physical intuition about diffusion in this
model. One should note that the strength of diffusion, and therefore the magni-
tude of the diffusion coefficient, are related to the probability of the particle to
escape out of a box, i.e., to perform a jump into another box. This escape proba-
bility, however, as well as the mean distance a particle travels by performing such
a jump, varies with varying the scattering rules. The reader is invited to make an
intuitive guess at this point about how the diffusion coefficient changes with vary-
ing the scattering rules of the system.
As has been mentioned in the introductory Chapter 1, and as has been briefly
discussed in terms of a random walk in the previous section, Brownian motion
is usually described in statistical physics by introducing some stochasticity into
the equations which model a diffusion process. The main advantage of the simple
model discussed here is that diffusion can be treated by taking the full dynamics
of the system into account, i.e., the complete trajectory of the moving particle
is considered, without any additional approximations. To distinguish this kind of
diffusion from stochastic approaches, it is called deterministic diffusion. In this
case, the trajectory of the particle is fixed by determining its initial condition.8

To the knowledge of the author, models of chains of one-dimensional maps have,
with respect to diffusion, first been discussed extensively in 1982 by Fujisaka and
Grossmann [Gro82, Fuj82], who also employed the analogy of Brownian motion,
by Geisel and Nierwetberg [Gei82], and by Schell, Fraser, and Kapral [Sch82].

2.1.3 Formal definition of the deterministic model

Let

Ma : R→ R , xn 7→Ma(xn) = xn+1 , a> 0 , xn ∈ R , n ∈ N0 (2.5)

be a map modelling the chain of boxes introduced above, i.e., a periodic con-
tinuation of discrete one-dimensional piecewise linear9 expanding10 maps with
uniform slope. The index a holds for the control parameter, which is the abso-
lute value of the slope of the map, xn stands for the position of a point particle,
and n labels the discrete time. Since the map is expanding, its Lyapunov expo-
nent can straightforward be calculated to lna, and thus Ma(x) is chaotic. Note that
the expanding condition, together with the map being piecewise linear, ensures

8For more details see the previous section.
9The term piecewise linear should be understood in the sense that the interval of the map which is

periodically continued consists of a finite number of subintervals, on the interiors of which the map is
linear.

10A one-dimensional map Ma(x) is expanding if |dMa(x)/dx| > 1 for all x in the intervals of differ-
entiability, see Ref. [Bec93]. For a more rigorous mathematical notion see Ref. [dM93].
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the existence of certain points of discontinuity and/or non-differentiability. These
points reflect the chaoticity of Ma(x) despite its property of being piecewise lin-
ear. The expanding condition also ensures that Ma(x) is hyperbolic.11

The term “chain” in the characterization of Ma(x) can be made mathematically
more precise as a lift of degree one [Mis89, Als89b, Kat95],

Ma(x + 1) = Ma(x) + 1 , (2.6)

for which the acronym old has been introduced.12 In physical terms, this means
that Ma(x) is to a certain extent translational invariant.
Being old, the full map Ma(x) is generated by the map of one box, e.g., on the unit
interval 0 < x ≤ 1, which will be referred to as the box map. It shall be assumed
that the graph of this box map is central symmetric with respect to the center of
the box at (x,y) = (1/2,1/2). This induces that the graph of the full map Ma(x)
is anti-symmetric with respect to x = 0,

Ma(x) =−Ma(−x) , (2.7)

so that there is no “drift” in the chain of boxes.
For convenience, the class of maps defined by Eqs. (2.5), (2.6), and (2.7) shall be
denoted as class P , and maps which fulfill the requirements of class P shall be
referred to as class P -maps.
In Fig. 2.4, which contains a section of a simple class P -map, the box map has
been chosen to

Ma(x) =

{
ax , 0< x≤ 1

2
ax + 1−a , 1

2 < x≤ 1

}
, a≥ 2 , (2.8)

cf. Refs, [Gro82, Gas92d, Ott93]. This example can be best classified as a Lorenz
map with escape.13 The chaotic dynamics of these maps is generated by a “stretch-
split-merge”-mechanism for a density of points on the real line [Pei92]. As a class

11For one-dimensional maps, the hyperbolicity immediately follows from the expanding condition,
see Ref. [Bec93]. Definitions of hyperbolicity are also given in Ref. [Bec93], for a more rigorous
mathematical notion in case of one-dimensional dynamical systems see Ref. [dM93]. The basic idea
of hyperbolicity stems from higher-dimensional dynamical systems, see Refs. [Eck85, Guc90, Bow75,
Lev89, Ott93].

12This abbreviation was apparently created by Misiurewicz, changing the order of the first charac-
ters in the main words (see Ref. [Mis89] and references therein); Refs. [Als89b, Als93] provide some
remarks about the analysis of old maps in the mathematical literature, as well as some examples.

13One-dimensional Lorenz maps have in fact been introduced as suitable Poincaré surfaces of sec-
tion of the Lorenz attractor [Guc90, Pei92]. The idea of this reduction is due to Lorenz, although
originally he obtained a different one-dimensional map [Guc90, Pei92, Ott93].
A rigorous definition of Lorenz maps can be found in Refs, [Gle93, Hub90], or, more specialized, in
Ref. [Als89a], respectively. The main difference between these Lorenz maps and the map defined in
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P -map, Eq.(2.8), together with Eqs.(2.5), (2.6), and (2.7), will be referred to as
map L . Other class P -maps have been considered in Refs. [Gro82, Fuj82, Gro83b,
Tho83, Art91, Gas92d], another example will be discussed in Chapter 4.
More precisely than stated in Section 2.1.2, the problem of this chapter can be
formulated as to develop a method for computing parameter-dependent diffusion
coefficients D(a) for class P -maps, as far as they exist. In this and most of the
following chapters, map L will serve as an example. However, it is believed that
the methods to be presented here will work as well for any other class P -map,
supposedly with similar results.

2.2 First passage method

The methodology of first passage has been developed in the framework of sta-
tistical physics (see, e.g., Refs. [Wax54, vK92] and further references therein).
It deals with the calculation of decay- or escape rates for ensembles of sta-
tistical systems with certain boundary conditions. In recent work, these meth-
ods have very successfully been applied to the theory of dynamical systems
[Gas90, Gas92a, Gas92d, Gas93, Dor95b, Gas95].14

Following the presentations in Refs. [Gas90, Gas92a, Gas92d], the principles of
first passage will be outlined for the “class P ” of dynamical systems defined
above. The method will turn out to provide a convenient starting point for com-
puting parameter-dependent diffusion coefficients.
One may distinguish three different steps in applying the method:
Step 1: Solve the one-dimensional diffusion equation

∂n
∂t

= D
∂2n
∂x2 (2.9)

with suitable boundary conditions, where n := n(x, t) stands for the macroscopic
density of particles at a point x at time t. This equation serves here as a definition
for the diffusion coefficient D.

Eq.(2.8) is that they originally do not include escape, i.e., they map strictly from an interval onto itself,
whereas the map here provides an escape from the (unit) interval to other intervals of the chain.
It should be noted that the motivation of chosing such a map here has nothing to do with the Lorenz
attractor (in fact, it is due to Prof. Dorfman’s reading of Refs. [Ott93, Gas92d]). However, for the spe-
cialist this remark might serve as a hint how to classify the box map under consideration with respect
to its detailed mathematical properties.

14See Ref. [Gas92d] for a brief overview.
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Step 2: Solve the Frobenius-Perron equation15

ρn+1(x) =

Z
dy ρn(y) δ(x−Ma(y)) , (2.10)

which represents the continuity equation for the probability density ρn(x) of the
dynamical system Ma(y) [Ott93, Las94].
Step 3: Now, for a chain of boxes of chainlength L, consider the limit chainlength
L and time n to infinity: If for given slope a the first few largest eigenmodes of
n and ρ turn out to be identical in an appropriate scaling limit, then D(a) can be
computed by matching the eigenmodes of the probability density ρ to the particle
density n: For periodic boundary conditions, i.e.,

n(0, t) = n(L, t) and ρn(0) = ρn(L) , (2.11)

one obtains

D(a) = lim
L→∞

(
L
2π

)2

γdec(a) , (2.12)

where γdec(a) is the decay rate in the closed system to be calculated directly from
the Frobenius-Perron equation and therefore determined by quantities of the de-
terministic dynamical system.
For absorbing boundary conditions, i.e.,

n(0, t) = n(L, t) = 0 and ρn(0) = ρn(L) = 0 , (2.13)

the same procedure leads to

D(a) = lim
L→∞

(
L
π

)2

γesc(a) , (2.14)

where γesc(a) is the escape rate for the open system. This quantity can be further
determined by the escape rate formalism (see Ref. [Eck85, Dor95a] and refer-
ences therein) to

γesc(a) = λ(R ;a)−hKS(R ;a) , (2.15)

where the Lyapunov exponent λ(R ;a) and the Kolmogorov-Sinai (KS) entropy
hKS(R ;a) have to be defined on the repeller R of the dynamical system.16 This

15For sake of simplicity, here and in the following the parameter index a for the slope as a has been
avoided for the probability density. It will be introduced if it is needed explicitly, see Chapter 5.

16The notations metric [Lev89, Ott93] and measure-theoretic entropy [Eck85] are synonymous to
KS entropy.
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equation can be considered as an extension of Pesin’s formula to open systems.17

Eqs.(2.12) and (2.14) have been applied to a variety of models, like the periodic
Lorentz gas, two-dimensional chains of baker transformations and certain one-
dimensional chains of maps, by Gaspard and coworkers [Gas92a, Gas92d]. They
provide suitable starting points for detailed analytical and numerical calculations,
as will be explained further in the following section.
Eq.(2.14), together with Eq.(2.15), has first been presented for the two-
dimensional periodic Lorentz gas by Gaspard and Nicolis [Gas90]. Further gen-
eralizations of this formula to other transport coefficients and dynamical systems
have been worked out recently [Dor95b, Gas95]. However, although of funda-
mental physical importance, it seems in general to be difficult to use this equation
for practical evaluations of D(a), because usually the KS entropy is hard to cal-
culate [Ott93]. Instead, Eq.(2.14) with Eq.(2.15) can be inverted to get the KS
entropy via the decay rate of the dynamical system of Eq.(2.12) to

hKS(R ;a) = λ(R ;a)− 1
4

γdec(a) (L→ ∞) . (2.16)

Apart from the results mentioned above, another fundamental relation, which ex-
presses transport coefficients in terms of Lyapunov exponents, has been obtained
for a different type of model in the framework of molecular dynamics computer
simulations [Pos88, Pos89, Eva90a, Bar93a, Coh95]. In the spirit of this approach
[Mor87], it has recently been possible to obtain Ohm’s law for a periodic Lorentz
gas with external field, starting from the microscopic dynamics of the system
[Che93a, Che93b]. The precise relation between these two approaches, and their
resulting different formulas, respectively, is an open question and a matter of ac-
tive recent research.18

2.3 Solution of the Frobenius-Perron equation

Following the first passage method, the problem of computing parameter-
dependent diffusion coefficients essentially reduces to solving the Frobenius-
Perron equation for the dynamical system in a certain limit.
In this section, a method will be presented by which this goal can be achieved.
Its principles will be illustrated by some simple examples. It should be mentioned
that the basic idea of this method is again due to the work of Gaspard [Gas92a].
However, technical refinements, a critical discussion of the limits of the method,

17One obtains Pesin’s formula from Eq.(2.15) for γesc = 0, i.e., it establishes the relation between
Lyapunov exponents and KS entropy for closed systems [Gas90].

18For introductions see Refs. [Dor95a, Hoo91, Eva90b].
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FIGURE 2.5. Partition for map L for slope a = 4.

and a substantial generalization to compute parameter-dependent diffusion coef-
ficients, based on Markov partitions, have been added for new. As has been found
later, the use of transition matrices on the basis of Markov partitions is quite well-
known, especially in the mathematical literature [Sin68, Sin68, Bow75, Rue78,
Bow79, Cor82, Sin89, Rue89], and has been employed by various authors for the
calculation of certain dynamical systems quantities (see, e.g., Ref. [Moo75], the
work by Boyarski et al. in Refs. [Boy79, Fri81, Bye90] and in further references
cited in this section, Refs. [Els85, Gra88, Mac94, Bal94], and the introductions in
Refs. [Guc90, Bec93].
The following discussion will partly be supported by numerical results, and a way
to numerical computations of parameter-dependent diffusion coefficients will be
pointed out.19

2.3.1 Transition matrix method

As a first example, the diffusion coefficient D(a) shall be computed for map L at
slope a = 4, as sketched in Fig. 2.5, supported by periodic boundary conditions.
The calculation will be done according to the three-step procedure outlined in the

19More detailed analytical calculations will be given in an respective paper.
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previous section.
Step 1: The one-dimensional diffusion equation Eq.(2.9) can be solved with peri-
odic boundary conditions straightforward to

n(x, t) = a0 +
∞

∑
m=1

exp
(
−(

2πm
L

)2Dt
)(

am cos(
2πm

L
x) + bm sin(

2πm
L

x)

)
,

(2.17)
where a0 , am and bm are Fourier coefficients to be determined by an initial parti-
cle density n(x,0).
Step 2: To solve the Frobenius-Perron equation, the key idea is to write this equa-
tion as a matrix equation [Gas92a, Bec93]. For this purpose, one needs to find a
suitable partition of the map, i.e., a decomposition of the real line into a set of
subintervals, called elements, or parts of the partition. The single parts of the par-
tition have to be such that they do not overlap except at boundary points, which are
referred to as points of the partition, and that they cover the real line completely
[Bec93]. In case of slope a = 4, such a partition is naturally provided by the box
boundaries. The grid of dashed lines in Fig. 2.5 represents a two-dimensional im-
age of the one-dimensional partition introduced above, which is generated by the
application of the map.
Now, an initial density of points shall be considered which covers, e.g., the inter-
val in the second box of Fig. 2.5 uniformly. By applying the map, one observes
that points of this interval get mapped two-fold on the interval in the second box
again, but that there is also escape from this box which covers the third and the
first box intervals, respectively. Since map L is old, this mechanism applies to
any box of the chain of chainlength L, modified only by the boundary conditions.
Taking into account the stretching of the density by the slope a at each iteration,
this leads to a matrix equation of

ρn+1 =
1
a

T (a)ρn , (2.18)

where for a = 4 the L x L-transition matrix T (4) can be constructed to

T (4) =




2 1 0 0 · · · 0 0 1
1 2 1 0 0 · · · 0 0
0 1 2 1 0 0 · · · 0
...

...
...

...
0 · · · 0 0 1 2 1 0
0 0 · · · 0 0 1 2 1
1 0 0 · · · 0 0 2 1




. (2.19)

The matrix elements in the upper right and lower left edges are due to periodic
boundary conditions and reflect the motion of points from the Lth box of the chain
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to the first one and vice versa.
In Eq.(2.18), the transition matrix T (a) is applied to a column vector ρn of the
probability density ρn(x) which, in case of a = 4, can be written as

ρn ≡ |ρn(x)>:= (ρ1
n,ρ

2
n, . . . ,ρ

k
n, . . . ,ρ

L
n)∗ , (2.20)

where “∗” denotes the transpose, and ρk
n represents the component of the proba-

bility density in the kth box, ρn(x) = ρk
n , k− 1 < x ≤ k , k = 1, . . . ,L , ρk

n being
constant on each part of the partition.
In case of a = 4, the transition matrix is symmetric and can be diagonalized by
spectral decomposition. Solving the eigenvalue problem

T (4) |φm(x)>= χm(4) |φm(x)> , (2.21)

where χm(4) and |φm(x) > are the eigenvalues and eigenvectors of T (4), respec-
tively, one obtains

|ρn(x)> =
1
4

L−1

∑
m=0

χm(4) |φm(x)>< φm(x)|ρn(x)>

=
L−1

∑
m=0

exp
(
−n ln

4
χm(4)

)
|φm(x)>< φm(x)|ρ0(x)> ,(2.22)

where |ρ0(x)> is an initial probability density vector and ln4 gives the Lyapunov
exponent of the map. Note that the choice of initial probability densities is re-
stricted by this method to functions which can be written in the vector form of
Eq.(2.20).
For matrices of the type of T (4), it is well-known how to solve their eigenvalue
problems [Ber52, Kow54, Dav79]. For slope a = 4, one gets

χm(4) = 2 + 2cosθm , θm :=
2π
L

m , m = 0, . . . ,L−1 ;

|φm(x)> = (φ1
m,φ2

m, . . . ,φk
m, . . . ,φL

m)∗ ,φk
m = ãmφk

m,1 + b̃mφk
m,2 ,

φk
m,1 := cosθm(k−1) , φk

m,2 := sinθm(k−1) ,

k = 1, . . . ,L , k−1< x≤ k (2.23)

with ãm and b̃m to be fixed by suitable normalization conditions.20

Step 3: To compute the diffusion coefficient D(4), it remains to match the first few

20In case of a = 4, Eq.(2.22), supplemented by Eq.(2.23), represents the complete solution of the
Frobenius-Perron equation; see Chapter 3 for the time-dependent behaviour of probability densities
and the dynamics of diffusion.
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largest eigenmodes of the diffusion equation to the ones of the Frobenius-Perron
equation: In the limit time t and system size L to infinity, the particle density
n(x, t), Eq.(2.17), of the diffusion equation reduces to

n(x, t)' const.+ exp
(
−(

2π
L

)2Dt
)(

Acos(
2π
L

x) + Bsin(
2π
L

x)

)
, (2.24)

where the constant represents the uniform equilibrium density of the equation.
Analogously, for discrete time n and chainlength L to infinity, one obtains for
the probability density ρn(x) of the Frobenius-Perron equation, Eq.(2.22) with
Eq.(2.23),

ρn(x) ' const.+ exp(−γdec(4)n)

(
Ãcos(

2π
L

(k−1)) + B̃sin(
2π
L

(k−1))

)
,

k = 1, . . . ,L , k−1< x≤ k (2.25)

with a decay rate of

γdec(4) = ln
4

2 + 2cos 2π
L

(2.26)

of the dynamical system, determined by the second largest eigenvalue of the ma-
trix T (4), see Eq.(2.23). Note that the largest eigenvalue is equal to the slope of
the map so that for the first term in Eq.(2.25) the exponential vanishes, and one
obtains a uniform equilibrium density.
Apart from generic discretization effects in the time and position variables, which
may be neglected in the limit of time to infinity and after a suitable spatial coarse
graining, the eigenmodes of Eqs.(2.24) and (2.25) match precisely so that, accord-
ing to Eq.(2.12), the diffusion coefficient D(4) can be computed to

D(4) = (
L

2π
)2γdec(4) =

1
4

+ O(L−4) . (2.27)

This result is identical to what is obtained from a simple random walk model (see
Section 4.2 or Ref. [Sch82]), which does not take the full deterministic dynamics
of the system into account.
The procedure can be generalized straightforward to all even integers values of
the slope and leads to a parameter-dependent diffusion coefficient of

D(a) =
1

24
(a−1)(a−2) , a = 2k , k ∈ N , (2.28)

in agreement with results of Fujisaka and Grossmann [Fuj82].
Although this method seems to work perfectly, first subtleties appear for odd in-
teger values of the slope. They shall be illustrated by the example of slope a = 3,
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see, e.g., Fig. 2.4.
Analogously to the previous example, for a = 3 a simple partition can be con-
structed, the parts of which are all of length 1/2. According to this partition, a
transition matrix T (3) can be determined, given schematically by

T (3) =




1 1 0 0 · · · 0 0 1 0
1 1 0 1 0 0 · · · 0 0
1 0 1 1 0 0 · · · 0 0
0 0 1 1 0 1 0 0 · · ·
0 0 1 0 1 1 0 0 · · ·
...

...
...

0 1 0 0 · · · 0 0 1 1




. (2.29)

Note that, in contrast to the case a = 4, here the matrix is formed by single blocks
which move periodically to the right. Since the partition of a = 3 is slightly more
complicated than for a = 4, the blocks refer to the partition in each box, whereas
the shift again is related to the lift property of the old map.
Now, one observes that the matrix T (3) is not symmetric. However, the eigenvalue
problem of this matrix can still be solved analogously to the case a = 4. The spec-
trum of the matrix turns out to be highly degenerate, and therefore T (3) cannot be
diagonalized anymore [Zur84].21 Since the probability density of the Frobenius-
Perron equation is determined by iteration of transition matrices, cf. Eq. (2.18),
for slope a = 3 it is not in advance clear how the single eigenmodes “mix” in
the limit time and chainlength to infinity and whether they can be matched to the
solutions of the diffusion equation as before so that the diffusion coefficient D(3)
is again simply determined by the second largest eigenvalue of the matrix.
One might first approach this problem pragmatically. Analogously to the analyt-
ical solutions of Eqs. (2.24) and (2.25) for slope a = 4, Fig. 2.6 shows a plot
of the two second largest eigenmodes of T (3) in comparision to the solution of
the diffusion equation. Again, one observes total agreement, except differences in
the fine structure. The same is true for the other first few largest eigenmodes of
T (3). Thus, although straightforward diagonalization and, therefore, a simple so-
lution of the Frobenius-Perron equation like Eq. (2.22) are not possible anymore,
it looks as if the largest eigenmodes of T (3) behave “nicely” so that it is sugges-
tive to compute the diffusion coefficient D(3) via the second largest eigenvalue of

21The matrix T (3) is called non-normal, i.e., T (3)T ∗(3) 6= T ∗(3)T (3), which means that it does
not provide a system of orthogonal eigenvectors. Non-normal matrices have recently achieved much
attention in other branches of dynamical systems theory as well [Gro95b].
Of course still a transformation onto Jordan normal form to “block-diagonalize” this matrix could be
applied. However, this is of no use for straightforward analytical calculations, but rather for rigorous
mathematical proofs of certain theorems; see Conjecture 2.2, Footnote 40, and Theorem 5.1.
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FIGURE 2.6. Second largest eigenmodes for map L , chainlength L = 100, for slope a = 3
with periodic boundary conditions and comparision to the solutions of the diffusion equa-
tion Eq.(2.9).

