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This chapter introduces to chaos in dynamical systems and how this
theory can be applied to derive fundamental laws of statistical physics
from first principles. We first elaborate on the concept of deterministic
chaos by defining and calculating Lyapunov exponents and dynamical
entropies as fundamental quantities characterising chaos. These quan-
tities are shown to be related to each other by Pesin’s theorem. Con-
sidering open systems where particles can escape from a set asks for a
generalisation of this theorem which involves fractals, whose properties
we briefly describe. We then cross-link this theory to statistical physics
by discussing simple random walks on the line, their characterisation in
terms of diffusion, and the relation to elementary concepts of Brownian
motion. This sets the scene for considering the problem of chaotic diffu-
sion. Here we derive a formula exactly expressing diffusion in terms of
the chaos quantities mentioned above.

1. Introduction

A dynamical system is a system, represented by points in abstract
space, that evolves in time. Very intuitively, one may say that the
path of a point particle generated by a dynamical system looks
“chaotic” if it displays “random-looking” evolution in time and space.
The simplest dynamical systems that can exhibit chaotic dynamics

1



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 2

2 R. Klages

are one-dimensional maps, as we will discuss below. Further details
of such dynamics, including a mathematically rigorous definition of
chaos, are given in Chapter 6.a Surprisingly, abstract low-dimensional
chaotic dynamics bears similarities to the dynamics of interacting
physical many-particle systems. This is the key point that we explore
in this chapter.

Over the past few decades it was found that famous statistical
physical laws like Ohm’s law for electric conduction, Fourier’s law for
heat conduction, and Fick’s law for the diffusive spreading of parti-
cles, which a long time ago were formulated phenomenologically, can
be derived from first principles in chaotic dynamical systems. This
sheds new light on the rigorous mathematical foundations of Non-
equilibrium Statistical Physics, which is the theory of the dynamics of
many-particle systems under external gradients or fields. The exter-
nal forces induce transport of physical quantities like charge, energy,
or matter. The goal of non-equilibrium statistical physics is to derive
macroscopic statistical laws describing such transport starting from
the microscopic dynamics for the single parts of many-particle sys-
tems. While the conventional theory puts in randomness “by hand”
by using probabilistic, or stochastic, equations of motion like random
walks or stochastic differential equations, recent developments in the
theory of dynamical systems enable to do such derivations starting
from deterministic equations of motion. Determinism means that no
random variables are involved, rather, randomness is generated by
chaos in the underlying dynamics. This is the field of research that
will be introduced by this chapter.

This theory also illustrates the emergence of complexity in systems
under non-equilibrium conditions: Due to the microscopic nonlinear
interaction of the single parts in a complex many-particle system
novel, non-trivial dynamics, in this case exemplified by universal
transport laws, may emerge on macroscopic scales. The dynamics
of a complex system, as a whole, is thus different from the sum of
its single parts. In the very simplest case, this idea is illustrated

aD.K. Arrowsmith, Applied dynamical systems, In Dynamical and Complex Systems,
eds. S. Bullett, T. Fearn and F. Smith, LTCC Advanced Mathematics Series, Vol. 5,
World Scientific, Singapore (2016).
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by the interaction of a point particle with a scatterer, where the
latter is modelled by a one-dimensional map. This is our vehicle of
demonstration in the following, because this simple model can be
solved rigorously analytically.

Our chapter consists of two sections: In Section 2 we introduce
to two important quantities assessing chaos in dynamical systems,
Lyapunov exponents and dynamical entropies. The former are widely
used in the applied sciences to test whether a given system is chaotic,
the latter is motivated by information theory. Cross-links to ergodic
theory by defining these quantities are explored, which is a core disci-
pline in mathematical dynamical systems theory. Interestingly, both
these different quantities are exactly related to each other by Pesin’s
theorem. Considering open system where particles can escape from a
set generates fractals, a concept that we will introduce as well.

The latter problem cross-links to Section 3, which explores dif-
fusion in chaotic dynamical systems. After briefly introducing to
the statistical physical problem of diffusion, we outline a rigorous
theory that enables one to calculate diffusion coefficients character-
ising the spreading of particles from first principles. By combining
this approach with a key result for open systems from the previous
section, we arrive at an exact formula expressing the diffusion coeffi-
cient in terms of the two quantities characterising deterministic chaos
introduced before. This important result forms the highlight of our
exposition and concludes our chapter.

While Section 2 mainly elaborates on textbook material of chaotic
dynamical systems,1–3 Section 3 introduces to advanced topics that
emerged in research over the past 20 years.4–6

2. Deterministic Chaos

2.1. Dynamics of simple maps

Let us recall the following defintion.

Definition 2.1. Let J ⊆ R, xn ∈ J, n ∈ Z. Then
F : J → J, xn+1 = F (xn) (2.1)

is called a one-dimensional time-discrete map. Here xn+1 = F (xn) are
sometimes called the equations of motion of the dynamical system.



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 4

4 R. Klages

Choosing the initial condition x0 determines the outcome after
n discrete time steps, hence we speak of a deterministic dynamical
system. It works as follows:

x1 = F (x0) = F 1(x0)

x2 = F (x1) = F (F (x0)) = F 2(x0) (2.2)

⇒ Fm(x0) := F ◦ F ◦ · · · ◦ F (x0)︸ ︷︷ ︸
m-fold composed map

.

In other words, there exists a unique solution to the equations of
motion in the form of xn = F (xn−1) = · · · = Fn(x0), which is the
counterpart of the flow for time-continuous systems. We will focus on
simple piecewise linear maps. The following one serves as a paradig-
matic example.1,2,4,7

Example 2.2. The Bernoulli shift (also called shift map, doubling
map, dyadic transformation).

The map shown in Fig. 1 is defined by

B : [0, 1) → [0, 1), B(x) := 2x mod 1 =
{

2x, 0 ≤ x < 1/2,
2x− 1, 1/2 ≤ x < 1.

(2.3)

1/2 10

1

Fig. 1. The Bernoulli shift.
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Fig. 2. Stretch-and-cut mechanism in the Bernoulli shift.

The dynamics of this map can be understood as follows, see Fig. 2:
Assume that we fill the whole unit interval with a uniform distribu-
tion of points. We may now decompose the action of the Bernoulli
shift into two steps:

(1) The map stretches the whole distribution of points by a factor of
two, which leads to divergence of nearby trajectories.

(2) Then we cut the resulting line segment in the middle due to the
modulo operation mod 1, which leads to motion bounded on the
unit interval.

The Bernoulli shift thus yields a simple example for an essen-
tially nonlinear stretch-and-cut mechanism, as it typically gener-
ates deterministic chaos.2 The same mechanisms are encountered
in more realistic dynamical systems. We remark that “stretch and
fold” or “stretch, twist and fold” provide alternative mechanisms for
generating chaotic behaviour, see, e.g. the tent map mentioned in
Chapter 6. The reader may wish to play around with these ideas in
thought experiments, where the sets of points is replaced by kneading
dough. These ideas can be made mathematically precise by what is
called mixing, which is an important concept in the ergodic theory
of dynamical systems.4,8
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2.2. Lyapunov chaos

A mathematically rigorous definition of chaos requires that for a
given dynamical system three conditions have to be fulfilled: sensi-
tivity, existence of a dense orbit, and that the periodic points are
dense; see Chapter 6 for details. The Lyapunov exponent generalises
the concept of sensitivity in the form of a quantity that can be cal-
culated more conveniently, as we will motivate by an example.

