
Chapter 4

Search for Food of Birds, Fish and Insects

Rainer Klages

4.1 Introduction

When you are out in a forest searching for mushrooms you wish to fill your basket

with these delicacies as quickly as possible. But how do you search efficiently for

them if you have no clue where they grow (Fig. 4.1)? The answer to this question

is not only relevant for finding mushrooms [1, 2]. It also helps to understand how

white blood cells kill efficiently intruding pathogens [3], how monkeys search for

food in a tropical forest [4], and how to optimize the hunt for submarines [5].

Fig. 4.1 Illustration of a typical search problem [1,2]: A human searcher endeavours to find mush-

rooms that are randomly distributed in a certain area. It would help to have an optimal search

strategy that enables one to find as many mushrooms as possible by minimizing the search time.
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In society the problem to develop efficient search strategies belongs to the realm

of operations research, the mathematical optimization of organizational problems

in order to aid human decision-making [6]. Examples are the search for landmines,

castaways or victims of avalanches. Over the past two decades search research [5]

attracted particular attention within the fields of ecology and biology. The new disci-

pline of movement ecology [7,8] studies foraging strategies of biological organisms:

Prominent examples are wandering albatrosses searching for food [9–11], marine

predators diving for prey [12, 13], and bees collecting nectar [14, 15]. Within this

context the Lévy Flight Hypothesis (LFH) became especially popular: It predicts

that under certain mathematical conditions on the type of food sources long Lévy

flights [16] minimize the search time [9, 10, 17]. This implies that for a bumble-

bee searching for rare flowers the flight lengths should be distributed according to a

power law. Remarkably, the prediction by the LFH is completely different from the

paradigm put forward by Karl Pearson more than a century ago [18], who proposed

to model the movements of biological organisms by simple random walks as intro-

duced in Chap. 2 of this book. His suggestion entails that the movement lengths are

distributed exponentially according to a Gaussian distribution, see Eq.(2.10) in this

section. Lévy and Gaussian processes represent fundamental but different classes of

diffusive spreading. Both are justified by a rigorous mathematical underpinning.

More than 60 years ago Gnedenko and Kolmogorov proved mathematically that

specific types of power laws, called Lévy stable distributions [19,20], obey a central

limit theorem. Their result generalizes the conventional central limit theorem for

Gaussian distributions, which explains why Brownian motion is observed in a huge

variety of physical phenomena. But exponential tails decay faster than power laws,

which implies that for Lévy-distributed flight lengths there is a larger probability to

yield long flights than for flight lengths obeying Gaussian statistics. Consequently,

Lévy flights should be better suited to detect sparsely, randomly distributed targets

than Brownian motion, which in turn should outperform Lévy motion when the

targets are dense. This is the basic idea underlying the LFH. Empirical tests of it,

however, are hotly debated [11, 21–24]: Not only are there problems with a sound

statistical analysis of experimental data sets when checking for power laws; their

biological interpretation is also often unclear: For example, for monkeys living in a

tropical forest who feed on specific types of fruit it is not clear whether the observed

Lévy flights of the monkeys are due to the distribution of the trees on which their

preferred fruit grows, or whether the monkeys’ Lévy motion represents an evolu-

tionary adapted optimal search strategy helping them to survive [4]. Theoretically

the LFH was motivated by random walk models with Lévy-distributed step lengths

that were solved in computer simulations [10]. A rigorous mathematical proof of

the LFH remains elusive.

This chapter introduces to the following fundamental question cross-linking the

fields of ecology, biology, physics and mathematics: Can search for food by biolog-

ical organisms be understood by mathematical modeling? [8, 17, 20, 25] It consists

of three main parts: Section 4.2 reviews the LFH. Section 4.3 outlines the contro-

versial discussion about its verification by including basics about the theory of Lévy
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motion. Section 4.4 illustrates the need to go beyond the LFH by elaborating on

bumblebee flights. We summarize our discussion in Sec. 4.5.

4.2 Lévy motion and the Lévy Flight Hypothesis

4.2.1 Lévy flights of wandering albatrosses

In 1996 Gandhimohan Viswanathan and collaborators published a pioneering article

in the journal Nature [9]. For albatrosses foraging in the South Atlantic the flight

times were recorded by putting sensors at their feet. The sensors got wet when the

birds were diving for food, see the inset of Fig. 4.2. The duration of a flight was

thus defined by the period of time when a sensor remained dry, terminated by a dive

for catching food. The main part of Fig. 4.2 shows a histogram of the flight time

intervals of some albatrosses. The straight line represents a Lévy stable distribution

proportional to ∼ t−µ with an exponent of µ = 2. By assuming that the albatrosses

move with an on average constant speed one can associate these flight times with a

respective power law distribution of flight lengths. This suggests that the albatrosses

were searching for food by performing Lévy flights.