T (3) again. With

γ(3) = ln
3

1 + 2cos(2π/L)
, (2.30)

and Eq.(2.12), one gets

D(3) =
1
3

+ O(L−4) . (2.31)

As for a = 4, this result is obtained as well from a simple random walk model.
However, to produce this value, the respective random walk has to be defined in
a slightly different way than for a = 4 (see the corresponding remark in Section
4.2).
Analogously to the case of even integer slopes, the exact calculations can be gen-
eralized to all odd integer values of the slope and lead to

D(a) =
1

24
(a2−1) , a = 2k−1 , k ∈ N , (2.32)

which again is identical to the result of Fujisaka and Grossmann [Fuj82].
One might conclude that the method still works, even if its mathematical details
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are not clear at this stage. As an explanation, it is tempting to assume that in sim-
ple dynamical systems as class P -maps “nothing can go wrong” and that they are
always diffusive in a simple manner. However, it should be noted that so far no
proof has been given in the literature for the existence of diffusion coefficients
in class P -maps for general values of the slope. In fact, dealing with a proper
foundation of the transition matrix method turns out to be intimately connected to
proving the existence of diffusion coefficients in this class of dynamical systems.
A preliminary answer to this question will be given in the next section after set-
ting up a more general framework.
It remains to deal with three other questions raised by the calculations above:
A special feature of the diffusion coefficient results for integer slopes shall be
pointed out; further limits of this method with respect to generalized diffusion
coefficients shall be critically discussed; and at last the application of the method
to absorbing boundary conditions shall be briefly outlined.
1. diffusion coefficients for integer slopes: Eqs. (2.27) and (2.31) show already
that D(4) < D(3), which might at first sight be counterintuitive. By evaluat-
ing the general formulas of D(a) given by Eqs. (2.28) and (2.32) at other even
and odd integer slopes, one realizes that this inequality reflects a general os-
cillatory behaviour of D(a) at integer slopes,22 as it has similarly been ob-
served for deterministic diffusion in certain classes of two-dimensional maps
[Rec80, Rec81, Dan89b, Dan89a]. This behaviour cannot be understood com-
pletely by one consistent random walk model, as will be explained in more detail
in Section 4.2.
2. matching lower eigenmodes: One encounters serious problems if one wants to
extend the matching eigenmodes procedure to arbitrary low eigenmodes, even in
case of a = 4, where the matrix is diagonalizable. With Eq.(2.23), one can check
that

φk
m,1 = φk

L−m,1 , φk
m,2 =−φk

L−m,2 ; k = 1, . . .L , m = 1, . . . ,L−1 , (2.33)

i.e., in contrast to the m eigenmodes of the diffusion equation Eq.(2.9), the fre-
quency of the eigenmodes of T (4) does not increase monotonically with m, but
gets “turned over” at the (L/2)th (for L even) eigenmode such that the first and
the last half of the number of eigenmodes are identical, except a minus sign. This
is due to the discretization of the position variable x in the diffusion equation to
k in the Frobenius-Perron matrix equation Eq.(2.18), which was one of the basic
ingredients for the possibility to construct transition matrices.
Moreover, one should note that, according to Eq.(2.23), the smallest eigenvalue
of T (4) is equal to zero. For T (3), a large number of eigenvalues is even less

22As mentioned before, this result has already been obtained by Fujisaka and Grossmann [Fuj82],
although it has not been discussed in further detail by these authors.
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FIGURE 2.7. Largest eigenmodes of map L for odd integer values of the slope a with
absorbing boundary conditions, and comparision to the solution of the diffusion equation
Eq.(2.9).

than zero. Thus, except for the first few largest eigenmodes, which still match
reasonably well to the eigenmodes of the diffusion equation in the limit time n
and chainlength L to infinity, one cannot expect the method to work simply that
the components of a “time-dependent” diffusion coefficient Dn(a) are determined
by smaller eigenvalues of the transition matrices in straight analogy to Eq.(2.12).
This could be taken as a hint that, to obtain more details of the dynamics, refined
methods are needed. For example, in Ref. [Gas92b] the first orders of a position-
dependent diffusion coefficient have been determined for a class P -map according
to a procedure which avoids the discretization of the real line.
3. absorbing and periodic boundary conditions: The same procedure as outlined
for periodic boundary conditions can also be employed for absorbing boundaries.
It shall be sketched briefly, according to the three steps distinguished before:
Step 1: The one-dimensional diffusion equation with absorbing boundary condi-
tions can be solved to

n(x, t) =
∞

∑
m=1

am exp
(
−(

πm
L

)2Dt
)

sin(
πm
L

x) (2.34)
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with am denoting again the Fourier coefficients.
Step 2: The transition matrices for a = 4 and a = 3 at these boundary conditions
are identical to the ones of Eqs.(2.19),(2.29), except that the matrices now contain
plain zeros as matrix elements in the upper right and lower left corners. However,
due to this slight change in their basic structure there is no general method to
solve the eigenvalue problems for this type of matrices anymore, in contrast to the
case of periodic boundary conditions.
At least for a = 3 and a = 4, it is still possible to obtain analytical solutions by
straightforward calculations analogously to the ones performed in Ref. [Gas92a],
but for any higher integer value of the slope even these basic methods fail. This
appears to be caused by strong boundary layers. Fig. 2.7 shows numerical so-
lutions23 for the largest eigenmodes of the first odd integer slope transition ma-
trices in comparision to the solutions of the diffusion equation Eq.(2.9). It can
be seen that next to the boundaries, there are pronounced deviations between the
Frobenius-Perron and the diffusion equation solutions. These deviations are get-
ting smaller in the interior region of the chain, but are gradually getting stronger
with increasing the value of the slope, as is shown in the magnification. The same
behaviour can be found for even integer slopes, although the quantitative deviation
of these eigenmodes to the ones of the diffusion equation solutions is slightly less
than for odd values of the slope. Thus, obviously absorbing boundary conditions
disturb the deterministic dynamics significantly, whereas similar effects do not
occur for periodic boundary conditions, which therefore could be characterized
as a kind of “natural boundary conditions” for this periodic dynamical system.
Step 3: The different boundary conditions do not only show up in the eigenmodes
of the transition matrices, but also in the calculation of the diffusion coefficients.
In analogy to periodic boundary conditions, the escape rate of the dynamical sys-
tem at a = 3 and a = 4 is determined to

γesc(a) = ln
a

χmax(a)
(2.35)

with χmax(a) being the largest eigenvalue of the transition matrix,

χmax(3) = 1 + 2cos
π

L + 2
and χmax(4) = 2 + 2cos

π
L + 1

. (2.36)

Feeding this into Eq.(2.14) via matching eigenmodes, one obtains

D(3) ' 1
3

L2

(L + 2)2 + O(L−4) → 1
3

(L→ ∞) ,

D(4) ' 1
4

L2

(L + 1)2 + O(L−4) → 1
4

(L→ ∞) , (2.37)

23Details of the numerics applied here will be given in Section 2.3.2.
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which gives a convergence of the diffusion coefficient with the chainlength L sig-
nificantly below that to be obtained by periodic boundary conditions. For exam-
ple, for a chainlength of L = 100 the convergence is about two orders of magnitude
worse.
It can be concluded that the transition matrix method works in principle for ab-
sorbing boundary conditions as well, but that here its range of application to com-
pute diffusion coefficients is qualitatively and quantitatively more restricted be-
cause of long-range boundary layers.

2.3.2 Markov partitions

In the previous section, the choice of simple partitions enabled the construction of
transition matrices. These matrices provided a way to solve the Frobenius-Perron
equation in a certain limit. However, so far this method has only been applied to
very special cases of map L , defined by integer slopes. This raises the question
whether an extension of this method to other values of the slope is possible.
For this purpose, the idea of choosing a suitable partition of the map has to be gen-
eralized. Taking a look at Fig. 2.5 again, one observes that the graph of the map
“crosses” or “touches” a vertical line of the grid, which represents, as explained
before, a two-dimensional image of the partition, only at some grid points. Fur-
thermore, the local extrema of the map, which are here identical to the points of
discontinuity, are situated on, or just “touch” horizontal lines of the grid, whereas
other crossovers of horizontal lines occur at no specific point. The same charac-
teristics can be verified, e.g., for the respective partition of slope a = 3. These
conditions ensure that it is possible to obtain a correct transition matrix from a
partition, since to be modeled by a matrix, a density of points, which covers parts
of the partition completely, has to get mapped in a way that its image again covers
parts of the partition completely, and not partially.
This basic property of a “suitable partition to construct transition matrices” is
already the essence of what is known as a Markov partition:

Definition 2.1 (Markov partition, verbal definition) For one-dimensional
maps, a partition is a Markov partition if and only if parts of the partition get
mapped again onto parts of the partition, or unions of parts of the partition
[Bec93].

A more formal definition of one-dimensional Markov partitions, as well as further
details, can be found in Refs. [Rue89, dM93, Bow79].24

24Again, the notion of one-dimensional Markov partitions is a reduced form of a more general
definition for higher-dimensional dynamical systems, see, e.g., Refs. [Guc90, Kat95, Bow75, Sin68,
Sin68, Cor82, Sin89, Rue78]. One-dimensional maps which possess Markov partitions are often re-
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Now, the next goal must be to find a general rule how to construct Markov parti-
tions for map L at other, non-trivial parameter values of the slope. Because of the
periodicity of the chain of maps it suffices to find a Markov partition for a single
box map, i.e., for the respective map on the unit interval, cf. Section 2.1.2. Here,
the fact can be used that the extrema, which are the critical points of the box map,
have to touch horizontal lines, as explained before, which means that to obtain a
Markov partition the extrema have to get mapped onto partition points.
Taking the central symmetry of the box map with respect to the center of the box
at x = 1/2 into account, the problem reduces to considering only one of the ex-
trema in the following, e.g., the maximum. Changing the height of the maximum
corresponds to changing the slope of the map. Therefore, if one wants to find
Markov partitions for parameter values of the slope, one can do it the other way
around by the following Markov condition:25

Definition 2.2 (Markov condition, verbal definition) For map L , Markov par-
tition values of the slope are determined by choosing the slope such that the max-
imum of the box map gets mapped onto a point of the partition again.

In Fig. 2.8, some examples of non-trivial Markov partitions for map L are illus-
trated for a broad range of values of the slope by their box maps. Note that a
modulus of one has been applied to the coordinate xn in case of iterations.
One may verify that the two “handwaving” conditions to obtain “good” partitions,
derived at the beginning of this section on the basis of the integer slope examples,
are also fulfilled in these cases and that these partitions obey the Markov partition
definition 2.1 as well. With respect to the structure of the partitions, it is obvious
that the single parts of the partition do not necessarily have to be equal, but that
in fact the partitions can be arbitrarily complex. The bold lines with the arrows
represent what will be called the generating orbit of a Markov partition: The ini-
tial condition of each such orbit refers to the injection of the maximum (Fig. 2.8
(a) to (c)) or the minimum (Fig. 2.8 (d)) of a preceding or a following box map,
respectively. It can be observed that the iterations of this orbit generate the struc-
ture of the partition, and that this way the number of partition parts is related to

ferred to as Markov maps, however, the definition of Markov maps does not seem to be unique in the
literature, since usually additional properties are required for the map, which are different in different
publications [dM93, Bow79, Moo75, Boy79, Bal94].
It should be mentioned that the Markov partitions considered here are not necessarily generating par-
titions, i.e., where an isomorphism between any orbit in phase space and a symbol sequence of a
symbolic dynamics, induced by the partition, exists [Bec93, Cor82].

25The possibility to construct Markov partitions this way was pointed out by Profs. L. Bunimovich
and J. Yorke, in discussions together with Prof. J.R. Dorfman, to whom the author is very much
indebted for this hint.
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FIGURE 2.8. Examples of non-trivial Markov partitions of map L at various values of the
slope. The bold black lines with the arrows give their generating orbits, see text. Diagram
(a) is for the slope a' 2.057, (b) for a' 2.648, (c) for a' 6.158 and (d) for a = 7.641.
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the iteration number of the generating orbit. It is important to note that in case
of (Fig. 2.8 (a) to (c)) the orbit is eventually periodic, i.e., it finally gets mapped
onto the fixed point x = 0, whereas in case of (Fig. 2.8 (d)), the Markov partition
is generated by a periodic orbit of period four. Thus, while the generating orbit
itself provides the skeleton for the actual construction of the Markov partition in
the chain of boxes, the special type of generating orbit refers to the key how to
find Markov partition values of the slope in a systematical way.
In fact, a general algebraic procedure to compute such values of the slope can be
developed. One starts with a further topological reduction of the whole chain of
boxes.26 Since map L is old, it is possible to construct the Markov partition for
the whole chain from a reduced map

M̃a(x̃) := Ma(x̃) mod 1 (2.38)

via periodic continuation, where x̃ := x− [x] is the fractional part of x, x̃ ∈ (0,1],
and [x] denotes the largest integer less than x.
Therefore, it remains to find Markov partitions for map M̃a(x̃) of the equation
above. This can be done in the following way:
Let

ε := min
{

M̃a(
1
2

),1− M̃a(
1
2

)

}
, ε≤ 1

2
, (2.39)

be the minimal distance of a maximum of the box map Ma(x̃) to an integer value.
With respect to the Markov condition given by Definition 2.2, it is clear that ε
has to be a partition point. Since M̃a(x̃) is central symmetric, 1− ε also has to
be a partition point, and because of map L being old, the fixed point x = 0 is
necessarily another partition point.
Now, the reduced map governs its internal box dynamics according to

x̃n+1 = M̃a(x̃n) , x̃n = M̃n
a(x̃) , x̃≡ x̃0 . (2.40)

Since 0,ε and 1− ε have to be partition points, the Markov condition Definition
2.2 can be formalized to

M̃n
a(ε)≡ δ , δ = 0,ε,1− ε , (2.41)

i.e., the generating orbit of a Markov partition is defined by the initial condition ε,
its end point δ and the iteration number n. According to Eq.(2.39), ε is determined

26An analogous dynamical reduction of the chain of boxes, as sketched in Sect. 2.1.2, which is
based on a distinction between internal box motion and external jumps between boxes, is also possible
[Fuj82, Tho83, Gas92a] and leads to another method to compute diffusion coefficients, see Section
5.1.



2.3. SOLUTION OF THE FROBENIUS-PERRON EQUATION 29

by the slope a. Therefore, for map L Markov partition values of the slope can be
computed as solutions of Eq.(2.41).
The evaluation of this equation can be performed numerically as well as, to a cer-
tain degree, analytically. To obtain analytical results for Markov partition values
of the slope, one has to determine the structure of the generating orbit in advance,
i.e., one has to know whether it hits the left or the right branch of the box map at
the next iteration. Then, one can write down an algebraic equation, which remains
to be solved. For example, for the Markov partition Fig. 2.8 (c), the generating or-
bit is determined to

x1 = M̃a(ε) , ε≤ 1
2

δ ≡ M̃a(x1)−3 , x1 ≤
1
2

(2.42)

with a = 2(3 + ε) and δ = 0 at iteration number n = 2. This leads to

a3−6a2−6 = 0 , a≥ 2 , (2.43)

for which one may verify a' 6.158 as the correct solution. This way, all Markov
partition values of the slope are the roots of algebraic equations of (n+1)th order.
Since one usually faces the problem to solve algebraic equations of order greater
than three, numerical solutions of Eq.(2.41) are desirable, although one should
take into account that iterations of the reduced map M̃a(x̃) contain many discon-
tinuities, due to the original discontinuity of M̃a(x̃) at x̃ = 1/2 as well as due to
applying the modulus to Ma(x̃) in Eq.(2.38).27

With respect to the three different end points δ of the generating orbit in the for-
mal Markov condition Eq.(2.41), three series of Markov partitions can be distin-
guished. For each series one can increase the iteration number n, and one can
vary the range of the slope a systematically. These three series have been used
as the basis for numerical calculations of the diffusion coefficient D(a), as will
be explained below. However, there exist additional suitable end points δ for the
generating orbit. As an example, one can choose δ to be a point on a two-periodic
orbit,

M̃a(δ) = δ , a = 2(1 + ε) , 0≤ ε≤ 1
2
⇒ δ =

1 + 2ε
4(1 + ε)2−1

(2.44)

27Standard root-finding procedures of software packages like NAG and IMSL require the respective
functions to be continuous. Thus, for the problem here a grid method has been developed, where
M̃n

a(ε)− δ, cf. Eq. (2.41), has been discretized and where it has been checked whether a value of this
difference is close to zero by varying ε. Within a range of some CPU seconds of computing time on
workstations like, e.g., SUN SPARCs, a precision of up to eight digits behind the dot could easily be
obtained.
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so that the generating orbit is again eventually periodic, but now being mapped
on a periodic orbit which is part of the Markov partition instead of being mapped
on a simple fixed point. This way, certain periodic orbits can serve for defining
an arbitrary number of new Markov partition series with respect to the choice
of respective new end points δ. On the other hand, the set of Markov partition
generating orbits is not equal to the set of all periodic orbits. For example, for the
range 2 ≤ a ≤ 3, Eq.(2.44) shows that there exists a two-periodic orbit for any
slope a, but not any maximum of the map in this range necessarily maps onto this
periodic orbit, as is already illustrated by Fig. 2.8 (a) and (b), or by other simple
solutions of Eq.(2.41), respectively. This proves that Markov partition generating
orbits are in fact a subset of the periodic orbits of the map.28

With respect to varying the iteration number n and the end point δ, one can expect
to get an infinite number of Markov partition values of the slope. In fact, for
certain classes of maps the existence of Markov partitions can be considered as a
natural property of the map.29 According to the explanations above, this does not
seem to be true for map L . Instead, there is numerical evidence30 for the following
conjecture:31

Conjecture 2.1 (Denseness property of Markov partitions) For map L , the
Markov partition values of the slope a are dense on the real line with a≥ 2.

This denseness conjecture should ensure that it is possible to obtain a representa-
tive curve for the parameter-dependent diffusion coefficient D(a) solely by com-

28This proof makes also clear that it is not a sufficient, but only a necessary condition for a Markov
partition to require that “partition points get mapped onto partition points” [Boy79], since this is also
true for choosing, e.g., any two-periodic orbit defined by Eq.(2.44) as a generating orbit for a partition.

29At least two theorems about the existence of Markov partitions are well-known in the literature.
They can be roughly stated as the following:
1. For any Axiom A diffeomorphism of an n-dimensional manifold onto itself, there exists a Markov
partition (Sinai [Sin68] and Bowen [Bow75]; see also Ref. [Sin89, Guc90] for an overview).
2. For any Cr-continuous expanding map of a compact interval onto itself, there exists a Markov
partition (Ruelle [Rue78, Rue89]).
(for a rigorous mathematical formulation of these theorems see the references cited)
It should first be mentioned that Anosov diffeomorphisms are also Axiom A [Eck85, Bow75] and
that to be Anosov, the whole manifold of the diffeomorphism has to be hyperbolic (for definitions
of Anosov and Axiom A see Refs. [Eck85, Bow75, dM93]). However, although being Anosov, the
reduced map of map L is neither a diffeomorphism nor is it Cr-continuous so that these theorems do
not apply to this case.

30Numerical evidence has been obtained from plots which show Markov partition values of the
slope with respect to their iteration numbers n: It could be observed that for the three series of Markov
partition values defined above, the number of Markov partitions in a certain range of the slope in-
creases like a power law with respect to the iteration number n and that the Markov partition values
of the slope seem to cover the real line dense, although not uniformly, in certain regions of the slope,
with respect to increasing the iteration number n.

31Meanwhile, it has been claimed that this conjecture can be proved [Gro95a].
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puting diffusion coefficients at Markov partition values of the slope.32 It may be
conjectured that Conjecture 2.1 also holds for all other class P -maps as well.33

To do such computations, one needs to construct the corresponding transition ma-
trices to the Markov partitions obtained, as it has been shown for the slopes a = 3
and a = 4 of map L . This can be done according to the following rule: Take as
an example one of the box map Markov partitions illustrated in Fig. 2.8. If one
refers to a dashed rectangle as a cell of the partition, and if one takes these cells
as the “body” of the matrix to be obtained, the transition matrix corresponding to
a Markov partition can be constructed by checking where the graph of the map
goes across a cell of the partition, counting the number of these occurrences in
each cell and writing down these values as the matrix elements. For map L , usu-
ally these matrix elements will consist of zeroes and ones, but the way they are
defined here they can also take other integer values, depending on the choice of
the partition, as, e.g., illustrated in case of a = 4, Eq. (2.15).
The construction of the box map transition matrix can be simplified by taking the
central symmetry of the box map into account. The transition matrix of the full
chain of chainlength L again follows by periodic continuation. These matrices
can be denoted as topological transition matrices, since they reflect purely the
topology of the map with respect to the Markov partitions, without involving any
transition probabilities at this point [Rue89, Guc90, Rue78, Bow75, Sin68].
The property of map L being old induces a certain structure in the topologi-
cal transition matrices. They are said to be banded square block Toeplitz ma-
trices, i.e., they consist of certain submatrices, called blocks, corresponding to
the box map Markov partitions, and these blocks are the same along diago-
nals of the topological transition matrix parallel to the main diagonal, forming
bands [Dav79, Bea91, Tre85]. Applying periodic bounday conditions to the chain
of boxes defines a subclass of these Toeplitz matrices, called block circulants,
where each row is constructed by cycling the previous row forward one block
[Ber52, Kow54, Dav79, Bea91], see, e.g., the matrices T (4), Eq.(2.19), as an ex-
ample for a simple circulant and T (3), Eq.(2.29), for a block circulant.
According to the transition matrix method outlined in the previous section,
it remains to solve the eigenvalue problems of these matrices and to match
the respective eigenmodes to the ones of the diffusion equation for computing
the corresponding diffusion coefficients D(a). Here, periodic boundary condi-

32Certain techniques have been developed to approximate maps which do not possess Markov
partitions via series of Markov partitions and their corresponding transition matrices, see Refs.
[Boy88, Gor89, Gor91, Bal94]. However, such a procedure is expected to be very time-consuming
for computing diffusion coefficients in this case.
The problem of non-Markovian values of the slope will also be briefly discussed in the context of
computer simulations, see Chapter 3.

33Again, it has been claimed that this conjecture can be proved [Gro95a].
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tions are of great advantage. Analytically, as mentioned before, there exists a
general procedure how to solve the eigenvalue problems of simple circulants
[Ber52, Kow54, Dav79], and in some cases it is possible to reduce the eigen-
value problem of a block circulant to that of a simple circulant. If this method
works, it automatically provides “nice eigenmodes”, i.e., eigenvectors of the form
of sines and cosines with some fine structure. These eigenmodes are similar to the
eigenmodes of the diffusion equation at this stage, i.e., before iterating the matri-
ces according to the Frobenius-Perron matrix equation Eq.(2.18).34 The situation
is quite different for absorbing boundary conditions, where no such general pro-
cedure exists.
If analytical solutions of the eigenvalue problems are not possible anymore, one
can try to obtain numerical solutions. Well-known software packages like NAG
and IMSL35 provide subroutines to solve the eigenvalue problems of these ma-
trices. Unfortunately, the numerically obtained results for the full spectra turned
out not to be very reliable to a certain extent: In comparision to analytical results
for periodic boundaries, the NAG package does not compute all eigenvectors cor-
rectly, i.e., in the numerical results usually some linear independent eigenvectors
are missing. Moreover, both packages provide spectra of eigenvalues which, al-
though partly identical to the analytical solutions, in their full range differ quan-
titatively from the ones analytically calculated for some examples, not taking any
degeneracy into account.36 Such numerical problems seem to be inherent to the
class of non-normal Toeplitz matrices, as has already been pointed out by Beam
and Warming in a not very widely known report [Bea91]. In fact, solving eigen-
value problems for Toeplitz matrices can be considered as a field of active recent
research in numerical mathematics [Rei92, Bas94].
However, solely for the purpose of computing diffusion coefficients not the full
spectra of the transition matrices are required, but only the few largest eigenvalues
and eigenvectors are of interest. With respect to eigenvectors, the IMSL package
has been checked to be reliable in this range, and with respect to eigenvalues,
both packages provide exact and identical numerical results, especially for the
second largest eigenvalue, which determines the diffusion coefficients. From a
practical point of view, the NAG package is considerably more efficient in the use
of computing time than IMSL and more flexible in its subroutines. Therefore, for

34The reason for this universal behaviour is that the eigenmodes of simple circulants are always
sines and cosines, see Ref. [Ber52].

35For the computations discussed here, the versions IMSL 1.1 and 2.0 and NAG MK14B and 15A
have been used.

36For example, for slope a ' 6.8729834, chainlength L = 100 and periodic boundary conditions,
one finds numerically a considerable number of eigenvalues less than zero, and the smallest numerical
eigenvalue is less than −1, whereas analytical solutions give only a few eigenvalues less than zero,
and the smallest one is only slightly below zero and clearly greater than −1.
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FIGURE 2.9. Second largest eigenmodes for map L at two non-trivial Markov partition
values of the slope with periodic boundary conditions. Diagrams (a) and (b) are for slope
a = 3.0027, chainlength L = 100, (c) and (d) for a = 2.0148, chainlength L = 90.

quantitative computations of eigenvalues and diffusion coefficients NAG routines
have been used, whereas for eigenvector computations IMSL procedures have
been employed. For computations of diffusion coefficients, it is also favourable
to consider only the case of periodic boundary conditions, i.e., solving eigenvalue
problems for block circulants, respectively, since it has already been discussed
in Sect 2.3.1 that absorbing boundaries lead to a poor convergence rate of the
diffusion coefficient with the chainlength L.
Fig.(2.9) presents two examples of second largest eigenmodes for chains of
boxes with periodic boundaries and non-trivial Markov partitions. Again, one
gets “nice” second largest eigenmodes, i.e., functions which behave like sines
and cosines on a large scale. However, the structure of these eigenmodes is much
more complex on a fine scale, as one can see in the magnifications of certain re-
gions. The periodic continuation of the fine structure suggests that it is related
to the dynamics of the box map, and therefore varies with changing the slope,
whereas the general large-scale behaviour of the eigenmodes seems to be a prop-
erty of the chain of boxes which shows up independently from such microscopic
details. These characteristics have been checked numerically for a variety of other
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Markov partition values of the slope and seem to be a universal feature of map
L , and probably of all class P -maps. One may assume that the fine structure is
somehow related to the strength of the diffusion coefficient and that, on the other
hand, the universal large-scale structure of the eigenmodes is related to the exis-
tence of diffusion coefficients for non-trivial Markov partition values of the slope.
It should be reminded that the fundamental problem of the existence of diffusion
coefficients for class P -maps as has been posed as an open question in the previ-
ous section.
In fact, the specific character of the eigenmodes discussed above, which shows up
in any analytical solution of (block) circulants and which is supported by numer-
ical results, forms the basis for the following conjecture:

Conjecture 2.2 (Existence of diffusion coefficients) Let Ma(x) be a class P -
map. If for given value of the slope the map is uniquely ergodic and if there exists
a Markov partition, then the map is diffusive.

Without going into too much detail here, some remarks are in order to provide at
least a motivation for this conjecture: The existence of Markov partitions guar-
antees that transition matrices can be used at all. The restriction to class P -maps
ensures that topological transition matrices can be constructed in the simple way
outlined before,37 and the old property included in the definition of class P de-
termines the global structure of the topological transition matrices such that the
eigenmodes are “nice”, at least for periodic boundary conditions. The requirement
to be uniquely ergodic establishes the possibility of diffusion in the chain of boxes
and confirms also the uniqueness of the diffusion coefficient to be obtained.38

Finally, the term diffusive shall be understood in the sense that a diffusion co-
efficient exists, defined by the statistical diffusion equation Eq.(2.9), which has
been introduced to the dynamical system by successfully performing the match-
ing eigenmodes procedure outlined in the previous section.
Therefore, the main proposition of this conjecture is that the matching eigen-
modes procedure required by the first passage method works for any value of the
slope, if the respective conditions are fulfilled. As a corollary to this conjecture,
it can be formulated that in the limit of time n and chainlength L to infinity, the
Frobenius-Perron equation of the respective class P -dynamical systems always
provides “nice”, i.e., the correct diffusive eigenmodes.39 As another corollary, it

37This condition might be extendable to piecewise linear maps with piecewise uniform slopes with-
out too much effort.