Example 2.3 (Lyapunov instability of the Bernoulli shift2).
Consider two points that are initially displaced from each other by
δx0 := |x′0 − x0| with δx0 “infinitesimally small” such that x0, x

′
0 do

not hit different branches of the Bernoulli shift B(x) around x = 1/2.
We then have

δxn := |x′n − xn|
= 2δxn−1 = 22δxn−2 = · · · = 2nδx0 = en ln 2δx0. (2.4)

We see that there is an exponential separation between two nearby
points as we follow their trajectories. The rate of separation λ(x0) :=
ln 2 is called the (local) Lyapunov exponent of the map B(x).

This simple example can be generalised as follows, leading to
the general definition of the Lyapunov exponent for one-dimensional
maps F . Consider

δxn = |x′n − xn| = |Fn(x′0)− Fn(x0)| =: δx0e
nλ(x0) (δx0 → 0) (2.5)

for which we presuppose that an exponential separation of trajec-
tories exists. By assuming that F is differentiable, we rewrite this
equation to

λ(x0) = lim
n→∞ lim

δx0→0

1
n

ln
δxn

δx0

= lim
n→∞ lim

δx0→0

1
n

ln
|Fn(x0 + δx0)− Fn(x0)|

δx0

= lim
n→∞

1
n

ln
∣∣∣∣dFn(x)

dx

∣∣∣∣
x=x0

. (2.6)
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Using the chain rule we obtain

dFn(x)
dx

∣∣∣∣
x=x0

= F ′(xn−1)F ′(xn−2) . . . F ′(x0), (2.7)

which leads to

λ(x0) = lim
n→∞

1
n

ln

∣∣∣∣∣
n−1∏
i=0

F ′(xi)

∣∣∣∣∣
= lim

n→∞
1
n

n−1∑
i=0

ln
∣∣F ′(xi)

∣∣ . (2.8)

This simple calculation motivates the following definition.

Definition 2.4 (Ref. 7). Let F ∈ C1 be a map of the real line.
The local Lyapunov exponent λ(x0) is defined as

λ(x0) := lim
n→∞

1
n

n−1∑
i=0

ln
∣∣F ′(xi)

∣∣, (2.9)

if this limit exists.

Example 2.5. For the Bernoulli shift B(x) = 2x mod 1 we have
B′(x) = 2, ∀x ∈ [0, 1), x �= 1

2 , hence trivially

λ(x) =
1
n

n−1∑
k=0

ln 2 = ln 2 (2.10)

at these points.

Note that Definition 2.4 defines the local Lyapunov exponent
λ(x0), that is, this quantity may depend on our choice of initial con-
ditions x0. For the Bernoulli shift this is not the case, because this
map has a uniform slope of two except at the point of discontinuity,
which makes the calculation trivial. Generally, the situation is more
complicated. One question is of how to calculate the local Lyapunov
exponent, a second one to which extent it depends on initial condi-
tions. An answer to both these questions is provided by the global
Lyapunov exponent that we are going to introduce, which does not
depend on initial conditions and thus characterises the stability of
the map as a whole.



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 8

8 R. Klages

It is introduced by observing that the local Lyapunov exponent
in Definition 2.4 is defined by a time average, where n terms along
the trajectory with initial condition x0 are summed up by averaging
over n. That this is not the only possibility to define an average quan-
tity is clarified by the following definition. It requires the concepts
of measure and density (see Chapter 6); if the reader is not familiar
with these objects, we recommend Ref. 9 as an introduction.

Definition 2.6 (Time and ensemble average4,8). Let µ∗ be the
invariant probability measure of a one-dimensional map F acting on
J ⊆ R. Let us consider a function g : J → R, which we may call an
“observable”. Then

g(x) := lim
n→∞

1
n

n−1∑
k=0

g(xk), (2.11)

x = x0, is called the time (or Birkhoff) average of g with respect
to F . Now

〈g〉 :=
∫

J
dµ∗g(x), (2.12)

where, if such a measure exists, dµ∗ = ρ∗(x)dx is called the ensemble
(or space) average of g with respect to F . Here ρ∗(x) is the invariant
density of the map, and dµ∗ is the associated invariant measure.2

Note that g(x) may depend on x, whereas 〈g〉 does not.

If we choose g(x) = ln |F ′(x)| as the observable in Eq. (2.11), we
recover Definition 2.4 for the local Lyapunov exponent,

λ(x) := ln |F ′(x)| = lim
n→∞

1
n

n−1∑
k=0

ln |F ′(xk)|, (2.13)

which we may write as λt(x) = λ(x) in order to label it as a time
average. If we choose the same observable for the ensemble average
Eq. (2.12), we obtain

λe := 〈ln |F ′(x)|〉 :=
∫

J
dxρ∗(x) ln |F ′(x)|. (2.14)
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Example 2.7. For the Bernoulli shift, we have seen that for almost
every x ∈ [0, 1) λt = ln 2. For λe we obtain

λe =
∫ 1

0
dxρ∗(x) ln 2 = ln 2, (2.15)

taking into account that ρ∗(x) = 1 (see Chapter 6). In other words,
time and ensemble average are the same for almost every x,

λt(x) = λe = ln 2. (2.16)

This motivates the following fundamental definition.

Definition 2.8 (Ergodicity4,8). A dynamical system is called
ergodic if for every g on J ⊆ R satisfying

∫
dµ∗ |g(x)| <∞

g(x) = 〈g〉 (2.17)

for typical x.

For our purpose it suffices to think of a typical x as a point that
is randomly drawn from the invariant density ρ∗(x). This definition
implies that for ergodic dynamical systems g(x) does not depend on
x. That the time average is constant is sometimes also taken as a
definition of ergodicity.3,4 To prove that a given system is ergodic
is typically a hard task and one of the fundamental problems in the
ergodic theory of dynamical systems; see Refs. 4 and 8 for proofs
of ergodicity in case of some simple examples. We remark that pure
mathematicians define ergodicity in terms of indecomposability.10

On this basis, let us get back to Lyapunov exponents. For time
average λt(x) and ensemble average λe of the Bernoulli shift, we have
found that λt(x) = λe = ln 2. Definition 2.8 now states that the first
equality must hold whenever a map F is ergodic. This means, in
turn, that for an ergodic dynamical system the Lyapunov exponent
becomes a global quantity characterising a given map F for a typical
point x irrespective of what value we choose for the initial condition,
λt(x) = λe = λ. This observation very much facilitates the calcula-
tion of λ, as is demonstrated by the following example.

Example 2.9. Let us consider the map A(x) displayed in Fig. 3
below.
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Fig. 3. A simple map for demonstrating the calculation of Lyapunov exponents
via ensemble averages.

From the figure we can infer that

A(x) :=




3
2
x, 0 ≤ x < 2

3
,

3x− 2,
2
3
≤ x < 1.

(2.18)

It is not hard to see that the invariant probability density of this
map is uniform, ρ∗(x) = 1. The Lyapunov exponent λ for this map
is then trivially calculated to

λ =
∫ 1

0
dxρ∗(x) ln |A′(x)| = ln 3− 2

3
ln 2. (2.19)

By assuming that map A is ergodic (which here is the case), we can
conclude that this result for λ represents the value for typical points
in the domain of A.

In other words, for an ergodic map the global Lyapunov exponent
λ yields a number that assesses whether it is chaotic in the sense of
exhibiting an exponential dynamical instability. This motivates the
following definition of deterministic chaos.

Definition 2.10 (Chaos in the sense of Lyapunov2,3,7). An
ergodic map F : J → J, J ⊆ R, F (piecewise) C1 is said to be
L-chaotic on J if λ > 0.