38A simple counterexample shows that not any chain of boxes with escape out of one box is auto-
matically diffusive.

39In Ref. [Gas92a], such a statement for specific cases of class P -maps has been considered as
the main result of the paper. The conjecture above may be regarded as an attempt to generalize this
statement.
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follows that there occurs no anomalous diffusion in class P -maps, i.e., that normal
diffusion is “typical” for such piecewise linear maps. A rigorous mathematical
proof of Conjecture 2.2 seems to be possible along the lines of first passage and
transition matrix method.40

The conjecture stated above may be understood as an attempt to establish a more
proper mathematical foundation for computing diffusion coefficients by first pas-
sage and transition matrix method. Results based on this method shall be pre-
sented in the next section.
It should be mentioned in advance that the results provided by this approach have
been verified by another numerical method (see Chapter 3), another analytical
method which has been implemented numerically (see Chapter 5), as well as, to
a certain degree, by straightforward computer simulations (see Chapter 3).41

2.4 Fractal diffusion coefficients: results

Based on the methods presented in the previous section, the parameter-dependent
diffusion coefficient D(a) has been computed for map L numerically for a broad
range of values of the slope. The main results are presented in Fig. 2.10. The
numerical precision obtained depends on the convergence of the diffusion coef-
ficients with the chainlength, cf. Eq.(2.37), and has been estimated to be better
than 10−4 for each D(a) so that error bars do not appear in the diagrams. It should
be stressed that the numerical method employed here was the first one by which
these curves of D(a) have been obtained. It is by far not the best one of the pro-
cedures developed until now to compute such diffusion coefficients with respect
to numerical efficiency, see Chapters 3 to 5.
Fig. 2.10 (a) shows the diffusion coefficient of map L for values of the slope in
the range 2≤ a≤ 8. One can see that the strength of diffusion increases globally
by increasing the slope from a = 2 to a = 8. This might be expected intuitively,

40The main problem of diagonalization mentioned in Section 2.3.1 might be circumvented by trans-
formation onto Jordan normal forms, employing certain theorems about the characteristics of eigen-
value spectra of block Toeplitz matrices and applying the Perron-Frobenius theorem of matrix theory.
Together with the knowledge that block circulants always provide the correct eigenmodes, this might
show a way how to prove this conjecture rigorously. A first sketch of such a proof has been worked
out [Kla95a], however, the lack of a theorem about a certain continuity property of block Toeplitz
eigenvalue spectra and of an analytical proof for the “correct form” of the block Toeplitz eigenvectors
seem to be the main obstacles for completing such a proof.
Other methods might even offer simpler ways to prove the existence of diffusion coefficients, see, e.g.,
Chapter 5.

41Recently, the same results have been obtained independently by another author with a different
method [Gro95a].
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as motivated in Section 2.1.2, since the probability of a particle to escape out of a
box, as well as the mean distance a particle travels by performing a jump, are get-
ting larger with larger value of the slope.42 However, the increase of the diffusion
coefficient is not monotone and consists of oscillations not only at integer values
of the slope, as has already been mentioned in Section 2.2, but also on much finer
scales between integer values. In fact, Fig. 2.10 (a) shows a certain regularity in
the appearance of “wiggles”, i.e., local maxima and minima. If one denotes the
local maxima at odd integer slopes a as wiggles of 0th order and any smaller local
maxima systematically as wiggles of higher order, one can find one maximum of
first order below a = 3, three maxima of first order in the range 3 ≤ a ≤ 5, five
maxima of first order in the range 5 ≤ a ≤ 7, . . . . This regularity even persists
to a certain extent on finer scales, although according to a slightly different rule,
as can be seen, e.g., in the magnification Fig. 2.10 (f), 6 ≤ a ≤ 7, where exactly
six wiggles of second order appear between the repsective wiggles of first order.
The same way, six wiggles of third order can be observed in this region in further
magnifications, and similar structures show up in the region of 4 ≤ a ≤ 5 with
four wiggles of second and four wiggles of third order. The region of 2 ≤ a ≤ 3
is somehow special and will be discussed separately. Thus, while the number of
wiggles of first order increases by a step of two with increasing the slope, the
number of wiggles of higher order remains constant in the region between two
respective wiggles of first order, even by increasing the order of the wiggles to be
considered.
On the other hand, magnifications of other regions of the slope show that the
structure of the curve is not everywhere that simple. For example, blow-ups of the
regions 3≤ a≤ 4, Fig. 2.10 (b), and 5≤ a≤ 6, Fig. 2.10 (d), do not enable a clear
distinction between “wiggles of different orders” anymore. Instead, they provide
complex structures, which further magnifications, as, e.g., Figs. 2.10 (c) and (e),
reveal to be self-similar.
It can be summarized at this stage that different regions of the curve exhibit differ-
ent kinds of self-similarity, partly being fairly simple, but partly also being highly
non-trivial. Thus, the results of Fig. 2.10 suggest that the parameter-dependent
diffusion coefficient D(a) for map L is fractal [Man82]. More evidence for the
fractality of the curve can be obtained in three different ways: Firstly, qualita-
tive and quantitative explanations for the wiggles in certain regions of the slope
will be provided, which ensure that these regions exhibit non-trivial self-similar
behaviour. This will be demonstrated in the following. Secondly, it is striking to
observe that especially diagrams (c), (e), and (f) resemble graphs of some fractal
functions, which have been obtained in Refs. [Tas93a, Tas94, Tas95] by working

42This will be made more quantitative in Section 4.2 by computing diffusion coefficients for simple
random walk models.
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on dynamical systems being very close to the ones considered here. These func-
tions have been shown to possess fractal dimensions close to one [Tas93a]. On
the one hand, this gives further evidence for the fractality of the curves of Fig.
2.10. On the other hand, this raises the new question whether there is an analyt-
ical fractal representation for certain regions of the curve, or maybe even for the
full parameter-dependent diffusion coefficient of map L . Such problems will be
discussed in detail in Chapter 5. Thirdly, it should be mentioned that numerical
computations of the box counting dimension43 of the curve have been performed.
The results indicate that the curves shown in Fig. 2.10 (a) - (f) have fractal dimen-
sions d very close, but not equal to one in a range of d = 1 + ∆d , 0< ∆d ≤ 10−2.
Because of the limited data set and due to well-known fundamental problems
to determine fractal dimensions via conventional methods [Pei92, Bar93b], as,
e.g., box counting, better values are difficult to get, especially since the fractal
dimension is expected to be close to one in this case. Nevertheless, more detailed
investigations of the fractal dimension for various regions of the curve could be
of much interest. With respect to the magnifications in Fig. 2.10, it may even be
conjectured that the full D(a)-curve is multifractal.44

Fig. 2.11 illustrates the principles of a first rough qualitative approach to under-
stand the occurrence of wiggles of 0th and 1st order. It will be called plus-minus
approach. The basic idea of this approach is to establish a connection between
the appearance of wiggles in the D(a)-graphs and the occurrence of certain dy-
namical correlations in the chain of boxes. These correlations are a main feature
of the transport of particles from one box to another, and they show up and van-
ish with varying the slope of the map. In the following, particles will be referred
to solely by their positions, i.e., by points on the real line. Fig. 2.11 (a) and (b)
sketch correlations of 0th order: As a starting point, the escape of particles out of
one box in one direction, i.e., to the right, will be considered for varying the slope
in the range 2 ≤ a ≤ 4. Such an escape of points is related to a certain subinter-
val of the box which will be called escape region, as is shown in the figure. If
points get mapped to the right at the next iteration, the respective subinterval will
be denoted with a plus sign. The same way, subintervals will be denoted with a
minus if points get mapped to the left. Therefore, the escape region marked in Fig.
2.11 is part of a plus region, and for small enough slope after only one iteration
points of it get mapped directly into another plus region. This enhances diffu-
sion, since particles can move continuously in one direction, i.e., here to the right.
The behaviour persists for increasing the slope up to a = 3. For slopes above this
value, an increasing number of points of the escape region is now mapped into the

43The box counting dimension is sometimes also referred to as capacity, see, e.g., Ref. [Ott93].
44Such multifractal characteristics may become important in the context of certain physical phe-

nomena, see, e.g., the discussion in Section 4.3.2.
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FIGURE 2.11. First qualitative approach to understand the structure of the parame-
ter-dependent diffusion coefficient D(a), denoted as plus-minus method, see text.

minus region of the next box. This way, one obtains a “plus-minus” correlation,
which means that particles either get slowed down, or even get scattered back into
the previous box at the next iteration, which is surely bad for obtaining a strong
diffusion coefficient. This game can be played by gradually increasing the value
of the slope and leads to the qualitative “curve” in Fig. 2.11 (b), which explains
the oscillations at integer slopes and the wiggles of 0th order, respectively. The
sequences which mark the extrema in this graph give the symbolic dynamics of
orbits close to, but less than x = 1/2 after one iteration with respect to the re-
duced map Eq.(2.38), where the region 0< x≤ 1/2 has been labeled with a plus
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and 1/2< x≤ 1 with a minus.45

In Fig. 2.11 (c) the number of iterations has been increased to two. The method
is the same as explained before, however, a further distinction has been made af-
ter the first iteration: new subintervals have been defined, which refer to points
of the escape region being mapped to another plus or minus region at the second
iteration. One can see that increasing the slope corresponds to creating different
plus-minus sequences for orbits close to, but less than x = 1/2. This leads to the
particles being in a good or bad position for going further in one direction with
respect to the next iteration, depending on the value of the slope. The D(a)-graph
in Fig. 2.11 (d) again gives the qualitative behaviour of D(a) to be expected with
respect to the dynamical correlations after two iterations, up to a = 5. This result
corresponds well to the number of wiggles of first order estimated in the respective
regions of the slope. Again, the plus-minus sequences give the symbolic dynam-
ics of points close to, but less than x = 1/2 after two iterations.
The plus-minus method works on this level as well for any higher values of the
slope and leads to a qualitative explanation for the number of wiggles of first or-
der for any region of the slope. To a certain degree, it can even explain additional
features of the structure of the D(a)-curves: For example, in Fig. 2.10 (b) one ob-
serves that the local maximum is not precisely at a = 3, although one could expect
this from the results of the plus-minus method of 0th order. Actually, particles of
the escape region close to x = 1/2 can still achieve a good position for further
movement in one direction, even for slopes slightly above a = 3. This is due to
the fact that, although such points get first scattered back into the previous box
after two iterations, here they are now in an excellent position for further jumps
to the right again. This way, these orbits perform a kind of “spiral” and seem to
be responsible for the surprising fact that the odd integer slope values of D(a) are
not precisely identical to the local extrema of the curve, but that there is always
a kind of overhang, i.e., a further increase of the diffusion coefficient right above
odd integer slopes, as, e.g., shown in detail in Fig. 2.10 (c).
Although the plus-minus method can be applied to achieve a qualitative under-
standing of the wiggles of 0th and 1st order, further refinements of this method to
obtain wiggles of higher order generally turned out not to be very promising. The
main reason is that in case of more iterations of points of the escape region, the
dynamics is getting quite complicated and is not easy to handle anymore in the
qualitative way illustrated in Fig. 2.11.
However, the basic idea of this method can be made more quantitative by a proce-
dure which shall be called turnstile dynamics. The principle of turnstile dynamics

45For more details about symbolic dynamics, see, e.g., Ref. [Ott93]; techniques like the one
sketched above have been used by Hsu and Kim to compute topological entropies via kneading theory
for maps like the one under consideration, see Ref. [Hsu85].
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is again to investigate the appearance and disappearance of long-range dynamical
correlations by iterating points with respect to varying the slope. The new feature
is now that not the full intervals of all single boxes are taken into account. Instead,
the analysis is restricted solely to the regions of the boxes where transport of par-
ticles from one box to another occurrs in form of jumps. These regions are called
turnstiles:

Definition 2.3 (turnstile) Turnstiles are the “coupling regions” of the single
boxes of a chain of class P , where points of one unit interval get mapped out-
side that particular interval into another unit interval.

This notation has been borrowed from the theory of transport for two-dimensional
twist maps, such as sawtooth maps, where turnstiles turned out to be crucial for
understanding large-scale diffusion [Mac84, Che89, Che90, Mei92].46 The es-
cape region introduced above in the context of the plus-minus method represents
precisely one half of such a turnstile.
The main idea is now to study the interaction of turnstiles, i.e., varying the slope it
shall be investigated whether one obtains “good” or “bad” conditions for particles
to get from one turnstile into another, or maybe even to get mapped successively
through a series of turnstiles. As before in case of the plus-minus method, such
dynamical correlations are expected to show up in the curve for the parameter-
dependent diffusion coefficient D(a). The advantage of turnstile dynamics is that
it can be made quantitative by exemplifying all turnstiles with certain points of
these regions. For instance, the peak of the turnstile one starts with may be rep-
resented by the critical point, x = 1/2. Now, one can try to compute the slopes
for which this point maps into other turnstiles again, being exemplified by certain
points, after certain numbers of iterations.
This has been done in detail for the region 2≤ a≤ 3, as shown in Fig. 2.12. The
dashed line in the figure represents the prediciton of D(a) for a simple random-
walk model suggested by Schell, Fraser, and Kapral [Sch82], see Section 4.2.
Note that, on a large scale, the model correctly accounts for the behaviour of
D(a) near a = 2, but that with respect to any fine structure, such a simple model
is clearly totally apart. One can recognize three distinct series of values of a in
the figure. To understand the nature of these series, one should consider the tra-
jectory of the critical point. The first iterate of x = 1/2 is in the second interval,
(1,2). The series α values of a are defined by the condition that the second iterate
of x = 1/2 is at the leftmost point of the upward turnstile in the second interval

46The term turnstile has been introduced by McKay, Meiss and Percival in Ref. [Mac84]. It refers
to the analogy of a real turnstile: In the map under consideration, transport is caused analogously by
a mechanism which acts on particles in certain regions of the dynamical system, shuffling them to the
left and to the right.
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(1,2) (a = 2.732), or that the third iterate is at the corresponding point in the third
interval (a = 2.920), etc. The numbers on the D(a)-curve refer to the number of
intervals the image of x = 1/2 has travelled before it gets to the appropriate point
on the turnstiles. Series β points are defined in a similar way, but they are allowed
to have two or more internal reflections within an interval before reaching the left
edge of a turnstile. Series γ points are defined by the condition that some image
of x = 1/2 has reached the rightmost edge of an upward turnstile, i.e., some point
x = k + 1/2, where k is an integer.
One observes that each series produces a cascade of apparently self-similar re-
gions of decreasing size, as the limits a→ 2 or a→ 3 are approached. These
cascades provide a basis for a physical understanding of the features of D(a) in
this region: Particles leave a particular unit interval through a turnstile and un-
dergo a number of iterations before they are within another turnstile. Whether
they continue to move in the same or the reverse direction at the next and later
turnstiles is a sensitive function of the slope of the map. Thus, the fractal structure
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of the D(a) curve is due to the effects of long-range correlations among turnstiles,
and these correlations lead to changes of D(a) on an infinitely fine scale.
One should note that series γ points completely label the maxima of higher or-
der introduced before, and series β points mark the respective minima. This way,
in the region of the slope a ≤ 3 the picture of quantitative turnstile dynamics is
in full agreement with the results obtained by the qualitative plus-minus method
outlined above.47

However, the application of turnstile dynamics has its limits: First, this method is
of no use anymore for any higher value of the slope above a = 3. Thus, there is
no other understanding of the structure in this range than the one provided qual-
itatively by the plus-minus approach. And second, even for values below a = 3
turnstile dynamics is quantitatively not completely correct: Apart from the lack
of explaining the existence of the overhang above a = 3, a detailed analysis re-
veals further “tiny overhangs” at maxima of higher order, as, e.g., right above the
maximum of first order in the region 2 ≤ a ≤ 3 at a = 2.414.48 In other words,
the “turnstile values” marked in Fig. 2.12 by series γ-points represent rrigorously
not the exact local maxima of higher order of the curve. The true local maxima
are in fact shifted slightly to the right from these points, as in case of a = 3. The
phenomenon of overhangs will be further elucidated in Chapter 5. However, apart
from the qualitative remarks in the context of the plus-minus approach and the
additional insight provided by the approach in Chapter 5, a detailed explanation
of these overhang effects is still missing.
Two further remarks regarding the turnstile dynamics method presented here are
in order: First, with respect to the Markov partition series of the slope introduced
in Section 2.3.2, it is clear that the turnstile dynamics series distinguished in Fig.
2.12 refer to Markov partition series with end points of the generating orbit of
δ = 0 and δ = ε, respectively. Thus, on the one hand, certain Markov partition
series have been related to certain features of the structure of the D(a)-curve via
turnstile dynamics. On the other hand, it has been claimed that computing solely
Markov partition diffusion coefficients gives a representative D(a)-curve for any
region of the slope. One may raise the objection that, this way, Markov partition
values show only special features of the curve. However, apart from the dense-
ness conjecture regarding Markov partitions stated in Conjecture 2.1 it should
be taken into account that to compute Markov partitions it suffices to consider
only reduced maps and their topology. These reduced maps model only internal
box motion, whereas turnstile dynamics, and with it the structure of the D(a)-
curve, feature the occurrence of certain dynamical correlations with respect to

47The agreement has been checked to persist at least up to a level of extrema of second order.
48The more precise values are a ' 2.41421/D(a) ' 0.10358 , a ' 2.41645/D(a) ' 0.10493; and

for a maximum of second order, e.g., a' 2.20557/D(a) ' 0.04737 , a' 2.20724/D(a) ' 0.04744.
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i 0 1 2 3 4
sa(i) 3.902 3.423 3.186 3.079 3.033
sD(i) 1.128 1.510 1.721 1.892 2.038

TABLE 2.1. Scaling factors for the initial region 2 ≤ a ≤ 3 of the parameter-dependent
diffusion coefficient D(a), see text.

external jumps between boxes. Thus, computing the diffusion coefficient curve
via Markov partitions and applying turnstile dynamics does not necessarily lead
to a contradiciton.
Second, since turnstile dynamics points seem to separate self-similar regions, it is
suggestive to use them as a tool to do some scaling. Series γ-values are especially
suitable for this purpose, because they form a series of points which converges
monotonically to a = 3, defining self-similar regions of decreasing size. These
regions have been scaled according to the size of the intervals of the slope and of
the respective diffusion coefficient intervals, defined by49

∆ai := a(series γ-point (i + 1))−a(series γ-point i)

∆Di := D(series γ-point (i + 1))−D(series γ-point i) ,

i = 0, . . . ,4 . (2.45)

To obtain scaling factors, the fractions

sa(i) :=
∆ai

∆ai−1
and sD(i) :=

∆Di

∆Di−1
(2.46)

have been computed. They led to the two series of values given in Table 2.1. sa(i)
seems to converge quite rapidly to a value around 3, whereas sD(i) approaches
not that fast a value maybe between 2 and 3, but this is of course no more than
a guess based on the first five values of two infinite series, since the data set of
slopes and D(a)-values is not sufficient for obtaining better results. At least these
values suggest that some quantitative scaling is possible in this region.
At this point, it should be stressed that the region below a = 3 is special, compared
to any other region of the slope: Firstly, the structure of the curve is remarkably
simple, as shown in Fig. 2.12. Secondly, the number of wiggles of higher order is
not constant with increasing order, but grows according to the structure described
by the turnstile dynamics performed above. This is in contrast to the behaviour of
D(a) in the ranges 4≤ a≤ 5 and 6≤ a≤ 7, where one may have expected sim-
ilar generalities. Thirdly, the region below a = 3 is the only one which is simple

49a = 2 has been taken here as series γ point 0.
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enough so that turnstile dynamics can successfully be applied at all, and this re-
gion seems to provide some simple scaling laws. All this nice behaviour suddenly
breaks down at the value a = 3, which is marked by the largest overhang of the
whole curve. Therefore, it might be assumed that the point at a = 3 separates re-
gions of fundamental different dynamical behaviour of the map, i.e., the dynamics
seems to be sufficiently simple below, but suddenly gets quite complicated above
this value. In fact, there is further evidence that such a transition exists, as will be
discussed in detail in Chapter 4.
At last, another interesting feature of the parameter-dependent diffusion coeffi-
cient for map L shall be pointed out. To obtain Fig. 2.13, the first “derivative”
of the D(a)-curve of Fig. 2.10 has been computed with respect to the full data
set of D(a)-values available. This has been done in linear approximation, i.e.,
two adjacent points of the data set have been connected with straight lines, and
the “derivative” D′(a) := ∆D/∆a for ∆a� 1 has been computed. However, since
the curve of D(a) is expected to be nowhere differentiable with respect to the
slope (see Section 5.2), the derivative defined above should be better denoted as
a “pseudo-derivative”, i.e., as a kind of mean value of ∆D over tiny regions of ∆a
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which are approaching zero. Thus, the pseudo-derivative presented in Fig. 2.13
is mathematically not well-defined. Nevertheless, the numerical results turn out
to be quite reasonable in the sense that they reflect to a certain degree the frac-
tal structure of the actual D(a)-curve. For instance, the three “bands” right above
a = 2 seem to be due to the “triangle-like” self-similar structure of the region
presented in Fig. 2.13, and the “bursts” at odd integer values correspond to the
occurrence of local maxima and to the deformations of simple self-similar struc-
tures.50 More details of this curve will be discussed in Section 5.2.

2.5 Conclusions

(1) A simple model for deterministic diffusion has been defined and discussed,
where the microscopic scattering rules can be varied smoothly by switching
a single control parameter. The diffusion coefficient of this model has been
computed for a broad range of parameter values and shows a fractal structure as
a function of the slope of the map. This result appears to be the first example of
a dynamical system whose diffusion coefficient has an unambiguously fractal
structure.
(2) A general method to compute parameter-dependent diffusion coefficients for
a whole class of piecewise linear maps has been developed. It is based on the
first passage method, which provides the definition of the diffusion coefficient
for the dynamical system, in combination with the use of Markov partitions and
transition matrices, which have been employed to solve the Frobenius-Perron
equation of the dynamical system. For periodic boundary conditions, the
parameter-dependent diffusion coefficient could be related to the second largest
eigenvalue of the topological transition matrix. This method provides analytical
solutions in simple cases and is also accessible to numerical implementations.
(3) The method described above has also been applied to absorbing boundary
conditions. Long-range boundary layers have been found in the eigenmodes
of the deterministic dynamical system. They also show up in quantitative
calculations of the diffusion coefficient.
(4) Certain limits of the first passage method in combination with the use of
transition matrices have been discussed: Drawbacks are especially the restriction
to certain initial probability densities suitable for the application of transition

50It should be remarked that in Fig. 2.13 the number of slopes for which D(a)-values have been
calculated is not homogeneously distributed over the whole range 2 ≤ a ≤ 8, but that the number of
points per interval is greater in certain regions of the slope, as, e.g., right above a = 2, a = 3 and around
a = 5.6. These regions thus show up as slightly pronounced parts in the derivative plot, however, the
structure of the curve does not seem to be influenced by it.
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matrices, as well as the “external” definition of the diffusion coefficient by
the “matching eigenmodes” procedure of first passage. It turned out that this
procedure is not well-defined anymore for smaller eigenmodes of the dynamical
system.
(5) A systematical way to find Markov partitions for the class of maps under
consideration has been developed. This method has been used as the basis for
computing the parameter-dependent diffusion coefficient for the dynamical
system mentioned above. For this map, as well as for the whole class of maps
under consideration, the Markov partitions are conjectured to be dense in the set
of parameter values.
(6) A large number of eigenvalue problems of topological transition matrices,
based on Markov partitions, has been solved numerically to compute the
parameter-dependent diffusion coefficient for the model system. In the course of
these calculations, the reliability of well-known standard software routines for
computing eigenvalue spectra has been checked critically, and numerical errors
have been pointed out.
(7) Certain large- and small-scale structures in the eigenmodes of the topological
transition matrices have been found. The large-scale structures support the
existence of statistical diffusion in the dynamical system, whereas the small-scale
structures refer to the specific microscopic deterministic dynamics of the model
system. These results suggest that the strength of the fractal diffusion coefficient
is related to the fine-scale structure of the eigenmodes.
(8) A conjecture about the existence of diffusion coefficients for a broad class of
one-dimensional maps has been made. This conjecture may shed more light on
the origin of diffusion generated by a simple deterministic dynamical system and
may show a way how to put the theory outlined in this chapter onto more solid
mathematical grounds.
(9) Qualitative explanations for the structure of the parameter-dependent diffu-
sion coefficient over the full range of parameter value have, to a certain extent,
been provided by simple heuristic considerations.
(10) A more refined “turnstile dynamics” has been developed as a more quan-
titative approach to explain the structure of the parameter-dependent diffusion
coefficient. It works in certain regions of the parameter values and provides a
starting point for a scaling of certain self-similar structures.
(11) By employing these qualitative and quantitative methods, certain interesting
features of the diffusion coefficient have been discussed, i.e., the phenomenon
of “overhangs” at local extrema, and the special simple character of an “initial
region” for small parameter values, where diffusion sets in.
(12) The numerically computed pseudo-derivative of the parameter-dependent
diffusion coefficient seems to provide another characteristic property of fractal
diffusion coefficients.
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(13) It may be conjectured that similar results are obtained not only for other
simple one-dimensional periodic dynamical systems of the type of the one
considered here, but that fractal diffusion coefficients also show up in more
complex dynamical systems, as, e.g., climbing-sine maps. They may be en-
countered as well in higher-dimensional dynamical systems, as, e.g., in certain
two-dimensional maps, where oscillations of the diffusion coefficient with
respect to a control parameter have already been observed. Moreover, fractal
transport coefficients may even occur in more realistic dynamical systems, as,
e.g., in the periodic Lorentz gas (see also Chapter 6).