Why do we introduce a definition of chaos that is different from
the rigorous mathematical one discussed in Chapter 6? One reason
is that often the largest Lyapunov exponent of a dynamical system



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 11

Chaos in Statistical Physics 11

is easier to calculate than checking for sensitivity. Furthermore, the
magnitude of the positive Lyapunov exponent quantifies the strength
of chaos. This is the reason why in the applied sciences “chaos in the
sense of Lyapunov” became a very popular concept. Note that there is
no unique quantifier of deterministic chaos. Many different definitions
are available highlighting different aspects of “chaotic behaviour”,
all having their advantages and disadvantages. The detailed relations
between them are usually non-trivial and a topic of ongoing research.
We will encounter yet another definition of chaos in the following
section.

2.3. Entropies

Let us start with a brief motivation outlining the basic idea of entropy
production in dynamical systems. Consider again the Bernoulli shift
by decomposing its domain J = [0, 1) into J0 := [0, 1/2) and J1 :=
[1/2, 1). For x ∈ [0, 1) define the output map s (see Chapter 6) by
(see Ref. 1)

s : [0, 1) → {0, 1}, s(x) :=

{
0, x ∈ J0,

1, x ∈ J1,
(2.20)

and let sn+1 := s(xn). Now choose some initial condition x0 ∈ J .
According to the above rule we obtain a digit s1 ∈ {0, 1}. Iterat-
ing the Bernoulli shift according to xn+1 = B(xn) then generates a
sequence of digits {s1, s2, . . . , sn}. This sequence yields nothing else
than the binary representation of the given initial condition x0.1,2,4

If we assume that we pick an initial condition x0 at random and
feed it into our map without knowing about its precise value, this
simple algorithm enables us to find out what number we have actu-
ally chosen. In other words, here we have a mechanism of creation of
information about the initial condition x0 by analysing the chaotic
orbit generated from it as time evolves.

Conversely, if we now assume that we already knew the initial
state up to, say, m digits precision and we iterate p > m times, we
see that the map simultaneously destroys information about the cur-
rent and future states, in terms of digits, as time evolves. So creation
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(a) (b)

Fig. 4. Schematic representation of a gas of molecules in a box. In (a) the gas
is constrained by a piston to the left-hand side of the box, in (b) the piston is
removed and the gas can spread out over the whole box. This illustrates the basic
idea of (physical) entropy production.

of information about previous states goes along with loss of informa-
tion about current and future states. This process is quantified by
the Kolmogorov–Sinai (KS) entropy (also called metric, or measure-
theoretic entropy), which measures the exponential rate at which
information is produced, respectively lost in a dynamical system, as
we will see below.

The situation is similar to the following thought experiment illus-
trated in Fig. 4: Let us assume we have a gas consisting of molecules,
depicted as billiard balls, which is constrained to the left half of the
box as shown in (a). This is like having some information about the
initial conditions of all gas molecules, which are in a more localised,
or ordered, state. If we remove the piston as in (b), we observe that
the gas spreads out over the full box until it reaches a uniform equi-
librium steady state. We then have less information available about
the actual positions of all gas molecules, that is, we have increased
the disorder of the whole system. This observation lies at the heart
of what is called thermodynamic entropy production in the statistical
physics of many-particle systems which, however, is usually assessed
by quantities that are different from the KS-entropy.

At this point we may not further elaborate on the relation to sta-
tistical physical theories. Instead, let us make precise what we mean
by KS-entropy starting from the famous Shannon (or information)
entropy.2,3 This entropy is defined as

HS :=
r∑

i=1

pi ln
(

1
pi

)
, (2.21)
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where pi, i = 1, . . . , r, are the probabilities for the r possible outcomes
of an experiment. Think, for example, of a roulette game, where
carrying out the experiment one time corresponds to n = 1 in the
iteration of an unknown map. Then HS measures the amount of
uncertainty concerning the outcome of the experiment, which can be
understood as follows:

(1) Let p1 = 1, pi = 0 otherwise. By defining pi ln( 1
pi

) := 0, i �= 1,
we have HS = 0. This value of the Shannon entropy must there-
fore characterise the situation where the outcome is completely
certain.

(2) Let pi = 1/r, i = 1, 2, . . . , r. Then we obtain HS = ln r thus
characterising the situation where the outcome is most uncertain
because of equal probabilities.

Case (1) thus represents the situation of no information gain by
doing the experiment, case (2) corresponds to maximum information
gain. These two special cases must therefore define the lower and
upper bounds of HS ,

0 ≤ HS ≤ ln r. (2.22)

This basic concept of information theory carries over to dynamical
systems by identifying the probabilities pi with invariant probability
measures µ∗i on subintervals of a given dynamical system’s phase
space. The precise connection is worked out in four steps.2,4

1. Partition and refinement: Consider a map F acting on J ⊆ R,
and let µ∗ be an invariant probability measure generated by the
map. Let {Ji}, i = 1, . . . , s, be a partition of J .7 We now construct a
refinement of this partition as illustrated by the following example.

Example 2.11. Consider the Bernoulli shift displayed in Fig. 5.
Start with the partition {J0, J1} shown in (a). Now create a refined
partition by iterating these two partition parts backwards according
to B−1(Ji) as indicated in (b). Alternatively, you may take the second
forward iterate B2(x) of the Bernoulli shift and then identify the
preimages of x = 1/2 for this map. In either case the new partition
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Fig. 5. (a) The Bernoulli shift and a partition of the unit interval consisting of
two parts. (b) Refinement of this partition under backward iteration.

parts are obtained to

J00 := {x : x ∈ J0, B(x) ∈ J0},
J01 := {x : x ∈ J0, B(x) ∈ J1},

(2.23)
J10 := {x : x ∈ J1, B(x) ∈ J0},
J11 := {x : x ∈ J1, B(x) ∈ J1}.

If we choose x0 ∈ J00 we thus know in advance that the orbit
emerging from this initial condition under iteration of the map will
remain in J0 at the next iteration. That way, the refined partition
clearly yields more information about the dynamics of single orbits.

More generally, for a given map F the above procedure is equiv-
alent to defining

{Ji1i2} := {Ji1 ∩ F−1(Ji2)}. (2.24)

The next round of refinement proceeds along the same lines yielding

{Ji1i2i3} := {Ji1 ∩ F−1(Ji2) ∩ F−2(Ji3)}, (2.25)

and so on. For convenience we define

{Jn
i } := {Ji1i2...in} = {Ji1 ∩F−1(Ji2)∩ · · · ∩F−(n−1)(Jin)}. (2.26)

2. H-function: In analogy to the Shannon entropy equation (2.21),
next we define the function

H({Jn
i }) := −

∑
i

µ∗(Jn
i ) lnµ∗(Jn

i ), (2.27)
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where µ∗(Jn
i ) is the invariant measure of the map F on the partition

part Jn
i of the nth refinement.

Example 2.12. For the Bernoulli shift with uniform invariant
probability density ρ∗(x) = 1 and associated (Lebesgue) measure
µ∗(Jn

i ) =
∫
Jn

i
dx ρ∗(x) = diam (Jn

i ) we can calculate

H({J1
i }) = −

(
1
2

ln
1
2

+
1
2

ln
1
2

)
= ln 2

H({J2
i }) = H({Ji1 ∩B−1(Ji2)}) = −4

(
1
4

ln
1
4

)
= ln 4

H({J3
i }) = · · · = ln 8 = ln 23 (2.28)

...

H({Jn
i }) = ln 2n.

3. Take the limit: We now look at what we obtain in the limit of
infinitely refined partition by

h({Jn
i }) := lim

n→∞
1
n
H({Jn

i }), (2.29)

which defines the rate of gain of information over n refinements.