3
Dynamics of deterministic diffusion

In the previous chapter, a parameter-dependent fractal diffusion coefficient has
been obtained for the deterministic dynamical system denoted as map L , which
has been introduced in Section 2.1. The diffusion coefficient has been computed
only in the long-time limit so far, i.e., as a time-independent quantity. Neverthe-
less, its value is very well determined by the complete deterministic dynamics
of the system, i.e., it is sensitive even to certain short-time characteristics of the
single orbits. This feature has has been employed in the methods of “plus-minus
dynamics” and “turnstile dynamics” of the previous chapter, which served to ex-
plain the oscillations in certain regions, and on certain scales, of the diffusion
coefficient curves.
This leads to the problem of this chapter, which is the dynamics of deterministic
diffusion. The goal is to understand the time-dependent behaviour of ensembles of
diffusing particles in map L by analyzing certain statistical dynamical quantities.
For this purpose, suitable numerical methods will be developed (see Section 3.1)
to evaluate the time-dependent probability density, the time-dependent diffusion
coefficient, and the velocity autocorrelation function of the dynamical system (see
Section 3.2). A discussion of the characteristica of these quantities should shed
more light on the origin of fractal diffusion coefficients with respect to the com-
plete dynamics of a deterministic dynamical system (see Section 3.3). This may
enable a more general characterization of the deterministic dynamics in the class
of periodic piecewise linear maps which has been denoted as class P in Section
2.1.
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3.1 Principles of numerics: Iteration method and
computer simulations

The first numerical method to get access to time-dependent quantities is based on
techniques developed in Chapter 2, i.e., especially on the transition matrix method
of Section 2.3.1. This method has been slightly varied. The key idea is to take a
close look at the Frobenius-Perron matrix equation Eq.(2.18) again. For applying
the first passage method, this equation has been solved previously via solving the
eigenvalue problem of the topological transition matrix and performing spectral
decomposition of the Frobenius-Perron operator into its eigenmodes. This pro-
vided analytical solutions for the diffusion coefficient in some special cases and
has also been employed as a basis for numerical computations.
However, numerically there is a much simpler way: If there exists a topological
transition matrix T (a) at slope a for a chain of boxes of class P , the Frobenius-
Perron matrix equation (2.18) can be written as1

ρn =
1
an T n(a)ρ0 , (3.1)

i.e., the equation gets simply solved via iteration of topological transition matri-
ces. This enables the computation of the full time-dependent probability density
vector, or the probability density, respectively, ρn≡ ρn(x) and all dynamical quan-
tities defined by averages over this density. The method shall therefore be called
iteration method and may be best described as being semi-analytical, since it em-
ploys no statistical sampling or other kinds of numerical approximations. Similar
methods, although based on stochastic transition matrices, have already been de-
veloped by Li [Li76] and Fujisaka and Grossmann [Fuj82].
There are several advantages of this iteration method in comparision to the nu-
merical eigenvalue method of the previous chapter:
• It is technically quite trivial, and it is more save in numerical implementations
than the eigenvalue method, because it does not involve the solution of complex
eigenvalue problems.
• The computation of full probability densities and respective averages gives for
the first time access to time-dependent dynamical systems quantities, which was
not provided by the eigenvalue method before.
• The parameter-dependent diffusion coefficient D(a) can be obtained by the it-
eration method via the second moment of the probability density and gives values
with an excellent precision, as will be discussed later. Moreover, the method re-
quires much less computing time than the eigenvalue method.
The only disadvantage of the iteration method is that it provides only probability

1Again, as in Chapter 2 for simplicity an index a for the slope has been neglected here.
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density averages and no ensemble averages, although the time-dependent statis-
tical dynamical quantities of interest here, especially the velocity autocorrelation
function and the mean square displacement, are correctly defined only via ensem-
ble averages. Therefore, certain approximations for these functions via probability
densities will be introduced such that time-dependent quantities can be computed
via probability density averages, which get equal to the original ensemble aver-
ages in the limit of time to infinity. Whether these approximations represent the
dynamical behaviour of the original quantities under consideration qualitatively
and quantitatively reasonably well, has to be checked in detail.
To produce ensemble averages, which are at least by definition correct, computer
simulations have been performed. As a second independent method to compute
time-dependent dynamical quantities, they will serve for checking the validity of
the approximations introduced on the basis of probability density averages. To a
certain degree, this will also go vice versa, since doing computer simulations in
supposedly “simple” dynamical systems as class P -maps is to a certain degree
questionable in itself: For example, for Bernoulli maps it is well-known that com-
puter simulations give completely wrong results because of shifting orbits straight
into the range of numerical roundoff-errors after a few iterations [Ott93, Pei92].
Furthermore, fundamental miscalculations may occur in maps where the existence
of a natural measure, and of a respective invariant probability density, are not in
advance clear [Boy84, Gor88, Boy90].2 Thus, performing computer simulations
in class P -maps does not guarantee reliable results from a fundamental dynamical
systems theory point of view (see also Refs. [Bec93, Ott93, Sch89]. Apart from
these considerations, there is of course the question about conventional numerical
errors of statistical quantities, where computer simulations can be expected to be
significantly behind iteration method solutions.
Thus, the goal of simulations here is basically two-fold: First, to confirm the re-
sults of the iteration method, and second, to verify the usefulness of computer sim-
ulations themselves by matching the respective results to the iteration method so-
lutions. Strictly speaking: neither computer simulations nor the iteration method
do guarantee correct results, at least not for time-dependent dynamical quantities,
because of fundamental problems of different kinds. However, if the results of
these two independent methods match to a sufficiently high degree, this could be
regarded as a hint that both methods work, and that they lead to results which are
in certain limits correct.

2The notations natural and physical measure are synonymous and are used often in the physics
literature [Ott93, Lev89]. Mathematicians prefer to talk about Kolmogorov and Sinai-Ruelle-Bowen
(SRB) measures [Eck85, dM93, Las94]. All these measures are related to each other and are usually
supposed to exist for performing computer simulations. In fact, if the dynamical system is suitably
“nice”, all these measures are identical [Boy90].
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Another feature of computer simulations is that they are remarkably simple to per-
form for class P -maps. They may be programed even by non-specialists without
too much effort and may run in principle (apart from numerical precision prob-
lems) on personal computers or even pocket calculators. Thus, one may wonder
whether the precision of computer simulations is sufficient to see anything of a
fractal structure in so-computed diffusion coefficients. Moreover, there is no re-
striction to Markov partition values of the slope anymore by simulations so that
non-Markovian values can be checked as well, at least in the limits of the numer-
ical precision available.

3.2 Time-dependent statistical dynamical quantities:
results

The two numerical methods described above have been applied in detail to the
dynamical system map L . For the following computations, the coordinate system
of the chain of boxes has been shifted about L/2 in the x-coordinate and about
1/2 in the y-coordinate, in comparision to how it has been used in Chapter 2.
Thus, at odd chainlength L the origin of the coordinate system is exactly in the
center of the 0th box. An initial density of particles ρ0(x) has been chosen, which
is uniform in the 0th box, ρ0(x) = 1 ,−1/2< x ≤ 1/2. Since map L is periodic,
it suffices to consider this initial density for probability density averages as well
as for ensemble averages. The chainlength has always been determined such that
the dynamics of the map does not get affected by any boundary conditions. The
three Markov partition series defined in Section 2.3.2 have been employed again,
and Markov partitions and topological transition matrices have been computed
numerically by the procedures outlined in Section 2.3. All computations have
been performed in double precision.
Although it does not seem to be very common anymore to give statistical error
estimates for numerically computed quantities in dynamical systems theory, at
least not for one-dimensional dynamical systems of the type considered here (see
almost all references cited), it shall be tried to give some error estimates in the
following. It should be clear that any quantitative error estimates consist only
of statistical errors, which have been calculated via parameter variation.3 As has
been discussed in the previous section, this does not exclude hidden systematical

3For the iteration method, the only error-producing variable is basically the initial condition of the
Markov partition generating orbit, which has been computed up to a precision of 10−8 . For computer
simulations, the parameters varied are the number of particles, their initial conditions, the grid size
used to compute probability density averages over particles, the iteration time for the particles and the
slope of the map.
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errors induced by applying the computer to chaotic dynamical systems. More
details will be given below.

3.2.1 Probability densities

Solutions for probability densities have been obtained in three different ways:
Firstly, in applying the iteration method n iterations of ρ0(x) have been performed
according to the Frobenius-Perron matrix equation Eq.(2.18), or Eq.(3.1), respec-
tively, for given Markov partition value of the slope. Secondly, for computer sim-
ulations 500,000 particles have been distributed uniformly in the 0th box and
iterated individually by applying the equations of map L n times. Thirdly, the
diffusion equation Eq.(2.9) has been solved analytically with respect to the initial
density defined above, with the diffusion coefficient being fixed by the respective
numerically computed parameter-dependent diffusion coefficient.
As an example, Fig. 3.1 shows the probability density results for the slope
a' 3.0971, which defines a Markov partition of fifteen parts per box, based on a
seven times iterated generating orbit. In Fig. 3.1 (a), the probability density of the
complete dynamical system map L has been computed at three different times.
The iteration method densities may be considered as exact, since no significant
numerical error could be estimated for the graphs presented here. They behave
qualitatively, i.e., on a large scale, very much like Gaussian functions and match
more quantitatively very well to the Gaussian solutions of the diffusion equation,
given by the dashed lines, apart from a pronounced periodic fine structure. As
can be seen in both diagrams, the fine structure gets weaker in the wings of the
distribution, where the iteration method probability densities approach the solu-
tions of the diffusion equation increasingly better. The behaviour in the wings has
been magnified in Fig. 3.1 (c). One observes first details of the fine structure with
clouds of dots around the straight lines, which again represent results of computer
simulations.
Fig. 3.1 (d) finally proves that the periodic fine structure, which can be seen in
magnification (c), is indeed due to the internal dynamics of the single boxes of
the chain: To obtain this plot, the box probability density for the reduced map
Eq.(2.38) has been computed. The symmetry of the density with respect to x = 0
reflects the central symmetry of the box map, and the piecewise constant parts are
due to the map being piecewise constant. The symbols with error bars give results
from computer simulations. They match quite well to the iteration method results,
which again appear without significant errors. In fact, box probability density so-
lutions can, to a certain extent, also be calculated analytically, as will be shown in
Section 5.4. In Chapter 5, much more mathematical and other details about box
probability densities for map L and their relevance for diffusion coefficients will
be provided.
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FIGURE 3.1. Example of a probability density for map L , here slope a' 3.0971: Results
in diagram (a) provided by the iteration method (see text), in diagram (b) and (c) by the
iteration method as well as by computer simulations, and in diagram (d) only by computer
simulations. The dashed lines in diagrams (a), (b) and (d) represent analytical solutions of
the diffusion equation Eq.(2.9).

In comparision, Fig. 3.1 (b) shows probability densities obtained from computer
simulations. Again, the dashed lines give the respective solutions of the diffusion
equation. One realizes that, in fact, it is possible to get qualitative correct prob-
ability densities from computer simulations which even contain some fine struc-
ture. Statistical errors are difficult to obtain for these results, but could roughly
be estimated as up to 15% in the peak, and up to 100% in the wings. Computer
simulation results for probability densities of other chains of maps have already
been presented in Refs. [Fuj82, Gro83a], but no fine structure has been described
in these references.
In summary, the probability density results show that the deterministic dynamics
of map L takes place on two different scales: Firstly, on a large scale which is
related to the full chain of boxes and is characterized by diffusive behaviour in
agreement to the statistical diffusion equation, indicated by Gaussian probability
distributions. And secondly, there appears a fine structure which reflects the in-
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ternal deterministic box dynamics of the dynamical systems and which shows up
periodically continued in the full probability density. Analogous numerical results
have been found for a large number of other Markov partition values of the slope.
Moreover, supposedly non-Markovian slopes4 have been checked by computer
simulations, and Gaussian curves have been observed as well. These results may
offer answers to some problems raised in the previous chapter: With respect to
Gaussian probability densities on a large scale, it has been obtained numerical
evidence that map L is diffusive for any Markov partition value of the slope as
well as for any non-Markovian value. And the problems about spectral decom-
position and diagonalization of topological transition matrices may be caused by
the detailed interplay between box probability step function and large-scale Gaus-
sian probability distribution, since, on a fine scale, the eigenmodes of non-trivial
topological transition matrices seem to mix in a way which is different to that
of a large-scale Gaussian, and therefore make simple analytical solutions of the
Frobenius-Perron equation not possible anymore.
Analogous results for probability densities have been obtained for another class
P -map (see Chapter 4). This may motivate the following, more general conjec-
ture:

Conjecture 3.1 (Central limit theorem) The probability density of uniquely er-
godic class P -maps obeys a central limit theorem on a large scale.

A similar conjecture has been mentioned in Ref. [Gas92a]. There exists a
rich mathematical literature about proofs of central limit theorems for one-
dimensional maps (see, e.g., Refs. [Hof82, Ish86, Ish89] and references therein),
however, usually maps of an interval onto itself have been considered, which are
not identical to the periodic chain of boxes introduced as class P .

3.2.2 Probability density averages and ensemble averages

Since the iteration method gives access to the full probability density, the mo-
ments of this function are the fundamental quantities for this method to obtain
more information about the time-dependent behaviour of the dynamical system
under consideration.
The kth moment of the probability density ρn(x) is defined by

< xk
a(n)>:=

Z
dxρn(x)xk(n) . (3.2)

4Slopes which do not provide any Markov partition seem to appear, among others, at all non-integer
rational numbers above slope a = 2 [Gro95a].
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Thus, for k = 2 the second moment can be obtained by the probability density
average

< x2
a(n)>:=

Z
dxρn(x)x2(n) (3.3)

and may be used to model the ensemble average of the mean square displacement

msda(n) :=
1
N

N

∑
i=1

(xi(n)− xi(0))2 , (3.4)

where the average has been taken over N single particles, represented by points
on the real line.
Fig. 3.2 (a) shows some examples of numerical results obtained for these two
quantities by iteration method and computer simulations. One first observes that
the simulation results for the second moment match usually with statistical errors
less than 1% to the iteration method results, which again contain negligible nu-
merical errors. Since in the following the second moment will be taken in replace-
ment of the mean square displacement for computing diffusion coefficients in case
of the iteration method, the results should be compared to the mean square dis-
placement values obtained from computer simulations, as presented in the small
inset. One observes quantitative deviations at n = 0, which occur since the second
moment of the initial density is not equal to zero, and slight qualitative deviations
in the initial region for times n≤ 3. For larger times, all graphs behave very soon
linearly, as can be expected for diffusive motion, and the respective slopes of sec-
ond moment and mean square displacement, which are decisive for computing
time-dependent diffusion coefficients, agree even quantitatively very well.
Fig. 3.2 (b) shows the curtosis of three probability densities, which is related to
the fourth moment of a probability density according to

cua(n) :=
< x4(n)>

< x2(n)>2 −3 . (3.5)

For Gaussian functions, the curtosis is exactly equal to zero. If the maximum of
a function is less than the one of a Gaussian, its curtosis is less than zero, and if
it is greater, its curtosis is greater than zero [Sac84, Mar71]. For maps of class
P , the curtosis provides not only a necessary, but also a sufficient condition to
prove that their probability densities are approaching Gaussians: According to a
theorem of statistical mathematics [Har87], it can be shown that the curtosis and
the skewness, which is proportional to the third moment, being equal to zero is a
sufficient condition to check for a Gaussian distribution. Since class P -maps are
per definitionem without any drift, the first and the third moments of their prob-
ability densities are zero. Thus, the skewness is also equal to zero, and it suffices
to show that the curtosis vanishes for applying the theorem.
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FIGURE 3.2. Moments of probability densities and mean square displacements for three
different Markov partition values of the slope of map L: Diagram (a) shows the second
moments of three probability densities, cf. Eq.(3.3). The inset of (a) gives the respective
mean square displacements, cf. Eq.(3.4), and diagram (b) presents the curtosis of the same
three probability densities, cf. Eq.(3.5). Semi-analytical iteration method results (see text)
are represented by lines, computer simulation results by symbols with error bars of statisti-
cal errors, if exceeding the size of the symbols. The inset in (a) consists only of simulation
results.

Fig. 3.2 (b) thus provides quantitative evidence that the respective probability den-
sities of map L are indeed very close to Gaussian distributions, and that they are
getting monotonically more close to them with larger times n. As for the second
moment, the initial values at time n = 0 are determined by the analytical results
for the initial density being uniform in the center box. There is again an excellent
quantitative agreement between simulation and iteration method results, although
the precision of the simulation data is soon getting worse for larger times. Be-
sides, one notes some pronounced “wiggles” in the graphs at small times, which
especially in case of a' 2.414 seem to start periodically, but decay very fast.
Such wiggles can also be observed in Fig. 3.3 (a), which gives three results for
time-dependent diffusion coefficients, computed in different ways for one value
of the slope. As labeled in the diagram, the curve with the diamonds has been
obtained from simulation data via the ensemble average

Dsim
a (n) :=

msda(n)−msda(n−1)

2
, (3.6)

which in the limit of time to infinity leads to the exact Einstein formula for the
diffusion coefficient

D(a)≡ Da(∞) = lim
n→∞

msda(n)

2n
. (3.7)

Analogously, but nevertheless in an approximation, a second time-dependent dif-
fusion coefficient has been computed from iteration method results, i.e., via prob-
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FIGURE 3.3. Two time-dependent statistical dynamical quantities for up to three different
Markov partition values of the slope of map L: Diagram (a) shows the time-dependent
diffusion coefficient for the slope a ' 2.414, computed by three different methods. Dia-
gram (b) contains velocity autocorrelation functions for three different slopes, computed
via the iteration method as an approximative solution in the main diagram, and obtained
from computer simulations in the small inset (see text).

ability density averages by solving the Frobenius-Perron equation according to

DFP
a (n) :=

< x2(n)>−< x2(n−1)>

2
. (3.8)

The result is given by the bold line without symbols in Fig. 3.3 (a). Thus, the time-
dependent diffusion coefficient is determined by the slope of the mean square
displacement and by the slope of the second moment in these two formulas. In
the limit time n to infinity, the probability density average formula for diffusion
leads again to an Einstein formula

D(a)≡ Da(∞) = lim
n→∞

< x2
a(n)>

2n
, (3.9)

which gives correct values for the time-independent diffusion coefficient by ne-
glecting any correlations in the long-time limit [Sch89]. As a third method, the
Green-Kubo formula of diffusion can be employed [Gas92a],

DGK
a (n) :=

vca(0)

2
+

n

∑
i=1

vca(i) . (3.10)

vca(n) stands for the velocity autocorrelation function of the map,

vca(n) :=
1
N

N

∑
i=1

vi(n)vi(0) , (3.11)
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where the correlation function is defined via an ensemble average over N parti-
cles with velocities vi(n). The horizontal line in Fig. 3.3 (a) marks the exact value
of the diffusion coefficient D(2.414) in the limit of time to infinity, computed by
analytical methods.
In other words, the different graphs in Fig. 3.3 (a) are based on correct diffusion
coefficient formulas in case of the Green-Kubo formula Eq.(3.10) and in case of
the ensemble average Einstein formula Eq.(3.6). However, both formulas could
only be evaluated by computer simulation results, the precision of which is some-
how questionable from a fundamental point of view (cf. 3.1), disregarding a sta-
tistical numerical error of less than the size of the symbols (usually up to 1%). On
the other hand, Eq.(3.8) defines an approximation of the correct ensemble aver-
age Einstein formula via probability density averages. Results for these averages
can be obtained with negligible numerical errors from the iteration method, but
now the quality of the approximation is not per se clear. Nevertheless, Fig. 3.3 (a)
shows that all these different solutions agree reasonably well, at least qualitatively.
For the first few iterations, the iteration method solution is clearly apart from the
other two curves, but it is soon getting closer to them, and for values above time
n> 5 it is almost indistinguishable from the ensemble average Einstein values. On
the other hand, the two simulation results agree qualitatively quite well, but for
larger times n one can see that the Green-Kubo result stays slightly above the pre-
cise long-time value of the diffusion coefficient. This quantitative deviation seems
to be due to numerical problems beyond the range of simple statistical errors, as is
well-known in the literature, since no refined methods have been employed here
for computing velocity autocorrelation functions.5

In contrast to these problems, the two Einstein formula results converge quantita-
tively quite well, and they approach the exact diffusion coefficient value extremely
fast: The iteration method applied here leads to values for D(a) being exact up to
an order of 10−7, which is about three orders of magnitude better than achieved by
solving eigenvalue problems numerically. Its error with respect to convergence in
time n is, after maximally fifteen iterations, negligible compared to the error pro-
duced by other quantities, i.e., especially by the precision of the initial condition

5In fact, for other Markov partition values of the slope (e.g., a' 2.359 and a' 2.732) the difference
between the numerical Green-Kubo results and the precise values of the diffusion coefficients in the
long-time limit is even considerably worse, and there is no convergence to the exact values at all.
This may be avoided, e.g., by averaging further over multiple ensembles of initial conditions, by
employing time-translational invariance of the system [Woo71], or by using the Wiener-Khinchin
theorem [Rei87, Eck85, Wag92]. Thus, although objections have been raised about the validity of
the Green-Kubo formula, with respect to the results obtained here there is no reason to assume that
something is fundamentally wrong with this approach in the case of chaotic dynamical systems, as has
recently been discussed by several authors in the literature, see Refs. [Eva90b, Kub92, Suh94, Bia94,
Dor95a], and references therein.
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of the Markov partition generating orbit. Moreover, by restricting the iteration
method solely to the computation of time-independent diffusion coefficients, the
computing time needed for iterating large transition matrices up to a size of 1,300
x 1,300 is about 2 CPU seconds for each diffusion coefficient value (on IBM RS-
6000), which is again about two orders of magnitude better than provided by the
eigenvalue solutions before.6

The computer simulations provide at their best parameter-dependent diffusion co-
efficients with a precision of about 10−2 after up to twenty iteration steps.7 Thus,
it can be expected that parameter-dependent diffusion coefficients computed by
simulations do not show many details of respective curves, except certain oscilla-
tions, and they may not give much evidence for a profound fractal structure, see,
e.g., the results presented in Ref. [Tse94].
Apart from such quantitative considerations, one finds again pronounced wiggles
in the time-dependent diffusion coefficient shown in Fig. 3.3 (a), which occur at
a certain period. One should compare these oscillations and their period to the
respective curtosis result for this value of the slope in Fig. 3.2 (b). Again, the
strength of these wiggles ceases with larger times. It should be noted that such
wiggles show up as well in the approximative solution via probability densities,
which confirms the quality of this approximation even on a fine scale, at least
qualitatively.
Finally, numerical results for the velocity autocorrelation function shall be dis-
cussed. They are shown in the semi-logarithmic plots of Fig. 3.3 (b), where the
logarithms of absolute values have been plotted versus the time n. Two versions of
the velocity autocorrelation function have been computed for the three values of
the slope already considered in Fig. 3.2: the correct definition in Eq.(3.11), which
can be extracted from computer simulations, and an approximation, defined by

vcFP
a (n) := DFP

a (n + 1)−DFP
a (n) , (3.12)

where DFP
a (n) is the probability density average diffusion coefficient of Eq.(3.8).

To obtain this approximation, the Green-Kubo formula has been inverted, i.e.,
Eq.(3.10) has been differentiated with respect to the discrete time n, and n has
been chosen such that this velocity autocorrelation function is well-defined at
n = 0. The purpose of this procedure is to obtain an approximation vcFP

a (n) for the
correct velocity autocorrelation function vca(n), which can be computed solely
via probability density averages and, this way, is accessible to solutions of the
Frobenius-Perron equation by the iteration method.
The brief discussion of the Green-Kubo formula showed that computer simulation

6It has been taken advantage of the fact that the topological transition matrices are here usually
very sparse.

7The same efficiency and precision has been obtained for non-Markovian slopes.
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results for the ensemble average velocity autocorrelation function on the level
performed here are quantitatively not very reliable. On the other hand, it is not
clear in advance whether the alternative, i.e., probability density approximation
of Eq.(3.12), leads to reasonable solutions. Nevertheless, the results for both ver-
sions in Fig. 3.3 (b) agree qualitatively well, apart from slight deviations at the
first iteration n = 1, although their quantitative values are quite different. This
confirms the qualitative validity of simulations to compute these quantities. The
peculiar character of velocity autocorrelation functions shows up rather at larger
times, i.e., generally for n > 10 in computer simulations and for n > 20 in the
iteration method, where strong numerical precision problems set in, see, e.g., the
inset in Fig. 3.3 (b). The velocity autocorrelation functions thus provide a lower
boundary for the number of iterations which can be performed in both methods
before certain numerical roundoff errors must be expected to show up. On a fine
scale, one observes again certain wiggles which seem to be persistent, i.e., the
strength of which does not decrease with larger times in this plot. These wiggles
show up very clearly in the iteration method results for at least two values of the
slope,8 and one also encounters them to a certain degree in the simulation results.
Graphs of time-dependent statistical dynamical quantities analogous to the ones
illustrated by the examples in Fig. 3.2 and Fig. 3.3 have been found not only for a
large variety of other Markov partition values of the slope of map L , but also for
another class P -map (see Chapter 4). Moreover, non-Markovian slopes have been
checked by computer simulations, with similar results in the limits of precision
accessible by simulations. This leads to the following conjecture:

Conjecture 3.2 (decay of velocity autocorrelation functions) The velocity au-
tocorrelation function of uniquely ergodic class P -maps decays exponentially on
a large scale.

The exponents of the velocity autocorrelation functions have been found to vary
in a range of -0.2 to 2.5 for map L and do not appear to be of a universal
value. In simple cases, plain exponential velocity autocorrelation functions have
already been computed analytically for certain class P -maps [Gas92a], and a sim-
ilar conjecture as the one above has already been given in the same reference.
The question about a proper behaviour of correlation functions is of very funda-
mental physical interest, as has been shown in discussions about the occurrence
of long-time tails in various types of dynamical systems in statistical physics
[Dor75, Dor77, Lee88, Viv83, Mac83a, Bun85], and is intimately connected to
the problem of the existence of transport coefficients. Thus, the conjecture above

8The semi-logarithmic plot of absolute values cancels wiggles in certain cases, see the following
section.
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can also be interpreted as a conjecture that there are no long-time tails in this class
of dynamical systems.

3.3 Fractal diffusion coefficients, time-dependent
dynamical quantities, and stability of dynamical
systems

An important feature of the time-dependent quantities discussed above, which
has been pointed out, but which has not yet been explained, is the occurrence of
certain wiggles in the curtosis, in the time-dependent diffusion coefficient and
in the velocity autocorrelation function. As an example, these wiggles will be
analyzed for the Markov partition values of the slope considered above: For the
slope a' 2.414, pronounced wiggles have been observed for all three dynamical
quantities mentioned above, and in all these quantities the wiggles seem to appear
with a period of two. For a' 2.359, the curtosis shows some non-monotonicities
at the beginning, and the velocity autocorrelation function provides wiggles
which seem to occur with a certain periodic, although more complex structure
than for a ' 2.414. And for a ' 2.732, one obtains again slight wiggles in the
curtosis, but seemingly nothing in the velocity autocorrelation function. However,
it should be mentioned that wiggles occur clearly in the original correlation
function for this slope before applying the logarithm to absolute values. Thus,
these oscillations get “smoothed out” in the semi-logarithmic plot.9

Now, these values of the slope just correspond to the first members of the
“turnstile dynamics” series α, β and γ, which are marked in the graph of the
fractal diffusion coefficient of Fig. 2.12. Thus, a ' 2.414 is the first value of
series γ, the series with diffusion coefficients being close to local maxima,
a ' 2.359 is the first value of series β which identifies the local minima just in
front of series γ-values, and a ' 2.732 is the first value of series α which labels
the series of local minima of the diffusion coefficient curve approaching a = 3.
To get an idea about the origin of the wiggles in the time-dependent quantities,
one may consider again the respective pairs of boxes of these three values of the
slope, as drawn in Fig. 2.12. If one takes a look at the orbit of the critical point
of a ' 2.414, one can see that this orbit performs a jump at the first iteration
and some internal box motion at its second iteration, and that it gets back to
its initial condition after the second iteration again, although shifted into the

9The time-dependent diffusion coefficients for a ' 2.359 and a ' 2.732, which have not been
shown in the diagrams here, have been investigated as well. Again, wiggles have been observed with
similar regularities as described for the respective correlation functions.
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adjacent box. Since other orbits close to this orbit behave similarly, this may
qualitatively explain the period two of the wiggles in the dynamical quantities of
slope a' 2.414 and as well their “persistence”, as shown in Fig. 3.3 (b), since this
dynamical process can continue infinitely often. The situation is a bit different for
slope a' 2.359, as can be seen in the respective pair of boxes. Here, after a jump
at the first iteration, the orbit gets reflected two times in the adjacent box before
getting mapped exactly to the right boundary of this adjacent box. It means that
the orbits of an initial density being uniform in the left escape region, i.e., where
particles perform a jump to the right at the next iteration, get mapped such that
the density of this region covers the next box to the right uniformly again after
three iteration steps. This may explain the more complicated periodicity of the
respective wiggles in the time-dependent quantities on the one hand, and that
these wiggles are less pronounced than for the slope a' 2.414 on the other hand.
Finally, the critical point for a' 2.732 gets mapped with a jump to the right at its
first iteration, and, as before for slope a ' 2.359, a uniform probability density
of the left escape region produces a full coverage of the next box to the right
after the second iteration. This may explain that the wiggles in the respective
dynamical quantities are even less pronounced than before.
The same approach has been applied to a number of other members of the three
series in the initial region, and other values of the slope have been checked as
well. There seems to be a general tendency that pronounced wiggles, indicating
strong dynamical correlations, occur at local maxima of the parameter-dependent
diffusion coefficient curve and that at local minima, wiggles and correlations are
less pronounced. This behaviour shows up quite clearly for slopes below a = 3,
but it is increasingly difficult to verify for higher values of the slope. These very
qualitative explanations in the spirit of the turnstile dynamics of the previous
chapter do not hold for any more detailed descriptions and give only a first glance
of the complete dynamics of the system. In detail, of course all single orbits
would have to be taken into account and not only iterated critical points or escape
regions, since quantities like velocity autocorrelation functions are especially
sensitive to all microscopic details, as has already been experienced in kinetic
theory calculations thirty years ago [Dor75, Dor77].
Nevertheless, these considerations give strong evidence that the wiggles in the
time-dependent dynamical quantities analyzed before are due to strong spatio-
temporal correlations, induced basically by the periodic coupling of the chain
of boxes. Thus, it may be concluded that the structure of the fractal diffusion
coefficient D(a) of map L is to its full extent, i.e., with respect to its dynamical
origin in time, produced by such long-range correlations. This may also explain
why the picture of a simple random walk does not hold anymore in detail, as has
already been remarked at several occasions in Chapter 2, since for values of the
slope considerably above a = 2 intrinsic correlations get more pronounced and



64 3. DYNAMICS OF DETERMINISTIC DIFFUSION

are not negligible anymore. It should be noted that a “surprisingly rich structure”
of the velocity autocorrelation function has already been observed in the periodic
Lorentz gas at different densities via computer simulations [Mac83c]. It may be
conjectured that this fine structure is due to the deterministic dynamics of the
Lorentz gas in a similar way as outlined above.
Thus, there is a straight line of certain phenomena from probability densities
over time-dependent statistical dynamical quantities to deterministic diffusion
coefficients of map L : All these quantities behave “nicely diffusive” in a statis-
tical sense on a large scale, but they reveal certain “wiggles” or “oscillations”
on a fine scale, which clearly indicates that the diffusion process was generated
by a deterministic dynamical system. The occurrence of such fine structures
on smaller scales may be assumed to be typical for deterministic diffusion in
periodic dynamical systems and may be responsible for the difficulties to obtain
analytical solutions to a more broad extent.
At last, some question about the stability of the dynamical system map L with
respect to certain perturbations, and the relevance of these questions to problems
of physical interest shall be briefly discussed.

1. shadowing:
The shadowing property guarantees a certain stability for the orbits of a dynam-
ical system with respect to dynamical perturbations, like noise imposed on the
system, or numerical roundoff errors.10 According to a simple counterexample, it
may be conjectured that map L does not possess the shadowing property for any
value of the slope.11 Thus, although the numerical results presented above seem
to be reasonable, they probably cannot be justified by existence of shadowing.

2. noise and phase transitions:
An interesting question is how the fractal diffusion coefficient of map L behaves
by applying random noise to the map, i.e., how much the fractal structure persists,
and when it gets smoothed out.12 Since by increasing the strength of the noise
there must occur a transition between the process of purely deterministic dif-

10For a definition of the shadowing property see Refs. [Guc90, Pei92]. Shadowing has been proven
to exist for a large variety of dynamical systems: see, e.g., Refs. [Bow75, Guc90, Lev89] for hyperbolic
dynamical systems, Refs. [Gre90, Ham87, Ham88] for non-hyperbolic dynamical systems, and Refs.
[Cov88, Nus88] for various other types.

11This example is due to Prof. H.E. Nusse; respective valuable discussions with her are gratefully
acknowledged. The basic idea is that for any value of the slope orbits can be found which get mapped
onto unstable fixed points, situated at integer values. By perturbing these orbits slightly, one obtains at
once totally different, strongly diverging orbits nearby which contradict the shadowing property. An
analytical proof might be carried out along these lines.

12This question was raised by Prof. J. Kurths; discussions with him are gratefully acknowledged.
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fusion, without any external perturbations, and stochastic diffusion, determined
by external random noise, a phase transition of map L might be expected which
could show up by computing the diffusion coefficient at certain values of the
slope by varying the strength of the noise.
Evidence for phase transitions has already been obtained for one-dimensional
climbing sine maps by imposing Gaussian random noise on the map and comput-
ing diffusion coefficients with respect to varying the control parameter [Gei82];
they have also been found in a variety of other simple dynamical systems at
different circumstances [Bec93].

3. structural stability:
Another important question regarding perturbations of map L is the property
of structural stability, i.e., whether a map is stable with respect to certain linear
topological transformations of its functional form.13 This question might be
related to the problem whether slight perturbations in the periodic continuation
of the chain of boxes, e.g., produced by replacing several boxes of the chain
by boxes with slightly different functional forms of the box map, affect the
occurrence of fractal diffusion coefficients. However, the property of structural
stability is connected to the shadowing property, and since map L does not seem
to be shadowing, it may be conjectured that it is not structurally stable.

4. noise and diffusion coefficients:
In recent literature, a surprising suppression of deterministic diffusion by noise
has been discovered in climbing-sine maps [Rei94], which have often been used
to model Josephson junctions [Gei85]. Similar phenomena may be expected to
occur in dynamical systems like map L as well: If one perturbs the system by
applying random noise, this may have an impact on single orbits like varying the
slope of the map a little bit. However, if one starts with map L , e.g., at the local
maximum of the diffusion coefficient at the value of the slope a = 3, varying the
slope is in any case identical to a decrease of the diffusion coefficient. Thus, a
suppression of diffusion by noise may be related to oscillations in the parameter-
dependent diffusion coefficient or, in case of class P -maps, to the existence of
fractal diffusion coefficients.

13see Refs. [Lev89, Ott93] for some introductions, Ref. [Guc90] for a general discussion, and Ref.
[dM93] for mathematical details in case of one-dimensional maps
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3.4 Conclusions

(1) A new numerical procedure, denoted as iteration method, has been developed
for investigating deterministic diffusion in class P -maps. It is based on the use of
Markov partitions with respective topological transition matrices and enables the
computation of time-dependent probability densities by solving the Frobenius-
Perron equation. This method gives not only access to certain time-dependent
dynamical statistical quantities, but it provides also a simple, efficient, and very
precise way to compute parameter-dependent diffusion coefficients.
(2) Simple straightforward computer simulations have been performed for map
L . Via comparision to iteration method results these simulations have been
confirmed to produce reasonable data in the limits of numerical precision.
However, the simulations have not been sufficiently precise for producing any
detailed fractal structure of diffusion coefficient curves.
(3) A procedure to approximate ensemble averages of dynamical quantities via
probability density averages has been introduced. It has been checked to provide
reasonable qualitative and quantitative results.
(4) Gaussian probability densities with strong periodic fine structures have been
obtained for map L . While the large-scale behaviour of these probability densities
proves numerically that the macroscopic dynamics obeys the statistical diffusion
equation, and thus probably a central limit theorem, the fine structure of these
densities has been shown to be induced by the periodic scattering mechanism of
the dynamical system and thus is related directly to the microscopic deterministic
dynamics of the system.
(5) Second and fourth moments of the probability density, time-dependent
diffusion coefficients, and velocity autocorrelation functions have been computed
for map L in various ways. Again, they turned out to be “behaved nicely” on
a large scale in the sense that they showed all characteristics of a statistical
diffusion process. Especially, no numerical evidence for long-time tails in the
velocity autocorrelation functions has been obtained.
(6) Certain oscillations in these time-dependent quantities have been observed
on a fine scale. They have been related qualitatively to the coupling mechanism
of the periodic scatterers of the dynamical system. These oscillations indicate
microscopic spatio-temporal correlations, which may be considered as the
dynamical origin for the fractal structure of the parameter-dependent diffusion
coefficient. Such fine structures of time-dependent quantities are assumed to be
typical for deterministic diffusion in dynamical systems.
(7) Certain stability properties of map L have been discussed, and they have
been partly related to the occurrence of fractal diffusion coefficients and to their
time-dependent origin.



4
Crisis in deterministic diffusion

In the previous two chapters, only one special map of the so-called class P of
piecewise linear maps, introduced as map L in Section 2.1, has been studied in de-
tail. Nevertheless, main results have been claimed to be typical for other class P -
maps as well, especially the existence of a parameter-dependent fractal diffusion
coefficient, and the occurrence of certain features in the probability density and in
other time-dependent dynamical quantities. To obtain these results, methods have
been developed which enabled analytical calculations (via first passage and transi-
tion matrix method, see Chapter 2) and fast and reliable numerical computations
of parameter-dependent diffusion coefficients and of time-dependent dynamical
quantities (iteration method, see Chapter 3). Moreover, two approaches have been
suggested to achieve a qualitative and, to a certain degree, a quantitative under-
standing of the origin of the fractal diffusion coefficient of map L (plus-minus
method and turnstile dynamics, see Chapter 2).
In this chapter, a new map of class P will be introduced (see Section 4.1) to which
the methods mentioned above shall be applied (see Sections 4.2 to 4.3). This map
will serve as a touchstone whether the arsenal of methods developed to deal with
deterministic diffusion works satisfactorily for other class P -maps as well. The
most important point is to check whether the main results obtained for map L
can, in a similar way, be recovered for this second map. The choice of the map
has been motivated by a phenomenon which was recently reported in the literature
as a “crisis in chaotic scattering” (see Section 4.1).1 Thus, apart from making a
first step to check the universality of the characteristics of deterministic diffusion
obtained before, one may expect to gain more insight into the problem whether
certain features of microscopic chaotic scattering are of any relevance for the pro-
cess of macroscopic deterministic transport. This may be important not only from
a fundamental physical point of view, but also for the purpose of bringing the as-
pects of deterministic diffusion more close to physical reality, since the chaotic
scattering phenomenon to be discussed in the following has also been found in
more realistic dynamical systems.2

1I am obliged to Prof. C. Grebogi for some helpful discussions about this subject, and for his
continuous interest in the problem treated in this chapter.

2A summary of this chapter is intended to be published as another letter in the style of Ref.
[Kla95b].
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4.1 Simple models for crises in chaotic scattering

The phenomenon of a crisis in chaotic scattering has first been reported by Lai
et al. for a two-dimensional open Hamiltonian dynamical system. The brief dis-
cussion here follows his presentations in Refs. [Lai93, Lai94]. In the model,
which has essentially been introduced by Troll and Smilansky [Tro89, Tro91], a
point particle is scattered by an infinite one-dimensional array of two-dimensional
nonoverlapping elastic scatterers. These scatterers are placed at constant intervals
along the y axis, and each scatterer is represented by a circular attractive potential
that becomes negligible small at a certain distance. As the dynamical variables
of the system, the angular momentum of the particle and an angle related to the
scattering angle have been chosen. The dynamics of the model can be changed by
switching the particle energy as a control parameter.
For high enough energies, one observes the existence of two topologically and dy-
namically isolated chaotic invariant sets in the phase space of the particle. These
sets represent the values of the dynamical variables for which the particle does not
escape out of the system. By decreasing the energy, one gets to a certain critical
energy value where the two formerly disconnected invariant sets just “touch” each
other. At this point, both chaotic sets get linked dynamically, and by decreasing
the energy further, an uncountable number of such links between both sets is cre-
ated. Thus, a crisis in chaotic scattering can, roughly speaking, be defined in this
scattering model as the merging of two topologically and dynamically isolated
invariant sets of the dynamical variables. This phenomenon leads to certain ma-
jor changes in characteristic dynamical systems quantities, as will be explained
below, and can be understood by referring to certain microscopic orbits of the
scattered particle: For low enough energies, one encounters a kind of “channel-
ing”, i.e., particles keep going upwards or downwards in the array of scatterers
without turning around. These two different directions in the movement of the
particles are related to the existence of the two invariant sets mentioned above.
At the critical energy value, so-called “orbiting collisions” set in, where a par-
ticle can circlulate in the potential for an infinite number of times. This means
that a particle can also be scattered backwards, i.e., it can be turned around and
can go up-downwards, which is the physical counterpart of the two formerly in-
variant sets being dynamically connected. The phenomenon of orbiting collisions
is a special property of attractive-repulsive potentials, if they are sufficiently high
nonlinear, and has already been discussed earlier in the context of transport theory
and the Boltzmann equation (see Ref. [Kla92] and further references therein).
In Refs. [Lai93, Lai94], a piecewise linear one-dimensional map has been pro-
posed as a simple model which also shows a crisis in chaotic scattering. This
map is given in Fig. 4.1 (a) to (d). The control parameter of the system is here
the absolute value of the height between the horizontal line drawn in the figures
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(a) (b)

(c)
(d)

FIGURE 4.1. A one-dimensional model for a crisis in chaotic scattering (after Lai et al.,
see text). Diagram (a) shows the model before crisis, (b) at the beginning of the crisis, (c)
to the end of the crisis, (d) after the crisis.

and the respective extrema of the two branches of the map. It is varied without
changing the slope of the map. With respect to the crisis scenario, the decrease of
the energy in the two-dimensional system corresponds here to an increase of the
height. In Fig. 4.1 (a), the situation before crisis is illustrated. If one starts with
an initial distribution of particles which uniformly covers the interval of the small
box drawn to the left, one observes that these particles either stay in this box for
infinite time, forming a Cantor set as a fractal repeller, or they leave the box and
asymptote monotonically to infinity. The important fact is that they never enter the
other small box of the antisymmetric counterpart of this map to the right at these
parameter values, as one can check by considering single orbits, e.g., the orbit of
the critical point shown in the figure. The same is true vice versa for the right
small box so that the two small boxes contain two topologically and dynamically
isolated chaotic invariant sets, as in case of the two-dimensional system described
above, and the dynamics of the particles is again comparable to a “channeling”
movement.
Fig. 4.1 (b) shows the map for the critical value of the control parameter, where
the crisis occurs. This is exactly where the two formerly invariant sets touch each
other dynamically via a first heteroclinic tangency: escape out of one box, i.e., the
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FIGURE 4.2. A diffusive one-dimensional “crisis” model, denoted as map S , cf. Fig. 4.1
(a).

orbit of the critical point, can go directly into the other box and gets mapped to
a fixed point. Thus, a merging of the two formerly invariant sets takes place. Dy-
namically, this is the first time when backscattering occurs. Fig. 4.1 (c) illustrates
the last stage of this merging procedure, where escape out of one box hits just
the upper boundary of the other box after one iteration, forming a last heteroclinic
tangency. Finally, in Fig. 4.1 (d) the merging of invariant sets is complete, and one
new large invariant set exists, which includes both formerly isolated invariant sets.
Escape out of this large set again asymptotes to infinity. In Refs. [Lai93, Lai94],
the parameter-dependent fractal dimensions of the invariant sets have been com-
puted. The result shows a constant value before the crisis sets in, an increase of
the dimension after the crisis value and a constant value again after the merging
is complete.
In Fig. 4.2, it has been tried to model this scenario by a map of class P by peri-
odically continuing the original map of Fig. 4.1 in a slightly modified form. The
map of Fig. 4.2 will be referred to as map S , defined by

Ma(x) =





−ax + 1 , 0< x≤ 1
4 + 1

4a
ax + 1

2(1−a) , 1
4 + 1

4a < x≤ 3
4 − 1

4a
−ax + a , 3

4 − 1
4a < x≤ 1



 , a≥ 3 , (4.1)
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and by Eqs.(2.5), (2.6) and (2.7). The control parameter is here the absolute value
a of the uniform slope of the map. By varying the slope, one varies the extrema
as well. Intuitively, it can be expected that the crisis mechanism does not rely
on keeping the slope constant. Thus, the height h, i.e., the absolute value of the
distance between a box boundary of the map and the extremum which exceeds
this box boundary,

h =
a−3

4
, (4.2)

is here a linear function of a. For values h> 0, diffusion sets in.3 Fig. 4.2 should
be compared to the situation in Fig. 4.1 (a) before crisis. The respective candi-
dates for isolated invariant sets in the new map have been marked again by small
boxes and have been labeled U,D,U ′,D′. The boxes U and D correspond to the
two boxes shown in case of the former non-periodic one-dimensional map of Fig.
4.1 (a). However, by following the three different trajectories included in Fig. 4.2,
one observes that for map S these sets are in no way isolated from each other
after onset of diffusion. The other way around, it is clear that a proper diffusion
coefficient can only be defined if there exist no disconnected invariant sets in the
dynamical system at any parameter value, since otherwise the system would not
be uniquely ergodic and the diffusion coefficient would at least not be uniquely
defined in the complete dynamical system. Thus, the existence of a diffusion co-
efficient seems to be contradictory to the rigorous conditions for a crisis in chaotic
scattering. Nevertheless, there are still “remains” for the “crisis inducing invari-
ant sets” of the map of Fig. 4.1 in map S , and one may conjecture that they have
a certain impact on diffusion in this new dynamical system by varying the con-
trol parameter. Fig. 4.2 is already close to the “crisis value” of map S , which is
the slope a' 3.562, or the height h' 0.140, respectively, where particles of the
small box U can get directly into the next small box D after one iteration. Similar
considerations apply to other “sawtooth-like” one-dimensional models so that the
fundamental scenario outlined here does not depend on the functional form of the
special map.
Thus, as the basic problem of this chapter it may be posed the question whether a
“crisis in chaotic scattering in its degenerated form”, as it occurs for map S , i.e.,
modeled by a collision of different intrinsic scattering regions of the map, plays
a role for the dynamics in a simple diffusive dynamical system. This question
may be answered by investigating whether a microscopic “crisis-like” dynamical
mechanism shows up in some way in the behaviour of macroscopic quantities like
the parameter-dependent diffusion coefficient D(a).

3According to Conjecture 2.2, it can be assumed that for h > 0 a parameter-dependent diffusion
coefficient exists for map S .
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FIGURE 4.3. Double logarithmic plot of the diffusion coefficient D(h) for map S with
respect to the height h. 14,271 single data points (from a total number of 38,889) have
been plotted. Two random walk solutions (dotted lines) and two curves which connect
certain diffusion coefficient values close to local extrema (dashed lines, see text) have been
included.