Example 2.13. For the Bernoulli shift we trivially obtain

h({Jn
i }) = ln 2. (2.30)

4. Supremum over partitions: We finish the definition of the KS-
entropy by maximising h({Jn

i }) over all available partitions,

hKS := sup
{Jn

i }
h({Jn

i }). (2.31)

The last step can be avoided if the partition {Jn
i } is generating for

which it must hold that diam (Jn
i ) → 0 (n → ∞).3,10 It is quite

obvious that for the Bernoulli shift the partition chosen above is
generating in that sense, hence hKS = ln 2 for this map.

These considerations suggest yet another definition of determin-
istic chaos.
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Definition 2.14 (Measure-theoretic chaos3). A map F : J → J,

J ⊆ R, is said to be chaotic in the sense of exhibiting dynamical
randomness if hKS > 0.

Again, one may wonder about the relation between this new defi-
nition and our previous one in terms of Lyapunov chaos. Let us look
again at the Bernoulli shift.

Example 2.15. For B(x) we have calculated the Lyapunov expo-
nent to λ = ln 2, see Example 2.7. Above we have seen that hKS = ln 2
for this map, so we arrive at λ = hKS = ln 2.

That this equality is not an artefact due to the simplicity of our
chosen model is stated by the following theorem.

Theorem 2.16 (Pesin’s theorem (1977)4). For closed C2

Anosov systems, the KS-entropy is equal to the sum of positive Lya-
punov exponents.

An Anosov system is a diffeomorphism where the expanding and
contracting directions in phase space exhibit a particularly “nice”,
so-called hyperbolic structure.4 A proof of this theorem goes consid-
erably beyond the scope of this chapter. In the given formulation,
it applies to higher-dimensional dynamical systems that are “suit-
ably well-behaved” in the sense of exhibiting the Anosov property.
Applied to one-dimensional maps, it means that if we consider trans-
formations which are “closed” by mapping an interval onto itself,
F : J → J , under certain conditions (which we do not further spec-
ify here) and if there is a positive Lyapunov exponent λ > 0 we can
expect that λ = hKS, as we have seen for the Bernoulli shift. In fact,
the Bernoulli shift provides an example of a map that does not fulfil
the conditions of the above theorem precisely. However, the theorem
can also be formulated under weaker assumptions, and it is believed
to hold for an even wider class of dynamical systems.

In order to get an intuition why this theorem should hold, let
us look at the information creation in a simple one-dimensional map
such as the Bernoulli shift by considering two orbits {xk}nk=0, {x′k}nk=0

starting at nearby initial conditions |x′0−x0| ≤ δx0, δx0  1. Recall
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the encoding defined by Eq. (2.20). Under the firstm iterations these
two orbits will then produce the very same sequences of symbols
{sk}mk=1, {s′k}mk=1, that is, we cannot distinguish them from each other
by our encoding. However, due to the ongoing stretching of the initial
displacement δx0 by a factor of two, eventually there will be an m

such that starting from p > m iterations different symbol sequences
are generated. Thus we can be sure that in the limit of n → ∞
we will be able to distinguish initially arbitrarily close orbits. If you
like analogies, you may think of extracting information about the
different initial states via the stretching produced by the iteration
process like using a magnifying glass. Therefore, under iteration the
exponential rate of separation of nearby trajectories, which is quan-
tified by the positive Lyapunov exponent, must be equal to the rate
of information generated, which in turn is given by the KS-entropy.
This is at the heart of Pesin’s theorem.

2.4. Open systems, fractals and escape rates

So far we have only studied closed systems, where intervals are
mapped onto themselves. Let us now consider an open system, where
points can leave the unit interval by never coming back to it. Conse-
quently, in contrast to closed systems the total number of points is
not conserved anymore. This situation can be modelled by a slightly
generalised example of the Bernoulli shift.

Example 2.17. In the following we will study the map

Ba : [0, 1)→ [1− a/2, a/2), Ba(x) :=

{
ax, 0 ≤ x < 1/2,

ax+ 1− a, 1/2 ≤ x < 1,
(2.32)

see Fig. 6, where the slope a ≥ 2 defines a control parameter. For
a = 2 we recover our familiar Bernoulli shift, whereas for a > 2 the
map defines an open system. That is, whenever points are mapped
into the escape region of width ∆ these points are removed from the
unit interval. You may thus think of the escape region as a subinterval
that absorbs any particles mapped onto it.
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1

1
2

∆

a

Fig. 6. A generalisation of the Bernoulli shift, defined as a parameter-dependent
map Ba(x) modelling an open system. The slope a defines a control parameter,
∆ denotes the width of the escape region.

We now wish to compute the number of points Nn remaining
on the unit interval at time step n, where we start from a uniform
distribution of N0 = N points on this interval at n = 0. This can
be done as follows: Recall that the probability density ρn(x) was
defined by

ρn(x) :=
Nn,j

Ndx
, (2.33)

where Nn,j is the number of points in the interval dx centred around
the position xj at time step n (see Chapter 6). With Nn =

∑
j Nn,j

we have that

N1 = N0 − ρ0N∆. (2.34)

By observing that for Ba(x), starting from ρ0 = 1 points are always
uniformly distributed on the unit interval at subsequent iterations,
we can derive an equation for the density ρ1 of points covering the
unit interval at the next time step n = 1. For this purpose, we divide
the above equation by the total number of points N (multiplied with
the total width of the unit interval, which however is one), which
yields

ρ1 =
N1

N
= ρ0 − ρ0∆ = ρ0(1−∆). (2.35)
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This procedure can be reiterated starting now from

N2 = N1 − ρ1N∆ (2.36)

leading to

ρ2 =
N2

N
= ρ1(1−∆), (2.37)

and so on. For general n we thus obtain

ρn = ρn−1(1−∆) = ρ0(1−∆)n = ρ0e
n ln(1−∆), (2.38)

or correspondingly

Nn = N0e
n ln(1−∆), (2.39)

which suggests the following definition.

Definition 2.18. For an open system with exponential decrease of
the number of points,

Nn = N0e
−γn, (2.40)

γ is called the escape rate.

In case of our mapping we thus identify

γ = ln
1

1−∆
(2.41)

as the escape rate. We may now wonder whether there are any initial
conditions that never leave the unit interval and about the character
of this set of points. The set can be constructed as exemplified for
Ba(x), a = 3, in Fig. 7.

Example 2.19. Let us start again with a uniform distribution of
points on the unit interval. We can then see that the points which
remain on the unit interval after one iteration of the map form two
sets, each of length 1/3. Iterating now the boundary points of the
escape region backwards in time according to xn = B−1

3 (xn+1), we
can obtain all preimages of the escape region. We find that initial
points which remain on the unit interval after two iterations belong
to four smaller sets, each of length 1/9, as depicted at the bottom of
Fig. 7. Repeating this procedure infinitely many times reveals that
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Fig. 7. Construction of the set CB3 of initial conditions of the map B3(x) that
never leave the unit interval.

the points which never leave the unit interval form the very special
set CB3 , which is known as the middle third Cantor set.

Definition 2.20 (Cantor set2). A Cantor set is a closed set which
consists entirely of boundary points each of which is a limit point of
the set.

Let us explore some fundamental properties of the set CB3 (see
Ref. 2):

(1) From Fig. 7 we can infer that the total length ln of the intervals
of points remaining on the unit interval after n iterations, which
is identical with the Lebesgue measure µL of these sets, is

l0 = 1, l1 =
2
3
, l2 =

4
9

=
(

2
3

)2

, . . . , ln =
(

2
3

)n

. (2.42)

We thus see that

ln =
(

2
3

)n

→ 0 (n→∞), (2.43)
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that is, the total length of this set goes to zero, µL(CB3) = 0.
However, there exist also Cantor sets whose Lebesgue measure
is larger than zero.2 Note that matching ln = exp(−n ln(3/2)) to
Eq. (2.41) yields an escape rate of γ = ln(3/2) for this map.

(2) By using the binary encoding equation (2.20) for all intervals of
CB3 , thus mapping all elements of this set onto all the numbers
in the unit interval, it can nevertheless be shown that our Cantor
set contains an uncountable number of points.4

(3) By construction CB3 must be the invariant set of the map B3(x)
under iteration, so the invariant measure of our open system
must be the measure defined on the Cantor set, µ∗(C), C ∈ CB3 ;
see Ref. 10, and also Example 2.23 for the procedure of how to
calculate this measure.

(4) For the next property we need the following definition.

Definition 2.21 (Repeller3,4). The limit set of points that
never escape is called a repeller. The orbits that escape are tran-
sients, and 1/γ is the typical duration of them.

From this we can conclude that CB3 represents the repeller of the
map B3(x).

(5) Since CB3 is completely disconnected by only consisting of bound-
ary points, its topology is highly singular. Consequently, no
invariant density ρ∗(x) can be defined on this set, since this con-
cept presupposes a certain “smoothness” of the underlying topol-
ogy such that one can meaningfully speak of “small subintervals
dx” on which one counts the number of points, see Eq. (2.33).
In contrast, µ∗(C) is still well-defined, and we speak of it as a
singular measure.4

(6) Figure 7 shows that CB3 is self-similar, in the sense that smaller
pieces of this structure reproduce the entire set upon magnifi-
cation.2 Here we find that the whole set can be reproduced by
magnifying the fundamental structure of two subsets with a gap
in the middle by a constant factor of three. Often such a simple
scaling law does not exist for these types of sets. Instead, the
scaling may depend on the position x of the subset, in which
case one speaks of a self-affine structure.2,3,7
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(7) Again we need a definition.

Definition 2.22 (Fractals, qualitatively3). Fractals are geo-
metrical objects that possess non-trivial structure on arbitrarily
fine scales.

In case of our Cantor set CB3 , these structures are generated by a
simple scaling law. However, generally fractals can be arbitrarily
complicated on finer and finer scales. An example of a structure
that is trivial, hence not fractal, is a straight line. The fractal-
ity of such complicated sets can be assessed by quantities called
fractal dimensions,2,3 which generalise the integer dimensionality
of Euclidean geometry. It is interesting how in our case fractal
geometry naturally comes into play, forming an important ingre-
dient of the theory of dynamical systems. However, here we do
not further elaborate on the concept of fractal geometry and refer
to the literature instead.2,3,7

Example 2.23. Let us now compute all three basic quantities that
we have introduced so far, that is: the Lyapunov exponent λ and
the KS-entropy hks on the invariant set as well as the escape rate γ
from this set. We do so for the map B3(x) which, as we have learned,
produces a fractal repeller. According to Eqs. (2.12) and (2.14) we
have to calculate

λ(CB3) =
∫ 1

0
dµ∗ ln |B′

3(x)|. (2.44)

However, for typical points we have B′
3(x) = 3, hence the Lyapunov

exponent must trivially be

λ(CB3) = ln 3, (2.45)

because the probability measure µ∗ is normalised. The calculation of
the KS-entropy requires a bit more work: Recall that

H({Cn
i }) := −

2n∑
i=1

µ∗(Cn
i ) lnµ∗(Cn

i ), (2.46)

see Eq. (2.27), where Cn
i denotes the ith part of the emerging Cantor

set at the nth level of its construction. We now proceed along the
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lines of Example 2.12. From Fig. 7 we can infer that

µ∗(C1
i ) =

1
3
2
3

=
1
2

at the first level of refinement. Note that here we have renormalised
the (Lebesgue) measure on the partition part C1

i . That is, we have
divided the measure by the total measure surviving on all partition
parts such that we always arrive at a proper probability measure
under iteration. The measure constructed that way is known as the
conditionally invariant measure on the Cantor set.3 Repeating this
procedure yields

µ∗(C2
i ) =

1
9
4
9

=
1
4

... (2.47)

µ∗(Cn
i ) =

(
1
3

)n(
2
3

)n = 2−n

from which we obtain

H({Cn
i }) = −

2n∑
i=1

2−n ln 2−n = n ln 2. (2.48)

We thus see that by taking the limit according to Eq. (2.29) and
noting that our partitioning is generating on the fractal repeller
CB3 = {C∞i }, we arrive at

hKS(CB3) = lim
n→∞

1
n
H({Cn

i }) = ln 2. (2.49)

Finally, with Eq. (2.41) and an escape region of size ∆ = 1/3 for
B3(x) we get for the escape rate

γ(CB3) = ln
1

1−∆
= ln

3
2
, (2.50)

as we have already seen before.

In summary, we have that γ(CB3) = ln 3
2 = ln 3 − ln 2, λ(CB3) =

ln 3, hKS(CB3) = ln 2, which suggests the relation

γ(CB3) = λ(CB3)− hKS(CB3). (2.51)
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Again, this equation is no coincidence. It is a generalisation of Pesin’s
theorem to open systems, known as the escape rate formula. This
equation holds under similar conditions like Pesin’s theorem, which
is recovered from it if there is no escape.4

3. Chaotic Diffusion

We now apply the concepts of dynamical systems theory developed
up to now to a fundamental problem in non-equilibrium statistical
physics, which is to understand the microscopic origin of diffusion
in many-particle systems. We start with a reminder of diffusion as a
simple random walk on the line. Modelling such processes by suitably
generalising the piecewise linear map studied previously, we will see
how diffusion can be generated by microscopic deterministic chaos.
The main result will be an exact formula relating the diffusion coef-
ficient, which characterises macroscopic diffusion of particles, to the
dynamical systems quantities introduced before.

3.1. What is chaotic diffusion?

In order to learn about chaotic diffusion, we must first understand
what ordinary diffusion is all about. Here we introduce this concept
by means of a famous example, see Fig. 8: Let us imagine that some
evening a sailor wants to walk home, however, he is completely drunk
such that he has no control over his single steps. For sake of simplic-
ity let us imagine that he moves in one dimension. He starts at a
lamppost at position x = 0 and then makes steps of a certain step
length s to the left and to the right. Since he is completely drunk
he loses all memory between any single steps, that is, all steps are
uncorrelated. It is like tossing a coin in order to decide whether to
go to the left or to the right at the next step. We may now ask for
the probability to find the sailor after n steps at position x, i.e. a
distance |x| away from his starting point.

The answer to this question is obtained from a calculation for
an ensemble of sailors starting from the lamppost and is given in
terms of Gaussian probability distributions for the sailor’s positions,
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n

x

Fig. 8. The “problem of the random walk” in terms of a drunken sailor at a
lamppost. The space-time diagram shows an example of a trajectory for such a
drunken sailor, where n ∈ N holds for discrete time and x ∈ R for the position of
the sailor on a discrete lattice of spacing s.

x

ρ (x)n

1n

2n

3n

Fig. 9. Probability distribution functions ρn(x) to find a sailor after n time
steps at position x on the line, calculated for an ensemble of sailors starting
at the lamppost, cf. Fig. 8. Shown are three probability densities after different
numbers of iteration n1 < n2 < n3.

which are obtained in a suitable scaling limit.11 Figure 9 sketches
the spreading of such a diffusing distribution of sailors in time. The
mathematical reason for the emerging Gaussianity of the probability
distributions is nothing else than the central limit theorem.