4.2 Parameter-dependent diffusion coefficients and
random walks

The parameter-dependent diffusion coefficient D(a) for map S has been com-
puted by employing the methods presented in the previous chapters: Analytically,
this diffusion coefficient has been obtained at certain integer values of the slope
via first passage and transition matrix method analogously to the calculations per-
formed for map L in Chapter 2. Numerically, the iteration method of Chapter 3
has been applied, based on the choice of four different Markov partition series.
The resulting diffusion coefficient curve for map S is shown in Fig. 4.3. Here,
a double logarithmic scale has been used, and the diffusion coefficient has been
plotted with respect to the height h which is related to the slope a according to
Eq.(4.2). Four additional curves have been included in this figure, two of them
passing through the extrema of the original D(h)-curve above a certain value of
the height, and two curves providing a kind of “mean value” for the parameter-
dependent diffusion coefficient in certain ranges of the height. It should be noted
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that the parameter-dependent diffusion coefficient of this new class P -map shows
again a very complex, supposedly fractal structure. Details of this structure shall
not be in the center of the discussion in this section, but will be considered later.
Instead, it shall be tried to understand the large-scale behaviour of this diffusion
coefficient, as will be explained in the following.
For the two dashed curves which envelope the diffusion coefficient above h = 0.1,
analytical solutions have been employed: For integer values of the height, one
obtains

D(h) =
2h3 + 3h2 + h

12h + 9
→ h2

6
(h� 1) , h = k , k ∈ N , (4.3)

which has been plotted as a function of h in the diagram and gives the upper curve.
For the lower curve, the diffusion coefficient has been fitted with this functional
form at h = (2k + 1)/2 and h = (4k + 3)/4 , k ∈ N0. Thus, these two curves give
roughly the upper and lower limits in which the parameter-dependent diffusion
coefficient oscillates back and forth, and they also demonstrate a certain large-
scale behaviour of the exact diffusion coefficient, without taking any fine structure
into account. The remaining two curves are based on two simple random walk
models. To compute the diffusion coefficient via random walks, one starts again
with the Einstein formula

D(h) = lim
n→∞

[∆x2(n)]

2n
, (4.4)

where

[∆x2(n)] :=
1
N

N

∑
i=1

(xi
n− xi

0)2 (4.5)

denotes the ensemble average of the mean square displacement over N particles
with individual position xi

n at discrete time n.
Since for a random walk there is no “history” for the dynamics of the particles,
the Einstein formula reduces, as a first approximation, to

D(h) = lim
n→∞

1
2

[∆x2] (4.6)

with

∆x = xn− xn−1 = Mh(x)− x , xn = Mh(xn−1) , Mh(x)≡Ma(x) , (4.7)

i.e., the dynamics is characterized by only one iteration step. In the limit of time to
infinity, the ensemble average approaches a probability density average [Sch89],

[∆x2]≈< ∆x2 > , < .. . >:=
Z

dx ρn(x) . . . . (4.8)
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Since the dynamical system under consideration is periodic, it suffices to consider
only one box of the chain of boxes so that the integral above can be taken in the
limits between zero and one. This leads to a random walk diffusion coefficient
formula of

Drw(h)≈ 1
2

Z 1

0
dx ρ∗(x)(Mn(x)− x)2 (n→ ∞) , (4.9)

where ρ∗(x) stands for the invariant probability density in one box, which is de-
termined by iterating a reduced map Mh(x) mod 1 (see Section 5.4).
The equation above may serve as the starting point for two versions of a random
walk: First, one may consider map S for values of the slope where the height is
very small, i.e., where the map exceeds only slightly its box boundaries, h� 1,
see also Ref. [Sch82]. As a second approximation, one may assume the box prob-
ability density to be uniform,

ρ∗(x)≈ 1 , (4.10)

which of course is not rigorously true. In fact, the box probability density will be
shown to be a step function which varies with varying the slope, see Section 5.4.
Finally, as a third approximation for small heights one may assume that it is only
important whether a particle leaves a box, performing a jump to another box and
thus contributing to large-scale diffusion, or whether it stays in a box. With this
assumption, the distance ∆x may be approximated to

∆x≈
{

0 , 0≤Mh(x)≤ 1
1 , Mh(x)< 0 or Mh(x)> 1

}
(4.11)

which leads to

Drw1(h) =

Z x2

x1
dx = ∆xescape , (4.12)

where the central symmetry of the map has been employed and x1 and x2 are
defined by Mh(xi) = 0 , i = 1,2 for xi < 1/2. These points represent the boundary
points of the left escape region of the map, where particles can leave the box and
go to the left. Thus, the diffusion coefficient of this random walk approximation
is completely determined by the size of the interval of one escape region ∆xescape,
and since for small heights the interval is very small, this version of a random
walk will be referred to as small escape random walk. For map S , one obtains

Drw1(h) =
2h

4h + 3
→ 2

3
h (h→ 0) , (4.13)

which provides the dotted curve plotted in Fig. 4.3 for small values of h.
A second random walk approximation can be deduced from Eq. (4.9) for large
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values of the height h, see, e.g., Ref. [Ott93], and may therefore be denoted as
high turnstile random walk, where the term turnstile refers to the union of escape
regions of a box map (see the following section): Again, the box probability den-
sity may be assumed to be uniform, as in Eq.(4.10). However, for large heights
the distance of the jump a particle performs by leaving a box becomes very im-
portant, since it is proportional to the height. Without any further approximation
to ∆x, the random walk diffusion coefficient can thus be calculated to

Drw2(h) =

Z 1/2

0
dx (Mh(x)− x)2→ h2

6
(h→ ∞) . (4.14)

The exact analytical formula for smaller heights is a rational function of high de-
gree and shall be omitted here, since it is quite long. The graph of the full solution
is shown in Fig. 4.3 as a dotted line, which has been drawn for values of h above
h = 0.1.
The same approximations can be worked out for the parameter-dependent diffu-
sion coefficient of map L , which has been discussed extensively in the previous
chapters, but not with respect to the height h as an order parameter. The first ran-
dom walk model gives the curve already shown in previous plots with respect to
the slope a, see Fig. 2.12, and reads for the height h, h = (a−2)/2,

Drw1(h) =
h

2(h + 1)
→ h

2
(h→ 0) . (4.15)

The second random walk model gives the formula

Drw2(h) =
(2h + 1)2

24
→ h2

6
(h→ ∞) . (4.16)

These results have been plotted double-logarithmically in Fig. 4.4, together with
the exact values of the parameter-dependent diffusion coefficient already pre-
sented in Fig. 2.10 and, as in Figure 4.3, with the respective graphs which connect
the extrema at odd and even integer values of the slope, which are obtained from
Eqs. (2.28) and (2.32) for the respective values of D(a) with h = (a−2)/2,

D(h) =
h(2h + 1)

12
→ h2

6
(h→ 0) , h = k , k ∈ N0 (4.17)

and

D(h) =
(2h + 3)(2h + 1)

24
→ h2

6
(h→ 0) , h =

2k + 1
2

, k ∈ N0 .

(4.18)
Thus, for both maps the random walk curves plotted in the figures represent the
large-scale behaviour of the respective exact diffusion coefficients quite well.
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FIGURE 4.4. Double logarithmic plot of the diffusion coefficient D(h) for map L with
respect to the height h. 7,908 single data points have been plotted. Two random walk solu-
tions (dotted lines) and curves which connect certain diffusion coefficient values close to
local extrema (dashed lines, see text) have been included.

Nevertheless, these random walks indicate with their different functional forms
certain different large-scale characteristics of the respective maps: For map S ,
which has been introduced as a model related to some critical chaotic scattering
processes, one can distinguish three different large-scale regimes. The first one is
represented quite well by the “small escape” random walk model and may be con-
sidered as a kind of initial region, where diffusion just sets in. Here, the diffusion
coefficient behaves linerly for small heights. It follows a kind of “plateau regime”,
at least in the double logarithmic plot, for values of the height from h = 0.1 up to
h = 1, where diffusion seems to cease and the diffusion coefficient does not in-
crease linearly anymore. Above h = 1, and increasingly better with larger heights,
the diffusion coefficient grows quadratically in the height.
In contrast to this qualitative characterization for map S , the picture for map L
allows a distinction of only two different regimes: Again, an initial region can be
separated which has already been described in detail in Section 2.4, and for larger
values of the height, a “high turnstile”-region shows up. For the initial region at
small heights, the large-scale diffusion coefficient again behaves linearly, and for
large heights, the diffusion coefficient grows quadratically. However, in case of
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map L a broad transition region between these two regimes, as it occurrs for map
S , is clearly missing. Instead, the transition seems to take place abruptly. If the
transition point should be labeled by any value of the height, Figure 4.4 suggests
h' 0.75, which corresponds to the slope a' 3. It should be noted that in previous
discussions the region around a = 3 has already been observed to be peculiar, es-
pecially because of the so-called “overhang” right above a = 3 (see Section 2.4 for
a more detailed discussion). For map S , the supposed first transition point which
separates at least the regions described qualitatively by the two different random
walk models has been marked by a black arrow and just corresponds to the “de-
generated crisis point” defined in the previous section. This may be taken as a first
hint that something like a rudimentary “crisis in chaotic scattering” indeed shows
up in deterministic diffusion.
To summarize at this point, in both maps at least two different regions of deter-
ministic diffusion can be distinguished. These regions can be described qualita-
tively by two different random walk models. In both cases, the lower region may
be considered as a kind of initial region after the onset of diffusion. The charac-
teristic behaviour of this region terminates abruptly at certain points, which are
determined by special dynamical processes.
Apart from such qualitative considerations, the analytical random walk solutions,
as well as the analytical results for the diffusion coefficient at integer values of
the slope for both maps, reveal certain algebraic laws: For both maps, the diffu-
sion coefficient decreases linearly in the height for small values, although with
different factors, see Eqs.(4.13) and (4.15). In the limit of large heights, all so-
lutions, i.e., the exact analytical values of the diffusion coefficient formulas, see
Eqs.(4.3), (4.17), and (4.18), as well as the two high turnstile random walk mod-
els, see Eqs.(4.14) and (4.16), lead to an increase of the diffusion coefficient which
is quadratic in the height with a factor of 1/6 in front. This may be regarded as
first numerical and analytical evidence for the following conjecture:

Conjecture 4.1 (Universal laws for diffusion coefficients of class P -maps)
For diffusive class P -maps, the parameter-dependent diffusion coefficient de-
creases linerly in the limit of small heights, and it grows quadratically for large
heights with a universal factor of 1/6.

Single parts of this conjecture have already been reported in the literature: In
Ref. [Fuj82], a linear decrease of the diffusion coefficient for small heights has
been suspected for different class P -maps. Also, certain series of diffusion co-
efficient values have been computed analytically for these maps which already
led to quadratic functions with a factor of 1/6 in the limit of large heights. How-
ever, no conclusion about a respective universal behaviour has been drawn. In Ref.
[Che95], another class P -map has been discussed analytically via cycle expansion
methods, and linear as well as quadratic limits have been found and conjectured
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to be universal, however, here without noting the universality of the factor 1/6
in the quadratic limit. In both cases, parameter-dependent diffusion coefficients
could only be computed at special values of the slope, or with certain additional
approximations. For map L and map S , the limits of small and large heights are
clearly obtained with respect to the numerical results presented for the full range
of parameter values in Figs. 4.3 and 4.4. Conjecture 4.1 follows here also with re-
spect to the two analytical random walk approximations, which have been shown
to describe the behaviour of the parameter-dependent diffusion coefficients quite
well on a large scale, even above and below the purely linear and quadratic limit-
ing cases, and which are expected to be generally applicable to any class P -map.
Neverthelsee, despite such strong evidence for this conjecture, a rigorous proof of
this large-scale universality remains to be done.
The reason why the factors of 1/6 are not universal for small heights may be
found in the different functional forms of the box maps. The specific character of
the map can be assumed to be more decisive for weak diffusion, whereas in the
limit of large heights, the detailed structure of the box map is not that important
anymore for large-scale diffusion. It should be noted that similar results are not
obtained with respect to the slope as the parameter for the diffusion coefficient.
Thus, the height is clearly the correct order parameter to describe this kind of uni-
versal behaviour.
Similar results in the limit of large control parameters have also been found for
certain two-dimensional maps, i.e., standard- and sawtooth maps, where again
quadratic laws for diffusion coefficients have been derived, although with differ-
ent coefficients [Ott93, Mei92, Rec80, Rec81, Car81b, Car81a, Ant81].
The discussion of applying random walk models for understanding deterministic
diffusion coefficients shall be concluded by a brief remark concerning random
walks at integer slopes. In Section 2.3, it has been mentioned that exact diffusion
coefficient results for the slopes a = 3 and a = 4 of map L can also be obtained
from simple random walk models. The case of a = 4 can straightforward be ver-
ified by Eq. (4.15), which has been derived from the small escape random walk
model, by taking into account the relation between height h and slope a given
above this equation. However, for slope a = 3 this equation clearly leads to a
wrong result. Neither does the other high turnstile random walk model give the
correct answer. Nevertheless, it is possible to obtain the correct value for the dif-
fusion coefficient at a = 3 from a small escape random walk model by shifting
the box for which the random walk is defined by ∆x = 1/2 to the right and by
∆y = 1/2 to the top without shifting the map. Considering the escape of particles
out of that newly defined box and applying the method of the small escape ran-
dom walk again to this case in fact leads to the correct diffusion coefficient value
at slope a = 3.
Both small escape random walk approaches with different definitions of “boxes”
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can be performed at any integer slope a ∈ N , a≥ 2, for map L by taking into ac-
count that, e.g., for a = 4 and the boxes chosen appropriately particles can jump
over a distance of ∆x = 1 and ∆x = 2, respectively, and dividing the escape re-
gion according to these jumps of different lengths. Following this procedure, the
exact values of the diffusion coefficient can be reproduced via random walks at
all integer slopes, and thus one obtains the oscillations of first order. However,
it should be noted that to get this result on the basis of random walks the boxes
had to be choosen differently for odd and even integer slopes. Thus, the random
walk results clearly depend on the choice of a suitable reference system. In other
words, it can be stated that the oscillations of the parameter-dependent diffusion
coefficient of map L at integer slopes, and likewise of map S , are not understood
by one consistent, well-defined random walk model. The other way around, one
may conclude that these oscillations represent rather a characteristic feature of
deterministic diffusion in such dynamical systems than a random walk approach.

4.3 Understanding the structure of fractal diffusion
coefficients

In the previous section, the large-scale behaviour of fractal diffusion coefficients
has been investigated via random walk models, and some general laws have been
found. However, any intricate fine structure of the parameter-dependent diffusion
coefficients has not been taken into account so far. In Section 2.4, a more detailed
understanding of the structure of the fractal diffusion coefficient of map L has al-
ready been obtained by certain systematic qualitative and quantitative approaches.
Similar methods shall now be applied to the supposedly again fractal diffusion co-
efficient of map S , which is shown in Fig. 4.5 with respect to the absolute value
of the slope a of the map.

4.3.1 Counting wiggles and plus-minus dynamics

Following the discussion at the beginning of Section 2.4, one can start with count-
ing the number of “wiggles” in certain regions of the slope. Referring to Fig. 4.5,
one first observes an oscillation of the diffusion coefficient curve “in 0th order”
with respect to odd integer slopes. Although the situation is not as clear as for
map L , it could be said that strong local minima occur at odd integer slopes of
a = 5,9,13, whereas local maxima seem to occur at odd integers of a = 7,11,15.
If one goes into more detail, one can try to estimate the number of next largest
wiggles, i.e., “wiggles of first order”. One may find one pronounced wiggle in
the region 3≤ a≤ 5, but for the next regions above a = 5, the choice of wiggles
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FIGURE 4.5. Parameter-dependent diffusion coefficient for map S with respect to the slope
a. The graph consists of 13,376 single data points (from a total number of 38,889).

of first order is quite ambiguous, i.e., about two in 5 ≤ a ≤ 7 and about three in
7 ≤ a ≤ 9. Nevertheless, for higher values of the slope the diffusion coefficient
curve of Fig. 4.5 becomes more regular again, and one may estimate five wiggles
of first order in 9 ≤ a ≤ 11, six in 11 ≤ a ≤ 13, seven in 13 ≤ a ≤ 15, . . . . To
continue this wiggle-counting on finer scales again is not very promising. Thus,
the challenge is to explain the origin of wiggles of 0th order, the regularity of
wiggles of first order for values of the slope above a = 9 and the strong deviations
for slopes below this value.
As in Section 2.4, the qualitative plus-minus method shall be employed, which is
illustrated in Fig. 4.6. The definitions of “plus” and “minus” regions of the box
maps are not as straightforward for map S as for map L , since map S possesses a
more complicated box map structure. In Fig. 4.6 (a), regions of the box maps have
been labeled with a “plus” sign if respective orbits either leave a box and jump
to the right at the next iteration or remain in a box. The same way, a “minus” has
been given if orbits of the respective regions jump to the left or remain in their
original box. Thus, the left half of any box is marked with a minus, and the right
half of any box with a plus. Following the definitions given in Section 2.4, the
escape of particles out of the lower left box shown in Fig. 4.6 (a), which goes
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FIGURE 4.6. Sketch of the qualitative “plus-minus” method, applied to map S (see text).

immediately to the right, will be considered. Since the slope is related linearly
to the height of the maximum of the box map, cf. Eq. (4.2), increasing the value
of the slope causes more particles from the escape region, as a plus region, to be
mapped straight into the minus region of the box to the right of the initial box.
This is supposedly bad for a fast diffusion process. However, by increasing the
slope above a value of a = 5, particles close to the critical point, i.e., close to the
maximum of the map, get for the first time a chance to be mapped into the plus re-
gion of the right adjacent box after one iteration, which should enhance diffusion.
This procedure may be followed for further increasing the value of the slope and
leads to the qualitative “diffusion coefficient curve” shown in Fig. 4.6 (b), which
gives the result for wiggles of 0th order and corresponds roughly to the oscilla-
tions in the actual D(a)-curve of Fig. 4.5 over the full range of the slope. Fig. 4.6
(c) sketches the refinement of this approach to obtain wiggles of first order with
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respect to the dynamics of two iterations: The new subintervals introduced refer
to particles of the escape region being mapped to another plus or minus region
at the second iteration. Their origin depends on the structure of the box map. If
one restricts oneself to the escape of particles of the escape region close to the
critical point, one can see that increasing the slope creates different plus-minus
sequences, which are good or bad for strong diffusion, as is illustrated in Fig. 4.6
(d) for some values of the slope. A better understanding may be achieved by not-
ing that increasing the slope causes the orbit of the critical point to travel along
the graph of the next right box map from the upper left to the lower right at the
second iteration, thus exploring all the different plus and minus parts the graph of
the box map goes through. As a result, one obtains wiggles of first order which
do not match at all to the number of wiggles counted in the regions of the slope
below a = 9, but this changes immediately above this value, where there is perfect
coincidence again between the plus-minus method of first order, and the number
of wiggles counted for first order.
Now, in certain respects a variation of the plus-minus method of first order may
be introduced which refers to the conjecture in the context of a crisis in chaotic
scattering that the “small boxes”, discussed in Section 4.1 and included in Fig. 4.7
(a), may play a role for deterministic diffusion. Fig. 4.7 (a) shows a magnification
of the region below a = 7 with a picture of map S , where certain points have been
labeled by numbers and symbols. One notices that these points appear on the dif-
fusion coefficient curve in diagram (a), and that they are all close to certain local
maxima and minima of the curve. The idea is again that the orbit of the critical
point, represented by a a dashed line and a small circle in the figure, respectively,
travels along the graph of the adjacent box map at the second iteration by increas-
ing the slope, thus exploring different scattering regions of this map. Tentatively,
and in contrast to the simple plus-minus method, escape regions which are re-
lated to the local minimum of the box map, thus moving orbits to the left, may
generally be assumed to decrease diffusion, and vice versa. Moreover, the small
boxes which belong to these escape regions, because they “shuffle” orbits with
a high probability into the corresponding escape regions (cf. Section 4.1, or the
following section) may be considered as well to be good or bad for diffusion,
respectively. Diamonds refer to the boundaries of the “small boxes”, i.e., of the
formerly “invariant sets” of the one-dimensional crisis model of Fig. 4.1, trian-
gles are situated at the boundaries of the respective escape regions of map S , and
the values of the slope when the orbit of the critical point hits such a symbol at
its second iteration are marked respectively on the diffusion coefficient curve. It
appears as if, by considering small boxes as new mechanisms and estimating the
effect of the escape regions differently from the previous plus-minus method, cer-
tain features of the structure of the diffusion coefficient curve can be understood
in this region of the slope reasonably well, in contrast to the results of the simple
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FIGURE 4.7. Application of “turnstile dynamics” to map S . In diagram (a) and (b), 10,268
and 1,322 single data points have been plotted, respectively, in (c) and (d) 623 and 4,182
data points, connected with lines.

plus-minus method before. On the other hand, not all significant wiggles in Fig.
4.7 (a) can be identified by this method. For higher values of the slope, the results
are even getting worse, and thus in fact the range of application of this procedure
is very limited.
One may summarize at this stage that the plus-minus method, in cooperation with
“wiggle counting”, corresponds to a very qualitative distinction of two different
regions of the slope in map S : a broad region below a = 9, where these two
qualitative approaches do not work at all, and a region of higher values of the slope
above a = 9, where the diffusion coefficient curve suddenly seems to behave quite
regularly, which corresponds to obtaining satisfactorily results by the plus-minus
method and by the “wiggle counting” procedure. On the other hand, including
the small boxes in such a dynamical description, which are relevant for a crisis in
chaotic scattering, and thus modifying the simple plus-minus approach seems to
provide an understanding just in the region where the other two simple methods
fail.
These qualitative conclusions may be compared to the results obtained by plotting
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the diffusion coefficient curve of map S with respect to the height h in Fig. 4.3,
and to the respective discussion of different regimes in this curve: The region
where the plus-minus method and wiggle counting work corresponds roughly to
the “high turnstile” limit of the respective random walk model, where diffusion
increases quadratically with the height h. The “plateau region” of Fig. 4.3, on the
contrary, matches quite precisely to the range where the small boxes seem to be
important, i.e., below a = 9, or h < 1.5. The “crisis value” a ' 3.562 defines an
“initial region” in Fig. 4.7, where no structure corresponding to the map illustrated
in the figure can be found, and which matches to the ”small escape” random walk
region in Fig. 4.3. This again leads to a distinction between three different regions
of the slope, i.e., an initial region, which has not been characterized further yet,
a transition region, where certain details of the map are important, and a limiting
region, which seems to be remarkably regular and smooth in its fine structure.

4.3.2 Turnstile dynamics

The discussion in this section will provide an extension of the turnstile dynamics
introduced in Section 2.4, and may start with several definitions:
Turnstiles of map S are defined again, as in Section 2.4, as the “coupling regions”
of the single boxes of the chain, where points of one unit interval get mapped
outside that particular interval into another interval. Critical orbit may stand as
an abbreviation for the orbit of the critical point, produced by applying the map
to the critical point n times. Finally, the small boxes referred to in the previous
section may be denoted as collimators, since if a particle gets mapped into such
a collimator, there is a high probability that, after some iterations, it gets mapped
into the respective turnstile which belongs to the collimator, leaving the corre-
sponding unit interval, or box, by a jump into another unit interval. Thus, it could
be said that these small boxes “focus” orbits into their respective turnstiles.
The basic idea of turnstile dynamics is again to consider the coupling of single
turnstiles, and the proposition is that this turnstile coupling is crucial for transport
of particles. A simple version of turnstile dynamics has been employed for map
L , where only the mechanism of a direct coupling between different turnstiles has
been considered. Here, an extended version is obviously needed, since not only
the mapping from one turnstile to another turns out to be important, but as well
the mapping from a turnstile to a collimator. A qualitative version of turnstile
dynamics has been introduced by plus-minus dynamics, and as a quantitative ver-
sion an approach may be denoted which allows to identify extrema of diffusion
coefficient curves via single points. Such a quantitative approach is the method of
critical orbits, which has already been used for map L and has been introduced
as well in Fig. 4.7 (a). For this method, important dynamical mechanisms like
collimators and turnstiles get exemplified by single orbits, which usually refer to
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certain Markov partition series and can be computed numerically.
The goal of turnstile dynamics is to increase the understanding of the fractal struc-
ture of the parameter-dependent diffusion coefficient D(a) for class P -maps by
establishing a relation between certain dynamical processes and the structure of
these curves. This can be achieved qualitatively by explaining the number of wig-
gles in certain regions, and on certain scales, or quantitatively by identifying ex-
trema up to a certain order by single points on the basis of turnstile mechanisms
like the ones mentioned before. This goal is different to the one, e.g., of the ran-
dom walk models employed above, which do only refer to certain features of the
large-scale functional form of the respective diffusion coefficient curves.
Fig. 4.7 shows results of quantitative turnstile dynamics for map S by employing
the method of critical orbits: Diagram (a) has already been explained before and
introduces the respective symbols which can be found in the diagrams (b) to (d).
In these new magnifications, certain diffusion coefficient values have been marked
with symbols. These symbols correspond to values of the slope, where the critical
point, after a certain number of iterations, gets mapped to a point which defines
a collimator, or another turnstile, without knowing any details about the precise
form of the orbit (i.e., whether a particle stays in two boxes, travels through a se-
ries of boxes, etc.). One observes that in diagram (b), there are certain sequences
of “turnstile” and “collimator” values which seem to separate self-similar regions,
and that turnstile values can usually be found at the “kinks” of this curve, whereas
single collimator symbols appear regularly between pairs of turnstile symbols and
are situated at slight local extrema. This simple structure persists even on finer
scales, as is demonstrated in the inset, which provides evidence for a self-similar
structure resembling a devil’s staircase [Ott93, Pei92]. The dashed line in the di-
agram corresponds again to the respective “small escape” random walk solution.
However, one notices that this special structure gets increasingly deformed with
higher values of the slope. This is shown in diagram (c). Still, one encounters se-
ries of three symbols, consisting of two turnstile values and one collimator point,
but now the collimator values clearly dominate, i.e., they occur at pronounced
local extrema, whereas any turnstile value marks smaller extrema. Some other de-
tails should be noted: Firstly, there is a drastic change in the self-similar structure,
since now there occur pairs of turnstile values in certain regions. Secondly, not all
symbols are situated at local extrema anymore. And thirdly, even symbols which
identify local extrema usually do not hit the precise extrema anymore, which is
especially true for turnstile values. Thus, it may be said that diagrams (b) and
(c) show a transition from a simple region, dominated by turnstile points, to a
significantly more complex region dominated by collimator points. Diagram (d)
finally shows a region of higher values of the slope, where collimator points seem
to mark almost any extremum, except a few cases, where still turnstile values are
encountered. One may also notice that now pairs of collimator points determine
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the structure of the curve, in contrast to the three-point series in the diagrams (b)
and (c).
In Figure 4.8, magnifications are presented for higher values of the slope. Collima-
tor points still identify, to a certain extent, local extrema, although an increasing
number of them does not match anymore to any extremum. No simple self-similar
structures comparable to the ones observed in Fig. 4.7 exist anymore. Neverthe-
less, these curves appear to be self-similar in more complex ways. The results
also demonstrate that collimator values indeed have something to do with local
extrema, at least for sufficiently high values of the slope, and that these extrema
can be identified by collimator points even on very fine scales. Apart from this,
one observes that the “smoothness” of the diffusion coefficient curves is basi-
cally a matter of the scale, since by zooming in, even previously “smooth” curves
become riddled again.
A brief remark regarding fractal dimensions of these curves shall be included
here: The magnifications of Figs. 4.7 and 4.8 may lead to conjecture that, like for
map L , the parameter-dependent diffusion coefficient of map S , as shown over
its full range of computed values in Fig. 4.5, is multifractal. Morover, the dis-
cussions above of the two transitions which show up in these diagrams in certain
ways suggest that these supposedly different fractal dimensions may have their
origin in different deterministic dynamical behaviour in these parameter regions.
However, this is difficult to prove numerically (cf. the remarks in Section 2.4) and
remains to be shown in detail.
The most important results of this section shall be briefly summarized: An analy-
sis via methods of turnstile dynamics reveals that an interesting transition occurs
at the crisis point a ' 3.562. This transition is characterized by a change in the
turnstile dynamics mechanism. Below the crisis point, turnstile points seem to be
dominant, whereas above the crisis point, they get more and more suppressed, and
collimator points become more and more important. Furthermore, the self-similar
structure of the diffusion coefficient curve changes significantly, i.e., it gets mod-
ified from a simple “smooth” structure to a wiggled, more complex one. And at
last, one should remark that this transition takes place just at a strong local maxi-
mum of the curve. This maximum is precisely identified by the crisis point.
One may conclude that a dynamical mechanism like the one described by a cri-
sis in chaotic scattering is indeed of importance for deterministic diffusion in the
maps investigated here. The suspected crisis point is on a large scale characterized
by the transition between the two random walk models discussed above, but this
does not lead to a well-defined parameter value for the crisis point. More quanti-
tatively, a crisis point may be defined via turnstile dynamics: although one cannot
speak about a collision of invariant sets anymore, it seems as if a collision of turn-
stiles, or rather of turnstile basins, takes place. In case of map S , the term turnstile
basin is synonymous to collimator. The idea is that orbits of turnstile basins of a
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FIGURE 4.8. Further magnifications of the diffusion coefficient of map S and application
of turnstile dynamics. In diagram (a), 13,376 single data points have been plotted, in (b)
4,793, in (c) 1,098, in (d) 3,913, and in (e) 1,175, all connected with lines.