We may now wish to quantify the speed by which a “droplet of
sailors” starting at the lamppost spreads out. This can be done by
calculating the diffusion coefficient for this system. In case of one-
dimensional dynamics the diffusion coefficient can be defined by the
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Einstein formula

D := lim
n→∞

1
2n
〈x2〉, (3.1)

where

〈x2〉 :=
∫
dx x2ρn(x) (3.2)

is the variance, or second moment, of the probability distribution
ρn(x) at time step n, also called mean square displacement of the
particles. This formula may be understood as follows: For our ensem-
ble of sailors we may choose ρ0(x) = δ(x) as the initial probability
distribution with δ(x) denoting the (Dirac) δ-function, which mimics
the situation that all sailors start at the same lamppost at x = 0. If
our system is ergodic, the diffusion coefficient should be independent
of the choice of the initial ensemble. The spreading of the distribu-
tion of sailors is then quantified by the growth of the mean square
displacement in time. If this quantity grows linearly in time, which
may not necessarily be the case but holds true if our probability
distributions for the positions are Gaussian in the long-time limit,6

the magnitude of the diffusion coefficient D tells us how quickly our
ensemble of sailors disperses. For further details about a statistical
physics description of diffusion we refer to Ref. 11.

In contrast to this well-known picture of diffusion as a stochastic
random walk, the theory of dynamical systems makes it possible to
treat diffusion as a deterministic dynamical process. Let us replace
the sailor by a point particle. Instead of coin tossing, the orbit of such
a particle starting at initial condition x0 may then be generated by
a chaotic dynamical system of the type as considered in the previous
sections, xn+1 = F (xn). Note that defining the one-dimensional map
F (x) together with this equation yields the full microscopic equations
of motion of the system. You may think of these equations as a
caricature of Newton’s equations of motion modelling the diffusion of
a single particle. Most importantly, in contrast to the drunken sailor
with his memory loss after any time step here the complete memory of
a particle is taken into account, that is, all steps are fully correlated.
The decisive new fact that distinguishes this dynamical process from
the one of a simple uncorrelated random walk is hence that xn+1 is
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Fig. 10. A simple model for chaotic diffusion. The dashed line depicts the orbit
of a diffusing particle in the form of a cobweb plot.7 The slope a serves as a
control parameter for the periodically continued piecewise linear map Ba(x).

uniquely determined by xn, rather than having a random distribution
of xn+1 for a given xn. If the resulting dynamics of an ensemble
of particles for given equations of motion has the property that a
diffusion coefficient D > 0 Eq. (3.1) exists, we speak of deterministic
or chaotic diffusion.1,4–6

Figure 10 shows the simple model of chaotic diffusion that we shall
study in the following. It depicts a “chain of boxes” of chain length
L ∈ N, which continues periodically in both directions to infinity,
and the orbit of a moving point particle. Let us first specify the map
defined on the unit interval, which we may call the box map. For this
we choose the map Ba(x) introduced in Example 2.17. We can now
periodically continue this box map onto the whole real line by a lift
of degree one,

Ba(x+ 1) = Ba(x) + 1. (3.3)

Physically speaking, this means that Ba(x) continued onto the real
line is translational invariant with respect to integers. Note further-
more that we have chosen a box map whose graph is point symmetric
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with respect to the centre of the box at (x, y) = (0.5, 0.5). This
implies that the graph of the full map Ba(x) is anti-symmetric with
respect to x = 0,

Ba(x) = −Ba(−x), (3.4)

so that there is no “drift” in this chain of boxes. The drift case with
broken symmetry could be studied as well,6 but we exclude it here
for sake of simplicity.

3.2. The diffusion equation

In the last section we have sketched in a nutshell what, in our set-
ting, we mean if we speak of diffusion. This picture is made more
precise by deriving an equation that exactly generates the dynamics
of the probability densities displayed in Fig. 9.11 For this purpose, let
us reconsider for a moment the situation depicted in Fig. 4. There,
we had a gas with an initially very high concentration of particles
on the left-hand side of the box. After the piston was removed, it
seemed natural that the particles spread out over the right-hand
side of the box as well thus diffusively covering the whole box. We
may thus come to the conclusion that, firstly, there will be diffusion
if the density of particles in a substance is non-uniform in space. For
this density of particles and by restricting ourselves to diffusion in
one dimension in the following, let us write ñ = ñ(x, t), which holds
for the number of particles that we can find in a small line element
dx around the position x at time step t divided by the total number
of particles N .

As a second observation, we see that diffusion occurs in the direc-
tion of decreasing particle density. This may be expressed as

j =: −D∂ñ
∂x
, (3.5)

which according to Einstein’s formula Eq. (3.1) may be considered
as a second definition of the diffusion coefficient D. Here the flux
j = j(x, t) denotes the number of particles passing through an area
perpendicular to the direction of diffusion per time t. This equation
is known as Fick’s first law. Finally, let us assume that no particles



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 29

Chaos in Statistical Physics 29

are created or destroyed during our diffusion process. In other words,
we have conservation of the number of particles in the form of

∂ñ

∂t
+
∂j

∂x
= 0. (3.6)

This continuity equation expresses the fact that whenever the particle
density ñ changes in time t, it must be due to a spatial change in
the particle flux j. Combining the equation with Fick’s first law, we
obtain Fick’s second law,

∂ñ

∂t
= D

∂2ñ

∂x2
, (3.7)

which is also known as the diffusion equation. Mathematicians call
the process defined by this equation a Wiener process, whereas physi-
cists rather speak of Brownian motion. If we would now solve the dif-
fusion equation for the drunken sailor initial density ñ(x, 0) = δ(x),
we would obtain the precise functional form of our spreading Gaus-
sians in Fig. 9,

ñ(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
. (3.8)

Calculating the second moment of this distribution according to
Eq. (3.2) would lead us to recover Einstein’s definition of the dif-
fusion coefficient Eq. (3.1). Therefore, both this definition and the
one provided by Fick’s first law are consistent with each other.

3.3. Basics of the escape rate formalism

We are now fully prepared for establishing an interesting link between
dynamical systems theory and statistical mechanics. We start with a
brief outline of the concept of this theory, which is called the escape
rate formalism.4,5 It consists of three steps.

Step 1: Solve the one-dimensional diffusion equation (3.7) derived
above for absorbing boundary conditions. That is, we consider now
some type of open system similar to what we have studied in the
previous section. We may thus expect that the total number of par-
ticles N(t) :=

∫
dx ñ(x, t) within the system decreases exponentially
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as time evolves according to the law expressed by Eq. (2.40), that is,

N(t) = N(0)e−γdet. (3.9)

It will turn out that the escape rate γde defined by the diffusion
equation with absorbing boundaries is a function of the system size
L and of the diffusion coefficient D.

Step 2: Solve the Frobenius–Perron equation

ρn+1(x) =
∫
dy ρn(y) δ(x− F (y)), (3.10)

which represents the continuity equation for the probability density
ρn(x) of the map F (x) (see Chapter 6 and Refs. 2–4), for the very
same absorbing boundary conditions as in Step 1. Let us assume that
the dynamical system under consideration is normal diffusive, that
is, that a diffusion coefficient D > 0 exists. We may then expect a
decrease in the number of particles that is completely analogous to
what we have obtained from the diffusion equation. That is, if we
define as before Nn :=

∫
dx ρn(x) as the total number of particles

within the system at discrete time step n, in case of normal diffusion
we should obtain

Nn = N0e
−γFPn. (3.11)

However, in contrast to Step 1 here the escape rate γFP should be
fully determined by the dynamical system that we are considering.
In fact, we have already seen before that for open systems the escape
rate can be expressed exactly as the difference between the positive
Lyapunov exponent and the KS-entropy on the fractal repeller, cf.
the escape rate formula Eq. (2.51).