box get mapped to their respective turnstile parts with a very high probability after
some iterations. Thus, if the value of the slope, or of the height, respectively, is
such that the critical point of an upwarding turnstile gets mapped after one itera-
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tion to the collimator of a downwarding turnstile for the first time, a crisis occurs.
For map S , this gives the crisis point a ' 3.562. For map L , the situation seems
to be more complicated in a sense, since this map does not posses a collimator
mechanism. Here, a turnstile basin may be defined by the plus and minus regions
of one box introduced in Section 2.4. This would lead to the identification of the
slope a = 3 as the respective crisis point.
Since the dynamical mechanism of the observed transition in the deterministic dif-
fusion coefficents seems to be related to the one of a crisis in chaotic scattering,
and taking into account that the scenario takes place here in a diffusive dynamical
system, the process described above may be described as a crisis in deterministic
diffusion. It should be noted that, according to the first passage method outlined
in Section 2.2, the diffusion coefficient is related linearly to the Kolmogorov-
Sinai entropy of the dynamical system, see Eqs.(2.16) and (2.12). In Ref. [Bec93],
phase transitions in dynamical systems have been classified with respect to signif-
icant changes in fundamental dynamical systems quantities, as fractal dimensions,
Lyapunov exponents, and entropies. Following this classification, a crisis in de-
terministic diffusion may be regarded as an external dynamical phase transition
of the system: The transition occurs by variation of an external order parameter,
i.e., the slope, or the height, respectively, and the transition shows up in respec-
tive dynamical quantities, i.e., parameter-dependent diffusion coefficients, or KS-
entropies, respectively.4

It may be suspected that such phase transitions are quite common not only in
simple deterministic dynamical systems of the type discussed here, but even in
higher-dimensional, and maybe more realistic models: For example, in Refs.
[Kna87, Nob95],5 two-dimensional dynamical systems have been considered
which are in certain respects related to the two-dimensional model by Lai intro-
duced at the beginning. For these models, an energy threshold has been shown to
exist above which the diffusion coefficient behaves linearly in the energy, whereas
below no diffusion coefficient can be defined. It may be conjectured that this en-
ergy threshold is linked dynamically to a process like a crisis as described above,
but this remains to be investigated. Furthermore, it shall be mentioned that dynam-
ical processes like orbiting collisions have also been discussed in many-particle
systems of low densities, where particles interact via Lennard-Jones potentials
with each other, and certain relations between these collisions and the behaviour
of transport coefficients have been pointed out [Kla92]. Thus, physically a direct
connection may be suspected between certain microscopic chaotic scattering pro-

4Apart from this fundamental phase transition, other dynamical phase transitions seem to be pos-
sible in class P -maps which depend in more detail on the special properties of the map; see, e.g., the
second transition in map S for larger values of the height, which does not occur for map L .

5The author thanks Prof. E. Schöll for drawing his attention to these references.
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cesses, like orbiting collisions, over a crisis in dynamical systems to a certain be-
haviour in transport coefficients, like parameter-dependent diffusion coefficients,
which finally may show up macroscopically in form of dynamcial phase transi-
tions.

4.4 Conclusions

(1) The methods developed for map L to compute fractal diffusion coefficients
and to understand their complex structures have been succesfully applied to
a new map, called map S . The main results obtained for map L which have
been claimed to be more generally characteristic for class P -maps, i.e., the
fractality of parameter-dependent diffusion coefficients and certain features of
the deterministic dynamics of the system, have been encountered in map S as
well.
(2) Simple random walk models have been derived and discussed for map L
and map S . In the limiting cases of high and small values of the height, they
lead to certain functional forms, i.e., to a linear law for small heights, and
to a law quadratic in the height with a factor of 1/6 for large heights. These
laws are suspected to be universal for class P -maps. Further evidence for this
universality is also obtained from exact analytical as well as numerical results for
the parameter-dependent diffusion coefficient.
(3) Certain transitions have been observed in the fractal parameter-dependent
diffusion coefficients of map L and map S . On a large scale, they can be
described by random walk models. For map S , two transitions have been found,
whereas for map L , only one transition occurs. These transitions appear to be
induced by different microscopic dynamical scattering processes.
(4) Map S was chosen as a diffusive version of a one-dimensional map which
shows a crisis in chaotic scattering. Although the mechanism which originally
produced the crisis is in certain respects degenerated in map S , the microscopic
dynamics of this system is still quite analogous to the one of a crisis in chaotic
scattering. One of the transition points in the parameter-dependent diffusion
coefficient of map S , and the single transition observed in map L , could be
related to the crisis mechanism. This macroscopic appearance of a crisis has
been denoted as a crisis in deterministic diffusion. The phenomenon seems to be
responsible for an external dynamical phase transition, which is conjectured to
be quite common in deterministic diffusive dynamical systems.
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5
Fractal Functions for Fractal Diffusion
Coefficients

In Section 2.4, it has been mentioned as a striking observation that some of
the magnifications of the fractal diffusion coefficient of map L resemble very
much certain analytical fractal functions. Such fractal functions, defined by
functional equations, have been encountered in the literature just by working
on dynamical systems which are quite analogous to the ones considered here
[Tas93a, Tas94, Tas95]. This suggests that it might be possible to obtain frac-
tal diffusion coefficients not only by computing them pointwise, as it has been
done before, but that there is a more fundamental relation of fractal diffusion co-
efficients to analytical fractal functions over a broad range of parameter values.
The problem of this chapter is thus to investigate whether such a relation can
be actually established. For this purpose, a more formal analytical approach is
required to compute deterministic diffusion coefficients in the class P of maps
under consideration, which is beyond the range of procedures developed in the
framework of the first passage method of the previous chapters.
In Section 5.1, the formal background of this approach, based on the Green-Kubo
formula of diffusion, will be outlined. In Section 5.2, these tools will be applied
for gradually computing deterministic diffusion coefficients for map L in a series
of increasingly better numerical and analytical approximations. Finally, the two
main ingredients of this new method to compute parameter-dependent diffusion
coefficients, i.e., some newly-defined parameter-dependent fractal functions (see
Section 5.3) and parameter-dependent probability densities on the unit interval
(see Section 5.4) will be analyzed in more detail for a certain range of the param-
eter.1

1The work of this chapter has been initiated by a hint of Prof. P. Gaspard, Brussels, during a
conversation at the SIAM conference on Dynamical Systems in Snowbird, USA, May 1995. Prof.
Gaspard also assisted with further hints in the course of the calculations. The actual work got started
during a subsequent stay at the IPST, College Park, USA, June 1995, in collaboration with Prof. J.R.
Dorfman, who especially developed the idea of deriving the recursion relation for fractal functions
Eq.(5.9).
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5.1 Construction of jump-velocity functions

For convenience, some definitions shall be repeated which have already been in-
troduced in previous chapters. They will be needed here more extensively.
Again, a map of class P

Ma : R→ R , xn 7→Ma(xn) = xn+1 , a> 0 , xn ∈ R , n ∈ N0 , (5.1)

cf. Eq.(2.5) or Section 2.1.3, respectively, shall be considered modeling an old
chain of boxes, i.e., a periodic one-dimensional map with a lift of degree one,

Ma(xn + 1) = Ma(xn) + 1 , (5.2)

in which a diffusion process shall be possible, cf. Conjecture 2.2.
Let the corresponding “reduced map” be

M̃a(x̃) := Ma(x̃) mod 1 , (5.3)

cf. Eq.(2.38), with x̃ := x− [x] being the fractional part of x, x̃ ∈ [0,1), where [x]
denotes the largest integer less than x. This map governs the internal box dynamics
according to [Sch89, Gro82, Fuj82]

x̃n+1 = M̃a(x̃n) , x̃n = M̃n
a(x̃) , x̃≡ x̃0 . (5.4)

The goal is to calculate D(a) by means of the Green-Kubo formula

D(a) =

〈
ja(x̃0)

∞

∑
n=0

ja(x̃n)

〉
− 1

2
〈

j2
a(x̃0)

〉
, (5.5)

cf. Eq.(3.10),2 where the average

〈. . .〉 :=
Z 1

0
dx̃ ρ̃a(x̃) . . . (5.6)

has to be taken over the invariant probability density on the unit interval ρ̃a(x̃),
which is determined by the reduced map M̃a(x̃) and its corresponding Frobenius-
Perron equation, cf. Eq. (2.10).
The “jump-velocity” ja(xn) := [xn+1]− [xn] takes only integer values and can be
interpreted as denoting how many boxes of the chain a particle has traversed after

2In comparision to the Green-Kubo formula Eq.(3.10) used in Chapter 3, here a separation between
internal and external box motion has been performed in advance. It can be shown that in the limit of
time n to infinity the contributions of any internal box motion vanish.



5.1. CONSTRUCTION OF JUMP-VELOCITY FUNCTIONS 93

one iteration if it starts at initial condition x̃.
Because of the lift condition given by Eq.(5.2), it makes no difference whether
the jump-velocity is calculated for the dynamics ruled by the full map or by the
reduced map:

ja(xn) = [Ma(xn)]− [xn]

= [Ma(x̃n + [xn])]− [x̃n + [xn]]

= [Ma(x̃n)]

= ja(x̃n) . (5.7)

In evaluating the Green-Kubo formula for class P -maps, one encounters two main
problems: (1) summing up the jump-velocities in the first term of Eq.(5.5), and
(2) computing the invariant probability density ρ̃a(x̃).
To deal with the first problem, one defines a “jump-velocity function”

Jn
a(x̃) :=

n

∑
k=0

ja(x̃k) (5.8)

for which the following recursion relation can be derived:

Jn
a (x̃) =

n

∑
k=0

ja(M̃k
a(x̃))

= ja(x̃) +
n

∑
k=1

ja(M̃k
a(x̃))

= ja(x̃) + Jn−1
a (M̃a(x̃)) . (5.9)

This function is highly irregular, since it gives the integer value of the displace-
ment of a particle starting at any initial position x̃:

Jn
a(x̃) = ja(x̃0) + ja(x̃1) + . . .+ ja(x̃n)

= [x1]− [x0] + [x2]− [x1] + . . .+ [xn+1]− [xn]

= [xn+1] . (5.10)

For evaluating the Green-Kubo formula, it is suitable to define a more well-
behaved function T n

a (x̃) by

Jn
a(x̃) =:

d
dx̃

T n
a (x̃) (5.11)

which satisfies the recursion relation

T n
a (x̃) = ta(x̃) + ba(x̃) T n−1

a (M̃a(x̃)) . (5.12)
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Here, ta(x̃) is given by

d
dx̃

ta(x̃) = ja(x̃) , ta(x̃) = x̃ ja(x̃) + ca(x̃) , (5.13)

with ca(x̃) taken to be constant in each of the subintervals of the unit interval
where the jump-velocity ja(x̃) has a given value. This constant is fixed by the
condition that Ta(x̃) be continuous on the unit interval, and that Ta(0) = Ta(1) = 0.
For piecewise linear maps, the coefficient ba(x̃) is equal to ±1/a.3

As an example, diffusion in the well-known map L (cf. Section 2.1.3)

Ma(x) =

{
ax , 0≤ x< 1

2
ax + 1−a , 1

2 ≤ x < 1

}
, a≥ 2 , (5.14)

will be considered, here with the slope a restricted to the range 2≤ a≤ 4.
In this case, the jump-velocities are given by

ja(x̃) =





0 , 0≤ x̃< 1/a
1 , 1/a≤ x̃< 1/2
−1 , 1/2≤ x̃< 1−1/a

0 , 1−1/a≤ x̃ < 1





, 2≤ a≤ 4 . (5.15)

The jump-velocity function is determined by the functional equation

Jn
a(x̃) =





Jn−1
a (ax̃) , 0≤ x̃< 1/a

1 + Jn−1
a (ax̃−1) , 1/a≤ x̃< 1/2

−1 + Jn−1
a (ax̃ + 2−a) , 1/2≤ x̃< 1−1/a

Jn−1
a (ax̃ + 1−a) , 1−1/a≤ x̃ < 1





, 2≤ a≤ 4 ,

(5.16)
and, according to the rules given above, can be integrated to

T n
a (x̃) =





1
a T n−1

a (ax̃) , 0≤ x̃ < 1/a
1
a T n−1

a (ax̃−1) + x̃−1/a , 1/a≤ x̃ < 1/2
1
a T n−1

a (ax̃ + 2−a)− x̃+ 1−1/a , 1/2≤ x̃ < 1−1/a
1
a T n−1

a (ax̃ + 1−a) , 1−1/a≤ x̃< 1





,

2≤ a≤ 4 . (5.17)

In Section 5.3 it will be shown that the functions Ta(x̃) = limn→∞ T n
a (x̃) of

Eq.(5.17) exist, and they will be discussed there in more detail, supported by
numerical results.
Functions like Ta(x̃) have been introduced in Refs. [Tas93a, Tas94, Tas95] and
may be called generalized Takagi functions. In special cases, they have been
shown to be fractal [Tas93a, Tas94, Tas95].

3Possible problems at discontinuity points of the map M̃a(x̃) as well as more rigorous mathematical
questions regarding differentiation and integration of these functions will not be taken into account.
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5.2 Approximation procedures for fractal diffusion
coefficients

In the previous section, the problem of summing up jump-velocities has been
transformed into computing generalized Takagi functions Ta(x̃). This makes it
already possible to calculate diffusion coefficients D(a) in simple cases, i.e., for
integer slopes.
For such values of the slope, the invariant probability density is uniform over
the unit interval, ρ̃a(x̃) = 1, which facilitates the calculations significantly. As
an example, the slope a = 3 will be considered. According to Eqs.(5.15), (5.17),
and the Green-Kubo formula Eq.(5.5), the diffusion coefficient can be computed
straightforward to

D(3) = 2T3(
1
2

)−2T3(
1
3

)− 1
6

=
1
3

, (5.18)

where, apart from the fact that Ta(x̃) is symmetric, the fact has been used that
for any fixed point, and any (eventually) periodic orbit, Ta(x̃) can in principle be
calculated exactly by iterating the generalized Takagi function on this orbit. By
generalizing this procedure, the previous exact diffusion coefficient formulas Eqs.
(2.28) and (2.32) can be recovered.
However, for arbitrary slope a the invariant probability density will not be uniform
and has to be calculated by more rigorous methods. This “second main problem”,
i.e., solving the Frobenius-Perron equation, will be faced explicitly in Section 5.4,
where detailed numerical results for ρ̃a(x̃) will be presented.
A final problem remains to be solved: Because of the integration in the Green-
Kubo formula, the probability densities are “entangled” with the generalized
Takagi functions. This makes exact analytical calculations generally quite time-
consuming (see Section 5.4). Nevertheless, it shall be demonstrated that, follow-
ing this approach, a number of increasingly refined analytical and numerical ap-
proximations for D(a) can be obtained.
In the simplest case, one may assume a uniform box probability density for all
values of the slope, which is rigorously true only for integer slopes, as mentioned
above. With this first approximation, the second term in the Green-Kubo formula
can be evaluated to

〈
j2
a(x̃0)

〉
=

Z 1−1/a

1/a
dx̃ ρ̃a(x̃)≈ a−2

a
, (5.19)

and the first term reduces to
∞

∑
n=0
〈 ja(x̃0) ja(x̃n)〉 ≈

Z 1/2

1/a
dx̃ T ′a(x̃)−

Z 1−1/a

1/2
dx̃ T ′a(x̃) = 2Ta(

1
2

)−2Ta(
1
a

) .

(5.20)
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According to Eq.(5.17), these two special values of Ta(x̃) turn out to be

Ta(
1
a

) =
1
a

Ta(1) = 0 ; Ta(
1
2

) =
1
2

+
1
a

Ta(
a
2
−1)− 1

a
=

a−2
2a

+
1
a

Ta(h) (5.21)

with h := a/2− 1 being the height between the maximum of the map and the
boundary of the box at x̃ = 1/2.
As shown by its index, Ta(x̃) also depends on the slope a. However, as a sec-
ond approximation one may assume that, in a given interval of the slope, Ta(x̃)
changes “not too discontinuously” by changing the slope, i.e., that Ta(x̃) can be
approximated by a generalized Takagi function at fixed slope a, e.g., in this case
by Ta(x̃) at a = 3.
Thus, one obtains

DI(a) =
a−2

2a
+

2
a

T3(h) , 2≤ a≤ 4 . (5.22)

This provides a first rough approximation of the exact diffusion coefficient, which
might be called analytical, because the function T3(h) is defined by the functional
equation Eq.(5.17). The first term gives precisely the solution of a simple random
walk model for slope a close to 2, cf. to Eq.(4.15) in Section 4.2. Note that Eq.
(5.22) reproduces the exact values of D(a) at a = 2,3,4.
The result is shown in Fig. 5.1.4 Diagram (a) presents DI(a) in comparision to the
exact curve. Especially for a ≤ 3, the approximation mimics certain regions of
the actual D(a)-curve reasonably well, although one might be surprised that just
above a = 3, where the two approximations involved might be expected to work
well, both curves are qualitatively and quantitatively significantly apart.
In Diagrams (b) and (c), two further approximation results are shown. Here, the
same calculation has been done as before, but now assuming a probability density
which is not necessarily uniform over the whole unit interval, or averaging the
exact probability density for map M̃a(x̃) in the escape region, respectively. The
term escape region refers to the subinterval where the graph of the map exceeds
its box boundaries and the particles can “jump” from one box to the other, cf.

4In diagrams (a) to (c), each single curve consists of at least 2,000 data points, in case of the exact
curve connected with lines. The inset shows around 500 data points for each curve.
The exact diffusion coefficients have been computed via the transition matrix method, see Section 2.3,
all approximation results are based on numerical methods to be explained in Sections 5.3 and 5.4.
Numerical errors should always be neglectable, cf. Sections 2.4, 5.3, and 5.4.
The number of points is the same for the “pseudo-derivative” plots in diagram (d) to (g), however,
here a numerical error could not be estimated.
It should be noted that in diagram (d), (f), and (g) the points are not homogeneously distributed with
respect to their values of the slope so that certain structures, e.g., the ones just above a = 2 and a = 3,
become more pronounced than others.
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FIGURE 5.1. Comparision of approximations with exact results. Left column: diffusion
coefficient D(a); the exact curve in diagram (a) to (c) is given by the bold black line. Right
column, diagram (d) to (f): “pseudo-derivatives” dD(a)/da of the diffusion coefficient;
diagram (d) gives exact results, diagram (e) and (f) contain approximations. Right column,
diagram (g): “pseudo-derivative” d p(a)/da of the escape probability, see text.
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Section 2.4. The escape probability pesc(a) is then given by

pII,III
esc (a) :=

Z 1−1/a

1/a
dx̃ ρ̃II,III

a (x̃) , 2≤ a≤ 4 , (5.23)

and with these assumptions one obtains

DII,III (a) =
pII,III

esc (a)

2
+

2pII,III
esc (a)

a−2
Ta(h) , 2≤ a≤ 4 . (5.24)

Diagram (b) contains the result of what could be called a semi-numerical approxi-
mation. It is based on a model probability density, i.e., a map has been chosen that
replaces the original map under consideration, Eq.(5.14), such that a parameter-
dependent probability density can be computed analytically, being uniform in the
escape region and providing a simple functional form for pII

esc(a). No further ap-
proximation has been applied to Ta(h), instead, its exact values have been com-
puted numerically.
Over wide regions this second approximation is getting more close to the exact
D(a) than the first one, however, above a = 3 the approximation results still de-
viate clearly from the correct values. Diagram (e) to the right shows the “pseudo-
derivative” ∆DII(a)/∆a , ∆a� 1, and should be compared to diagram (d) in the
upper right edge which gives the “pseudo-derivative” of the exact diffusion co-
efficient.5 With respect to the pseudo-derivative results this approximation is still
far apart from the exact solution.
Finally, diagram (c) employs Eq.(5.24) with the exact escape probability
pesc(a) ≡ pIII

esc(a) and, as before, with the exact generalized Takagi functions.
Both quantities have been computed numerically. Note that the result is still ap-
proximate, because ρ̃a(x̃)≡ ρ̃III

a (x̃) has simply been averaged in the escape region
without weighting Ta(x̃) appropriately.

5In Ref. [Ers93], it has been proved that, for class P -maps, parameter-dependent invariant prob-
ability densities are continuous, but nowhere differentiable with respect to their parameter values.
Since the diffusion coefficient D(a) is based on integrations over these probability densities, it is
mathematically not in advance clear whether the derivative dD(a)/da is well-defined. However, as
has already been mentioned in Section 2.4, numerical results indicate that a “pseudo-derivative”
∆D(a)/∆a , a� 1 , i.e., a kind of “mean value” of ∆D over “tiny” regions of ∆a approaching zero,
makes some sense. With respect to such mathematical problems, it cannot totally be ruled out that the
structures of ∆D(a)/∆a , presented in diagram (d) to (g), are numerically artificial. On the other hand,
taking a close look at the D(a)-curve and matching it to its “pseudo-derivatives”, it might as well be
conjectured that these plots represent actual properties of the fractal diffusion coefficient under con-
sideration, and that such “banded structures” are especially characteristic for curves which contain
some self-similarity.
Without being able to a final conclusion about this issue at this stage, these “pseudo-derivative curves”
should be regarded as a matter of further discussion.
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For a ≤ 3, this third approximation DIII(a) matches to the exact curve very well
almost everywhere. For a > 3, the largest deviations can still be found in the re-
gion just above a = 3, which is given in the blowup and might be best described
as an “overhang” of the exact diffusion coefficient (cf. Section 2.4). Although this
phenomenon could not be caught satisfactorily by any of the approximations I to
III, the third approach produces at least a slight cusp for the first time.
The pseudo-derivative of this third approximation is shown in diagram (f). It gives
an overall behaviour which is not too far apart from the exact results in diagram
(d), at least up to values around a = 3. Diagram (g) below demonstrates that in-
deed the numerically computed exact escape probability is essentially responsible
for this coincidence.
The approximation procedures presented here work as well for any higher value
of the slope and give simple formulas for the full D(a)−curve in terms of gen-
eralized Takagi functions. It should be possible to extend this approach without
great modifications to any other map of class P .

5.3 Fractal generalized Takagi functions

In Section 5.1, generalized Takagi functions Ta(x̃) have been introduced, and it
has been shown that they play an important role for evaluating the parameter-
dependent diffusion coefficient D(a) in terms of the Green-Kubo formula. There-
fore, knowing details about the structure of these functions may be helpful to
achieve a better understanding of the nature of the fractal diffusion coefficient
D(a).
To calculate the functions Ta(x̃), numerical methods have to be used. They can be
developed by starting with the recursion relation Eq.(5.12),

T n
a (x̃) = ta(x̃) + ba(x̃) T n−1

a (M̃a(x̃)) , 0≤ x̃≤ 1 , n ∈ N0 , (5.25)

where formally T−1
a (x̃) ≡ 0 can be assumed, which gives the correct values of

T 0
a (x̃) at the next iteration.