Step 3: If the functional forms of the particle density ñ(x, t) of the
diffusion equation and of the probability density ρn(x) of the map’s
Frobenius–Perron equation match in the limit of system size and time
going to infinity — which is what one has to show —, the escape rates
γde obtained from the diffusion equation and γFP calculated from the
Frobenius–Perron equation should be equal,

γde = γFP, (3.12)

providing a fundamental link between the statistical physical theory
of diffusion and dynamical systems theory. Since γde is a function
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of the diffusion coefficient D, and knowing that γFP is a function of
dynamical systems quantities, we should then be able to express D
exactly in terms of these dynamical systems quantifiers. We will now
illustrate how this method works by applying it to our simple chaotic
diffusive model introduced above.

3.4. The escape rate formalism applied

to a simple map

Let us consider the map Ba(x) lifted onto the whole real line for the
specific parameter value a = 4, see Fig. 11. With L we denote the
chain length. Proceeding along the above lines, let us start with
the following steps.

Step 1: Solve the one-dimensional diffusion equation (3.7) for the
absorbing boundary conditions

ñ(0, t) = ñ(L, t) = 0, (3.13)

a=4

x

B  (x)4

0 1 2 3

1

2

3

Fig. 11. Our previous map Ba(x) periodically continued onto the whole real
line for the specific parameter value a = 4. The example shown depicts a chain
of length L = 3. The dashed quadratic grid indicates a Markov partition for
this map.
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which models the situation that particles escape precisely at the
boundaries of our one-dimensional domain. A straightforward cal-
culation yields

ñ(x, t) =
∞∑

m=1

bm exp

(
−
(
mπ

L

)2

Dt

)
sin
(
mπ

L
x

)
(3.14)

with bm denoting the Fourier coefficients.

Step 2: Solve the Frobenius–Perron equation (3.10) for the same
absorbing boundary conditions,

ρn(0) = ρn(L) = 0. (3.15)

In order to do so, we first need to introduce Markov partitions for
our map B4(x).

Definition 3.1 (Markov partition, verbally3). For one-
dimensional maps acting on compact intervals a partition is called
Markov if parts of the partition get mapped again onto parts of the
partition, or onto unions of parts of the partition.

Example 3.2. The dashed quadratic grid in Fig. 11 defines a
Markov partition for the lifted map B4(x).

Having a Markov partition at hand enables us to rewrite the
Frobenius–Perron equation in the form of a matrix equation, where a
Frobenius–Perron matrix operator acts onto probability density vec-
tors defined with respect to this special partitioning. In order to see
this, consider an initial density of points that covers, e.g. the interval
in the second box of Fig. 11 uniformly. By applying the map onto
this density, one observes that points of this interval get mapped two-
fold onto the interval in the second box again, but that there is also
escape from this box which uniformly covers the third and the first
box intervals, respectively. This mechanism applies to any box in our
chain of boxes, modified only by the absorbing boundary conditions
at the ends of the chain of length L. Taking into account the stretch-
ing of the density by the slope a = 4 at each iteration, this suggests
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that the Frobenius–Perron equation (3.10) can be rewritten as

ρn+1 =
1
4
T (4)ρn, (3.16)

where the L× L-transition matrix T (4) must read

T (4) =




2 1 0 0 · · · 0 0 0
1 2 1 0 0 · · · 0 0
0 1 2 1 0 0 · · · 0
...

...
...

...
0 · · · 0 0 1 2 1 0
0 0 · · · 0 0 1 2 1
0 0 0 · · · 0 0 1 2



. (3.17)

Note that in any row and in any column we have three non-zero
matrix elements except in the very first and the very last rows
and columns, which reflect the absorbing boundary conditions. In
Eq. (3.16) this transition matrix T (4) is applied to a column vec-
tor ρn corresponding to the probability density ρn(x), which can be
written as

ρn = |ρn(x)〉 := (ρ1
n, ρ

2
n, . . . , ρ

k
n, . . . , ρ

L
n)∗, (3.18)

where “∗” denotes the transpose and ρk
n represents the component

of the probability density in the kth box, ρn(x) = ρk
n, k − 1 < x ≤

k, k = 1, . . . , L, ρk
n being constant on each part of the partition. We

see that this transition matrix is symmetric, hence it can be diago-
nalised by spectral decomposition. Solving the eigenvalue problem

T (4) |φm(x)〉 = χm(4) |φm(x)〉, (3.19)

where χm(4) and |φm(x)〉 are the eigenvalues and eigenvectors of
T (4), respectively, one obtains

|ρn(x)〉 =
1
4

L∑
m=1

χm(4) |φm(x)〉〈φm(x)|ρn−1(x)〉

=
L∑

m=1

exp

(
−n ln

4
χm(4)

)
|φm(x)〉〈φm(x)|ρ0(x)〉,

(3.20)



November 30, 2016 20:27 Dynamical and Complex Systems - 9in x 6in b2643-ch01 page 34

34 R. Klages

where |ρ0(x)〉 is the initial probability density vector. Note that the
choice of initial probability densities is restricted by this method
to functions that can be written in the vector form of Eq. (3.18).
It remains to solve the eigenvalue problem (3.19).6 The eigenvalue
equation for the single components of the matrix T (4) reads

φk
m + 2φk+1

m + φk+2
m = χmφ

k+1
m , 0 ≤ k ≤ L− 1, (3.21)

supplemented by the absorbing boundary conditions

φ0
m = φL+1

m = 0. (3.22)

This equation is the form of a discretised ordinary differential equa-
tion of degree two, hence we make the ansatz

φk
m = a cos(kθ) + b sin(kθ), 0 ≤ k ≤ L+ 1. (3.23)

The two boundary conditions lead to

a = 0 and sin((L+ 1)θ) = 0 (3.24)

yielding

θm =
mπ

L+ 1
, 1 ≤ m ≤ L. (3.25)

The eigenvectors are then determined by

φk
m = b sin(kθm). (3.26)

Combining this equation with Eq. (3.21) yields as the eigenvalues

χm = 2 + 2 cos θm. (3.27)

Step 3: Putting all details together, it remains to match the solution
of the diffusion equation to the one of the Frobenius–Perron equa-
tion: In the limit of time t and system size L to infinity, the density
ñ(x, t) (Eq. (3.14)) of the diffusion equation reduces to the largest
eigenmode,

ñ(x, t) � exp (−γdet)B sin
(
π

L
x

)
, (3.28)

where

γde :=
(
π

L

)2

D (3.29)
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defines the escape rate as determined by the diffusion equation.
Analogously, for discrete time n and chain length L to infinity we
obtain for the probability density of the Frobenius–Perron equation,
Eq. (3.20) with Eq. (3.26),

ρn(x) � exp (−γFPn) B̃ sin
(

π

L+ 1
k

)
,

k = 0, . . . , L+ 1, k − 1 < x ≤ k (3.30)

with an escape rate of this dynamical system given by

γFP = ln
4

2 + 2 cos(π/(L+ 1))
, (3.31)

which is determined by the largest eigenvalue χ1 of the matrix T (4),
see Eq. (3.20) with Eq. (3.27). We can now see that the functional
forms of the eigenmodes of Eqs. (3.28) and (3.30) match precisely.
This allows us to match Eqs. (3.29) and (3.31) leading to

D(4) =
(
L

π

)2

γFP. (3.32)

Using the right-hand side of Eq. (3.31) and expanding it for L→∞,
this formula enables us to calculate the diffusion coefficient D(4) to

D(4) =
(
L

π

)2

γFP =
1
4

L2

(L+ 1)2
+O(L−4) → 1

4
(L→∞).

(3.33)

Thus we have developed a method by which we can exactly calculate
the deterministic diffusion coefficient of a simple chaotic dynami-
cal system. However, more importantly, instead of using the explicit
expression for γFP given by Eq. (3.31), let us remind ourselves of the
escape rate formula Eq. (2.51) for γFP,

γFP = γ(CB4) = λ(CB4)− hKS(CB4), (3.34)

which more generally expresses this escape rate in terms of dynamical
systems quantities. Combining this equation with the above equation
(Eq. (3.32)) leads to our final result, the escape rate formula for
chaotic diffusion,5

D(4) = lim
L→∞

(
L

π

)2

[λ(CB4)− hKS(CB4)]. (3.35)
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We have thus established a fundamental link between quantities
assessing the chaotic properties of dynamical systems and the statis-
tical physical property of diffusion.

4. Exercises and Solutions

4.1. Exercises

(1) Prove Eq. (2.7).
(2) Consider the map defined by the function

E(x) :=




2x+ 1, −1 ≤ x < −1/2,
2x, −1/2 ≤ x < 1/2,
2x− 1, 1/2 ≤ x ≤ 1.

(4.1)

Draw the graph of this map. Is E ergodic? Prove your answer.
(3) Consider the Frobenius–Perron equation

ρn+1(x) =
∑

x=G(xi)

ρn(xi)|G′(xi)|−1 =: Pρn(x) (4.2)

for a map G defined on the real line, where ρn(x) are probability
densities at time step n ∈ N0 and P defines the Frobenius–Perron
operator.

(a) Show that P is a linear and positive operator.
(b) Construct P for the map G defined in the figure below and

verify that

ρ∗(x) =
{

4/3, 0 ≤ x < 1/2,
2/3, 1/2 ≤ x ≤ 1

(4.3)

is an invariant density of the above Frobenius–Perron
equation.

0 1

1

1
2

G
1
2
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(c) By assuming that G is ergodic, calculate the Lyapunov expo-
nent λ for this map.

(4) Consider the asymmetric tent map

S(x) :=
{
ax, 0 ≤ x < 1/a,
b− bx, 1/a ≤ x ≤ 1

(4.4)

with 1/a+ 1/b = 1.

(a) Calculate the Lyapunov exponent λ for this map.
(b) Show that for the H-function defined by Eq. (2.27) in the

lecture notes it holds H({J2
i }) = 2H({J1

i }). By assuming
that ∀n ∈ NH({Jn

i }) = nH({J1
i }) calculate the KS-entropy

hKS. Compare your result for hKS with the one obtained
for λ.

(5) Consider the map H(x) = 5x mod 1 on a domain which has
“holes” where points escape from the unit interval. Let these
escape regions be defined by the two subintervals (0.2, 04) and
(0.6, 0.8).

(a) Sketch the map and the first two steps in the construction
of its fractal repeller RH .

(b) Calculate the escape rate γ(RH).
(c) Calculate the Lyapunov exponent λ(RH)
(d) Calculate the KS-entropy hKS(RH).
(e) By using these results, verify the escape rate formula for this

map.

(6) Verify Eq. (3.33) by using Eqs. (3.32) and (3.31).

4.2. Solutions

(1) Applying the chain rule we get

(Fn)′(x) = (F (Fn−1))′(x) = F ′(Fn−1(x))(Fn−1)′(x)
= · · · = F ′(xn−1)F ′(xn−2) . . . F ′(x0) (4.5)

with x = x0.
(2) We leave the drawing of the map to the reader.
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Choose for g the indicator function g : [−1, 1]→ {0, 1} with

g(x) :=
{

0, −1 ≤ x < 0,
1, 0 ≤ x ≤ 1 .

(4.6)

We need to check Definition 2.8. For g we have∫ 1

−1
dµ∗ |g(x)| =

∫ 1

0
dµ∗ =

∫ 1

0
dx ρ∗(x) <∞, (4.7)

because µ∗ is a probability measure. Hence the assumption is
fulfilled, but for −1 ≤ x < 0 we have g(x) = 0 while for 0 ≤ x ≤
1, g(x) = 1. Hence g(x) depends on x, consequently g(x) �= const.

in contradiction to Definition 2.8, which implies that the map E
is not ergodic.

(3) (a) Linearity of an operator P is defined by

P (α1ρ
1 + α2ρ

2) = α1Pρ
1 + α2Pρ

2 (4.8)

with α1, α2 ∈ R and probability densities ρ1, ρ2. Positivity
means Pρ(x) ≥ 0. The proofs of these two properties for
the Frobenius–Perron operator defined by Eq. (4.2) is then
straightforward.

(b) From the figure we can infer

G(x) :=




2x, 0 ≤ x < 1/2,
2x− 1, 1/2 ≤ x < 3/4,
2x− 3/2, 3/4 ≤ x ≤ 1

(4.9)

and G′(x) = 2∀x (x �= 1/2, 3/4). We construct the piecewise
inverse functions

x1 = G−1(x) = x/2, 0 ≤ x1 < 1/2, 0 ≤ x < 1,

x2 = G−1(x) = (x+ 1)/2, 1/2 ≤ x2 < 3/4, 0 ≤ x < 1/2,
(4.10)

x3 = G−1(x) = (x+ 3/2)/2, 3/4 ≤ x1 < 1, 0 ≤ x ≤ 1/2.

Plugging these results into Eq. (4.2) yields

Pρ(x) = 1/2ρ(x/2) + 1/2ρ((x + 1)/2) + 1/2ρ(x/2 + 3/4) .
(4.11)
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Feeding ρ∗(x) given by Eq. (4.3) into this equation shows
Pρ∗(x) = ρ∗(x).

c The calculation is analogous to the one of Example 2.9 yield-
ing λ = ln 2.

(4) (a) See again Example 2.9; in this case the solution is λ =
1/a ln a+ 1/b ln b.

(b) The calculation follows Section 2.3:

(i) It is convenient to choose as a partition the one gener-
ated by the backward iteration of the critical point at
xc = 1/a.

(ii)
H({J1

i }) = 1/a ln a+ 1/b ln b,

H({J2
i }) = 1/a2 ln a2 + 1/(ab) ln(ab) + 1/b2 ln b2

(4.12)+ 1/(ba) ln(ba)

= 2H({J1
i }).

(iii) Using the stated assumption we get

h({Jn
i }) = lim

n→∞
1
n
H({Jn

i }) = H({J1
i }) . (4.13)

(iv) Since the partition above is generating we find

hKS = h({Jn
i }) = 1/a ln a+ 1/b ln b = λ (4.14)

according to Pesin’s theorem.

(5) (a) The sketch can be performed in analogy to Fig. 7 and is left
to the reader.

(b) Since ρ∗(x) = 1, just consider the Lebesgue measure of the
sets {Rn

i }, i.e. the total lengths ln, which are l0 = 1, l1 = 3/5,
l2 = 9/25. It follows that ln = (3/5)n = exp(−n ln(5/3)),
hence γ(RH) = ln(5/3).

(c) It is easy to find λ(RH) = ln 5.
(d) The calculation is in analogy to Example 2.23 and yields

hKS(RH) = ln 3.
(e) We thus have the escape rate formula γ(RH) = ln(5/3) =

λ(RH)− hKS(RH).
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(6) With cos x � 1− x2/2 and ln(1± x) � ±x we have

γFP � ln
4

2 + 2− (π/(L + 1))2
� 1

4

(
π

L+ 1

)2

, (4.15)

which leads to Eq. (3.33).
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