Here, as an example, the generalized Takagi function Eq.(5.17) will be discussed.
As has already been noticed in Ref. [Tas93a], constructing functions like Ta(x̃)
by evaluating Eq.(5.25), or (5.17), respectively, time step by time step resembles
creating the well-known Koch curve: one gets a series of graphs T n

a (x̃) which
rapidly converges to Ta(x̃), revealing self-similar structures on an increasingly
refined scale.
This observation can directly be exploited for numerical calculations, based on
the following scheme: Iterating Eq.(5.17) in form of Eq.(5.25) (n + 1)-times, one
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obtains

T n
a (x̃) = ta(x̃) +

1
a

[ta(M̃a(x̃)) +
1
a

T n−2
a (M̃2

a(x̃))]

= . . .= ta(x̃) +
1
a

ta(M̃a(x̃)) + . . .+
1
an ta(M̃n

a(x̃)) +
1

an+1 T−1(M̃n+1
a (x̃))

=
n

∑
k=0

1
ak ta(M̃k

a(x̃)) (5.26)

with

ta(x̃) =





0 , 0≤ x̃ < 1/a
x̃−1/a , 1/a≤ x̃ < 1/2

−x̃ + 1−1/a , 1/2≤ x̃ < 1−1/a
0 , 1−1/a≤ x̃ < 1





, 2≤ a≤ 4 , (5.27)

so that |ta(M̃k
a(x̃))|< (a−2)/(2a) for all x̃ ∈ [0,1).

In the limit n→∞, this ensures that Ta(x̃), defined by Eq. (5.17), is convergent and
thus is well-defined by applying criteria of convergence to the series of Eq.(5.26).6

If one wants to stop the iteration procedure at a certain time step n, one can esti-
mate a largest error of T n

a (x̃) with respect to the exact Ta(x̃) by

∆T n
a (x̃) := |Ta(x̃)−T n

a (x̃)| ≤ |Ta(x̃)|− |T n
a (x̃)|

≤
(

∞

∑
k=0
|1
a
|k−

n

∑
k=0
|1
a
|k
)

a−2
2a
≈ a−2

2an . (5.28)

For example, after n = 10 iterations the error gets less than 5 ·10−5 for any slope
2≤ a≤ 4.
Based on these results, a numerical procedure to evaluate Ta(x̃) can be imple-
mented in a straightforward way. All one has to do is to start with any x̃ and
summing up the terms ta(x̃) on the iterated orbit x̃n+1 = M̃n

a(x̃0) for n sufficiently
large.
Some plots of Ta(x̃), Eq.(5.17), can be found in Fig. 5.2. Diagram (a) shows a
three-dimensional surface plot, and (b) gives a contour plot of this surface.7 The
regular occurrence of peaks and valleys and the change of this structure with
changing the slope should be compared to the exact results of D(a) in Fig. 5.1. It
is striking that the occurrence of the troublesome “overhang” regions corresponds

6Generalizations of this proof to larger classes of maps might be possible, however, they seem to
depend on the properties of each specific ta(x̃), which are difficult to formalize.

7These graphs consist of 22 functions Ta(x̃) at fixed slopes a, each evaluated at 200 different values
of x̃.
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FIGURE 5.2. Generalized Takagi functions Ta(x), example: surface plot (a), contour plot
(b), and three slices of (a) at certain parameter values, see text.
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to the onset of a bifurcation-like behaviour in the contour plot (b). Diagrams (c)
to (e) provide cuts of the generalized Takagi surface parallel to the x-axis at a = 3
and a = 4, and along the diagonal from (a,x) = (2,0) to (4,1).8 It should be noted
that the graphs in diagrams (c) and (e) directly appear in the approximations DI(a)
and DII(a) in Fig. 5.1 (a) and (b).
The structures in these diagrams can be understood by referring to certain or-
bits: The main local maxima, separated by points of zero value in diagram (c)
to (e), are related to backward iterations of the critical points at xc = 1/2 by
x−n = M̃−n

a (x̃c) , n ∈ N0. this leads to the functional form x̃(a)∼ 1/ak , k ∈ N to
be observed in contour plot (b). Via backward iteration of the “boundary points”
x̃b = 0, one obtains all the local minima Ta(x̃) = 0 with the same functional form as
for the maxima in diagram (b). Any additional “fine structure” in the plots seems
to be essentially due to further backward iteration of these points. The respective
orbits are selected by the property that they hit parts of the reduced map which
have been created by applying the modulus to the original map, see Eq.(5.3). For
example, the so-called bifurcation-like structure is supposedly generated by the
new “non-uniqueness overlap” of the two inner branches of M̃a(x̃) above a = 3,
which makes inversion of the dynamics more difficult and the dynamics itself
more rich and complex.
The most important result here is that the parameter-dependent generalized Tak-
agi functions Ta(x̃) are fractal functions with self-similar structures. In fact, they
obey a simple scaling law: height and width of similar structures, as shown in
diagram (c) and (d), scale with precisely the slope a, which is due to the factor
1/a in front of the functions Ta(x̃) in Eq.(5.17).

5.4 Computation of invariant probability densities on
the unit interval

To get exact values for the diffusion coefficient D(a) via the Green-Kubo formula
Eq.(5.5), one needs the precise invariant probability densities ρ̃a(x̃) on the unit
interval.
One can find a rich mathematical literature about existence and uniqueness theo-
rems of these densities for various classes of one-dimensional maps, and about
procedures to compute them, see, e.g., Refs. [Gas92a, Tas93a, Tas94, Tas95,
Ers93, dM93, Las94, Las73, Li78, Li76, Boy79, Gas92c, Gas92b, Ant93, Tas93b,
Ant92].
However, for the class of maps under consideration a procedure shall be presented

8Based on the iteration procedure outlined above, the numerical error of these graphs is negligible.
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which employs the transition matrix method outlined in Section 2.3 and which can
analytically be applied in simple cases. It is based on the following Corollary:

Corollary 5.1 (Invariant probability densities for maps with uniform slope)
Let M̃a : [0,1)→ [0,1) , x̃n 7→ M̃a(x̃n) = x̃n+1 , a ∈ R , n ∈ N0 a discrete
one-dimensional piecewise linear expansive map with uniform slope a. If, for
given slope a, the map is uniquely ergodic and if a Markov partition exists, then
(i) the largest eigenvalue χmax of the topological transition matrix T (a) corre-
sponding to M̃a(x̃) is equal to the slope a.
(ii) the invariant probability density ρ̃a(x̃) is determined by the “largest”
eigenvector ρ̃max

a corresponding to χmax, ρ̃a = c ρ̃max
a , where the constant c is

fixed by a normalization condition:
R 1

0 dx̃ ρ̃a(x̃)≡ 1 .

This corollary can be obtained from a more general theorem which is valid for
piecewise uniform maps and will be proven elsewhere.9 The corollary ensures
that, for any Markov partition value of the slope (see Section 2.3.2) the invariant
probability density on the unit interval is well-defined. Furthermore, it might be
interpreted as a proof that all these invariant probability densities are step func-
tions of the type of the following example, as has already been discussed numeri-
cally in Section 3.2.1, and as has also been shown in Ref. [Ers93].
As an example of the application of this corollary, and as an example of the cal-
culation of a non-trivial diffusion coefficient D(a), one of the simplest Markov
partitions in the range 2≤ a≤ 4 shall be considered, see Fig. 5.3. The calculation
can be carried out in different steps:
(1) Existence of Markov partitions:
The slope a is determined by the Markov condition that ε := a/2− 1 , 0 ≤ ε ≤
1/2 , gets mapped onto x̃ = 1/2 after one iteration, and therefore to ε again after
two iterations:

M̃a(ε) = a ε =
1
2
⇒ a = 1 +

√
2' 2.414 . (5.29)

(2) Construction of topological transition matrices:
The Markov partition of the reduced map can be constructed according to the pro-
cedure outlined in Section 2.3.2 and leads to the following topological transition
matrix T (a), cf. Fig. 5.3:

T (2.414) =




1 1 1 0
1 0 1 0
0 1 0 1
0 1 1 1


 . (5.30)

9It will be included as an appendix in a publication, which is based on this chapter.
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FIGURE 5.3. Computation of invariant probability densities and of non-trivial diffusion
coefficients: example, slope a' 2.414.

It should be noted that this matrix is not symmetric.
(3) Calculation of the largest eigenvector:
With part (i) of Corollary 5.1, solving the eigenvalue problem of the matrix T (a)
reduces to computing the eigenvector to χmax , ρ̃max

2.414 := (ρ1,ρ2,ρ3,ρ4)∗. This cal-
culation can be further simplified by taking the symmetry of the map into account,
ρ1 =ρ4 , ρ2 =ρ3 , which, in this case, leads to

ρ̃max
2.414 = c




ρ1
1
1
ρ1


 with ρ1 =

1 + a
a

=
√

2 . (5.31)

(4) Normalization of ρ̃max
a :

Applying the normalization condition given in part (ii) of the corollary to the
probability density vector ρ̃max

a , it reads

c
4

∑
k=1

ρk ∆x̃k ≡ 1 , (5.32)

where ∆x̃k stands for the size of the subinterval of the kth Markov partition cell,
see Fig. 5.3. One obtains

c =
a

2(a−1)
and ρmax

1 =
a√

2(a−1)
, ρmax

2 =
a

2(a−1)
. (5.33)
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Now, the Green-Kubo formula Eq.(5.5) can be evaluated explicitly to get the dif-
fusion coefficient D(a): The second term of this equation gives

< j2
a(x̃0)>=

a−2
2(a−1)

, (5.34)

the first term reduces to〈
ja(x̃0)

∞

∑
n=0

ja(x̃n)

〉
= ρmax

2 [2Ta(
1
2

)−2Ta(
1
a

)] . (5.35)

Employing Eq.(5.17), these two values for Ta(x̃) can be computed to

Ta(
1
a

) =
1
a

Ta(1) = 0 ;

Ta(
1
2

) =
1
a

Ta(M̃a(
1
2

)) +
1
2
− 1

a

M̃a(
1
2

) = ε =
1

2a
, Ta(

1
2a

) =
1
a

Ta(
1
2

)

⇒ Ta(
1
2

) =
a(a−2)

2(a2−1)
, (5.36)

which finally results in D(2.414) = (
√

2−1)/4' 0.1036.
Although these calculations can in principle be performed for any Markov parti-
tion value of the slope, they soon get quite tedious, since the size of the partitions
and, hence, of the corresponding transition matrices increases rapidly. Therefore,
numerical solutions are desirable.
Instead of solving eigenvalue problems, it is more convenient to apply the itera-
tion method, as described in Section 3.1 for whole chains of maps. Results pro-
duced by this method are given in Fig. 5.4. Diagram (a) shows a three-dimensional
surface plot of the parameter-dependent invariant probability densities, diagram
(b) provides a density plot for this surface.10 The kinks which appear in the sur-
face plot and which form such a symmetric pattern in the density plot are due to
the discontinuity of the map Eq.(5.14) at x̃ = 1/2 in its reduced form (see also
Ref. [Ers93]): The functional form of the (n + 1)-th line is determined by for-
ward iteration of the critical points according to x̃n = M̃n

a(x̃c) , x̃c1 = a/2−1 and
x̃c2 = 2−a/2, respectively. The parameter-dependent probability densities them-
selves are simple step functions. This can be seen in diagram (d) and (e) in which
cuts of the surface parallel to the x̃-axis are presented.11 Diagram (c) finally con-
tains the results of the escape probability pesc(a), defined in Eq.(5.23), at various

10These graphs are based on 102 functions ρ̃a(x̃) at fixed slopes a, each evaluated at 100 different
values of x̃.

11For a numerical error, see the discussion of the iteration method in Section 2.4.
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FIGURE 5.4. Invariant probability densities ρ̃a(x̃) on the unit interval, example: surface
plot (a), density plot (b), escape probability (c) and two slices of (a) parallel to the x-axis:
Diagram (d) at a' 2.5, Diagram (e) at a' 3.5.

levels of approximation. The dashed curve corresponds to a uniform probability
density ρ̃a(x̃) = 1 as employed in the approximation DI(a), the full line is based
on the integrated piecewise uniform probability density of the simple model map
mentioned before, which has been calculated and used for approximation DII(a),
and the dots refer to exact results, as obtained from the full correct probability
densities computed numerically.12 From this diagram, it can also be inferred why

12In diagram (c), 2,381 single data points are shown, the inset contains 200 points, connected with
lines.
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the approximations DI,II(a) in Fig. 5.1 are less than the exact values of D(a) for
a< 3, and greater than D(a) for a> 3. The inset reveals self-similar structures of
pesc(a) so that it might be assumed that this exact curve, like the exact diffusion
coefficient D(a), is again fractal.13

All these numerical results are closely related to the propositions made in Ref.
[Ers93] and, in a sense, can be taken as illustrations of them, although in this
reference no fractal structures have been assumed, or found.14

5.5 Conclusions

(1) Another method to compute fractal diffusion coefficients for simple one-
dimensional maps has been presented. Numerically and analytically, it provides
a convenient alternative to the procedures outlined before. Mathematically, it
might even be considered as being more rigorous, because it lacks any “external”
definition of diffusion coefficients as, e.g., in case of the transition matrix
method.
(2) This method, based on the Green-Kubo formula, leads to a distinction
between generalized Takagi functions, linked to the dynamics of the system,
and invariant probability densities, linked to its equilibrium states. Therefore,
understanding the fractality of the diffusion coefficients traces back to a more
detailed understanding of these two functions as the main components of this
approach.
(3) Such an analysis, performed for an example, reveals the generalized Takagi
functions to be self-similar and fractal. Although the invariant probability
densities are simple step functions, their corresponding escape probabilities, by
which the densities are built into the calculation of the diffusion coefficients, also
turn out to be self-similar and fractal.
(4) A first approximation of the Green-Kubo formula establishes a direct con-
nection between fractal generalized Takagi functions and parameter-dependent
diffusion coefficients and, hence analytically, ensures the fractality of the
parameter-dependent diffusion coefficient.
(5) Two more refined approximations provide an opportunity to see how the
details of the fractal diffusion coefficient gradually emerge by taking the gen-
eralized Takagi functions and the invariant probability densities into account
increasingly better. If one wants to follow this distinction, the so-called overhangs
can basically be characterized as a density effect, since first features seem to
appear just after building in the probability densities more properly.

13According to Ref. [Ers93], this curve is continuous, but nowhere differentiable.
14The author is indebted to Dr. A. Pikovsky for pointing out this reference.
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(6) Moreover, it seems that in this picture the exact fine structure of the curve is
due to a complicated coupling between jump-velocities and invariant probability
densities. This coupling turns out to be especially pronounced in certain regions
of the curve, e.g., again in the overhang regions.
(7) The remarkable “banded structure” in the pseudo-derivative plots of the exact
diffusion coefficients is linked to the respective behaviour of the exact escape
probability. Thus, in this picture it can again be described as a density effect.
(8) The structure of invariant probability densities and generalized Takagi
functions can be related to the occurrence of certain orbits, especially to iterations
of the critical points. It is remarkable that the invariant probability densities are
determined by forward iterations of these points, whereas the generalized Takagi
functions are shaped by backward iterations in time, which leads, in a way, to a
separation of the direction of time in form of these two different functions. The
fractal diffusion coefficient, in reverse, consists of both histories by integration of
both functions over the complete set of their parameter values.



6
Concluding remarks

In this work, a simple one-dimensional model for deterministic diffusion has been
studied. The main goal was to compute the parameter-dependent diffusion coef-
ficient of this system. By various analytical and numerical methods, based on
chaotic dynamical systems theory and transport theory of statistical mechanics,
many interesting features of the resulting diffusion coefficient curves have been
revealed, and first approaches have been developed to understand the complex na-
ture of these curves in more detail.
In the following section, the most important results shall be briefly summarized.
The last section provides an outlook to further problems, where the methods de-
veloped here may be succesfully applied as well, and where similar results can be
expected.

6.1 Summary of main results

(A) In two one-dimensional piecewise linear chaotic maps with a periodic dis-
tribution of identical scatterers, parameter-dependent diffusion coefficients have
been discovered which show an unambiguously fractal structure. These results
appear to be the first examples of dynamical systems with fractal diffusion coeffi-
cients. It is suspected that such curves are quite typical for periodic deterministic
dynamical systems with diffusive dynamics.
(B) A variety of new methods to compute deterministic diffusion coefficients an-
alytically and numerically has been developed: Based on the statistical first pas-
sage method and on a solution of the Frobenius-Perron equation by employing
Markov partitions and topological transition matrices, the largest eigenmodes of
the Frobenius-Perron operator could be calculated by solving eigenvalue prob-
lems, and the diffusion coefficient could be related to certain eigenvalues of this
operator. This first method has for the first time been applied analytically and nu-
merically for computing parameter-dependent diffusion coefficients. Another nu-
merical method has been invented to obtain complete solutions of the Frobenius-
Perron equation. This second method turned out to be very simple, efficient, and
precise for computing fractal diffusion coefficients as well as for evaluating cer-
tain time-dependent dynamical quantities. It has been confirmed that computer
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simulations, as a well-known conventional third method, provide reasonable nu-
merical results for computing diffusion coefficients and other time-dependent dy-
namical quantities. Finally, a new analytical approach to compute fractal diffusion
coefficients, based on the Green-Kubo formula and on the definition of certain
fractal functions, has been performed. This fourth method has to a large extend
also been implemented numerically.
(C) A detailed analysis of deterministic diffusion in simple dynamical systems has
been performed: The eigenmodes of the Frobenius-Perron operator turned out to
be formally identical to the ones of the diffusion equation on a large scale, with
a remarkable periodic fine structure on a small scale. The probability densities of
the dynamical systems have been revealed to be Gaussians with a periodic fine
structure. And the time-dependent curtosis, the time-dependent diffusion coeffi-
cients, as well as the velocity autocorrelation functions showed a statistical diffu-
sive behaviour on a large scale, with certain oscillations on a small scale. Thus,
in all these quantities different behaviour on two different scales has been found:
On a large scale, one encounters functions equal to the solutions of the simple dif-
fusion equation of statistical physics. This guarantees the existence of diffusion
coefficients as macroscopic quantities in the dynamical systems under considera-
tion. On a small scale, the chaotic deterministic dynamics is intimately connected
to the special features of the microscopic scattering mechanisms. This produces
a periodic fine structure in the dynamical quantities which is due to the periodic
distribution of the scatterers. It is conjectured that this fine structure is typical for
periodic deterministic dynamical systems with diffusive dynamics. Moreover, the
fine structure of time-depepdent dynamical quantities could be related to oscil-
lations in the parameter-dependent fractal diffusion coefficients and may thus be
considered as the dynamical origin of the fractality of the diffusion coefficient
curves.
(D) Some approaches to achieve a better physical understanding of the struc-
ture of fractal diffusion coefficients have been developed: In certain regions of
these curves, and on certain scales, the number of local extrema could be related
qualitatively to the special microscopic coupling mechanism between different
scatterers, which changes with changing the parameter value of the diffusion co-
efficient. Employing this idea in more detail, local extrema could be identified
by single points in the framework of “turnstile dynamics”, which established a
quantitative relation between microscopic orbits and the structure of macroscopic
diffusion coefficients. By applying these methods, a surprising phenomenon has
been discovered in the diffusion coefficient curves, i.e., the existence of so-called
overhang parameter regions, where diffusion gets unexpectedly enhanced in a
quite spectacular way. By support of two simple analytical random walk mod-
els, which describe the large-scale functional form of the numerically obtained
diffusion coefficient curves, two simple laws have been found, which represent
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limiting cases for the large-scale behaviour of the diffusion coefficient as func-
tions of its parameter value. This behaviour is linear in the parameter right after
the onset of diffusion, but approaches a quadratic law with a factor of 1/6 for
high parameter values. Evidence for the occurrence of phase transitions has been
obtained not only by these random walk models, but also by turnstile dynamics
analyses. In one of the maps under investigation, only one phase transition has
been observed, in the other map even another phase transition at larger values of
the parameter is suspected. The phase transition at lower parameter values, which
has been observed in both systems, has been interpreted as a crisis in determin-
istic diffusion, in analogy to similar phenomena which occur in other dynamical
systems. Such a crisis can be defined by a collision of certain scattering regions
with increasing the parameter value and may be characterized dynamically as a
transition from a simple and regular dynamics to a more complicated one. An-
other picture about the creation of fractal diffusion coefficients has been provided
by splitting the dynamics of the system into the parameter-dependent invariant
probability density of a scatterer and a new type of fractal functions as generators
of the movement of particles between these scatterers. Based on this approach,
analytical and numerical approximation procedures have been introduced which
relate the diffusion coefficient curves to fractal functions, defined via functional
equations. This method enables a better understanding of certain features of the
fractal diffusion coefficient curves, e.g., of overhang regions and of derivative
plots of fractal diffusion coefficients, with respect to their dynamical origin.
(E) A number of general conjectures, based on either numerical or analytical evi-
dence obtained from the two maps investigated here, has been given: They are
claimed to be valid for a broad class of maps and deal with the existence of
Markov partitions, with the existence of diffusion coefficients in a rigorous math-
ematical sense, with the validity of a central limit theorem for dynamical systems
probability densities, with the absence of long-time tails in the velocity autocor-
relation function, and with the existence of a crisis in deterministic diffusion as
an external dynamical phase transition. These conjectures point mainly to a more
rigorous mathematical foundation of the main results presented here and may
motivate more mathematically oriented researchers in this field to work on these
problems.

6.2 Outlook

In the introduction of this work, it has been announced that the author would
be a bit “disobedient” to traditional physics by discussing an abstract model
for deterministic diffusion, which at first sight may not have very much to do
with physical reality. However, this model was at least “simple” enough for
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performing a detailed theoretical analysis. As it has been shown in this work, one
can indeed learn much from such simple models. Many very interesting features
have been discovered, and one may wonder whether such phenomena can be
encountered in any experiments. Thus, to become “more obedient” again, and
as an attempt to bring the main results of this work, and the experience with
the techniques developed in its course, more close to physical reality, a “road to
reality” may be outlined in the following. It may give some hints to interested
people where fractal diffusion coefficients are expected to show up, and it may
point in a direction of possible applications of such phenomena.
Fractal diffusion coefficients have been found here in a very simple class of
chaotic dynamical systems. However, the complexity of the systems can be
increased systematically step by step while analyzing their diffusive dynamics
by the methods presented in this work, as well as by employing other techniques
[Cvi91a, Che95]. One may start with computing diffusion coefficients for
slightly more difficult maps, being piecewise linear with piecewise uniform
slope [Gro83b], where similar results are expected. As a next step, one can
consider piecewise differentiable maps in which anomalous diffusion has been
observed, trying to understand the origin of this phenomenon in more detail
[Gei84, Wan93, Art93, Sto94]. This should serve as a preparation for a more
general case, i.e., parameter-dependent diffusion in so-called climbing sine maps,
which promise a very complicated scenario of normal and various kinds of
anomalous diffusion [Sch82, Gro82]. These maps have often been used to model
the physics of Josephson junctions, a well-known and widely used semiconductor
device [Gei85]. Furthermore, the influence of noise on diffusion in such systems
may be investigated, which is also a problem more related to applications,
since noise is encountered in most physical experiments. Here, several kinds of
noise-induced phase transitions can be expected [Rei94, Gei82].
Being familiar with diffusion in various types of one-dimensional dynamical
systems, one can try to apply similar methods to the case of two-dimensional sys-
tems, especially to the periodic Lorentz gas, which has been the object of a great
variety of recent investigations, see, e.g., Refs. [Gas94, Cvi91b] and references
therein. It may be conjectured that this system also shows parameter-dependent
fractal transport coefficients. In fact, molecular dynamics computer simulations
reveal pronounced oscillations in the electric conductivity of a periodic Lorentz
gas with respect to varying an external electric field [Mor87, Del95]. This
may indicate an underlying fractal structure similar to the parameter-dependent
diffusion coefficient curves obtained here. One should note that it has recently
been possible to create Lorentz gas-like structures in certain semiconductors
[Wei91, Wei95]. This seems to provide another opportunity to check the results
of the deterministic theory of transport in experiments [Gei90, Fle95]. E.g., for
this type of system Ohm’s law has been derived starting from the microscopic
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dynamics by methods of dynamical systems theory [Che93a, Che93b]. Moreover,
for the magnetoresistance of a one-dimensional conducting metallic ring complex
structures have been observed experimentally with respect to varying the strength
of an external magnetic field, which do not seem to be induced by well-known
quantum effects [Umb84].1 However, it remains to be investigated carefully
whether these structures are of any deterministic nature.
Thus, it seems that there are many problems in statistical physics and dynamical
systems theory for which evaluating macroscopic physical quantities explicitly
with respect to their underlying microscopic deterministic dynamics can lead
to surprising and highly interesting results. These results may not only be of
fundamental theoretical, but also of quite practical interest,

1The author thanks Profs. T.R. Kirkpatrick and J.R. Dorfman for pointing out this reference to him.
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