For more than a decade albatrosses were considered to be the most prominent

example of an animal performing Lévy flights. This work triggered a large number

of related studies suggesting that many other animals like deer, bumblebees, spider

monkeys and fishes also perform Lévy motion [4, 10, 12, 13, 17].

t i

Fig. 4.2 Histogram where ‘scaled frequencies’ holds for the number of flight time intervals of

length ti (in hours) normalized by their respective bin widths. The data is for five albatrosses during

19 foraging bouts (double-logarithmic scale). Blue open circles show the data from Ref. [9]. The

straight line indicates a power law ∼ t−µ with exponent µ = 2. The red filled circles are adjusted

flight durations using the same data set by eliminating times that the birds spent on an island [11].

The histogram is reprinted by permission from Macmillan Publishers Ltd: Nature Ref. [11], copy-

right 2007. The inset shows an albatross catching food; reprinted by permission from Macmillan

Publishers Ltd: Nature Ref. [5], copyright 2006.
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4.2.2 The Lévy Flight Hypothesis

In 1999 the group around Gandhimohan Viswanathan published another important

article in Nature [10]. Here the approach was more theoretical by posing, and ad-

dressing, the following general question:

“What is the best statistical strategy to adapt in order to search efficiently for

randomly located objects?”

To answer this question they introduced a special type of what is called a Lévy

walk [20] in two dimensions and studied it both by computer simulations and by an-

alytical approximations. Their model consists of point targets randomly distributed

in a plane and a (point) forager moving with constant speed. If the forager spots

a target within a pre-defined finite vision distance, it moves to the target directly.

Otherwise the forager chooses a direction at random with a jump length ℓ randomly

drawn from a Lévy stable distribution ∼ ℓ−µ , 1 ≤ µ ≤ 3. While the forager is mov-

ing it constantly looks out for targets within the given vision distance. If no target is

detected, the forager stops after the given distance and repeats the process.

Although these rules look simple enough, there are some subtleties that exem-

plify the problem of mathematically modeling a biological foraging problem:

1. Here we have chosen what is called a cruise forager, i.e., a forager that senses

targets whenever it is moving. In contrast, a saltaltory forager would not sense

a target while moving. It needs to land close to a target within a given radius of

perception in order to find it [26].

2. For a cruise forager a jump is terminated when it hits a target, hence this model

defines a truncated Lévy walk [13].

3. One has to decide whether a forager eliminates targets when it finds them or not,

i.e., whether it performs destructive or non-destructive search [10]. As we will

see below, whether a monkey eats a fruit thus effectively eliminating it, at least

for a long time, or whether a bee collects nectar from a flower that replenishes

quickly defines mathematically different foraging problems.

4. We have not yet said anything about the density of the targets.

5. We have deliberately assumed that the targets are immobile, which may not

always be realistic for a biological foraging problem (e.g., marine predators

[12, 13]).

6. If we ask about the best strategy to search efficiently, how do we define optimal-

ity?

These few points illustrate the difficulty to relate abtract mathematical random

walk models to biological foraging reality. Interestingly, the motion generated by

these models often sensitively depends on right such details: In Ref. [10] foraging

efficiency was defined as the ratio of the number of targets found divided by the total

distance traveled by a forager, see Eq.(3) therein. Different definitions are possible,

depend on the type of forager and may yield different results [26]. The foraging

efficiency was then computed in Ref. [10] under variation of the exponent µ of the

above Lévy distribution generating the jump length. The results led to what was

coined the Lévy Flight Hypothesis (LFH), which we formulate as follows:
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Lévy motion provides an optimal search strategy for sparse, randomly dis-

tributed, immobile, revisitable targets in unbounded domains.

Intuitively this result can be understood as follows: Fig. 4.3 (left) displays a typ-

ical trajectory of a Brownian walker. One can see that this dynamics is ‘more lo-

calized’ while Lévy motion shown in Fig. 4.3 (right) depicts clusters interrupted by

long jumps. It thus makes sense that Brownian motion is better suited to find targets

that are densely distributed while Lévy motion outperforms Brownian motion when

targets are sparse, since it avoids oversampling due to long jumps. The reason why

the targets need to be revisitable is that the exponent µ of the Lévy distribution de-

pends on whether the search is destructive or not, cf. the third point on the list of

foraging conditions above: For non-destructive foraging µ = 2 was found to be op-

timal while for destructive foraging µ = 1 maximized the foraging efficiency, which

corresponds to the special case of ballistic flights [20]. The reason for these different

exponents is that destructive foraging changes the distribution and the density of the

targets thus selecting a different foraging strategy to be optimal.

-60 -40 -20 20

-60

-50

-40

-30

-20

-10

-2500 -2000 -1500 -1000 -500 500

-500

500

1000

Fig. 4.3 Brownian motion (left) vs. Lévy motion (right) in the plane, illustrated by typical trajec-

tories.

4.3 Lévy or not Lévy?

4.3.1 Revisiting Lévy flights of wandering albatrosses

Several years passed before the results by Viswanathan et al. were revisited in an-

other Nature article led by Andrew Edwards [11]: When analyzing new, larger and

more precise data for foraging albatrosses the old results of Ref. [9] could not be

recovered, see Fig. 1 in Ref. [11]. This led the researchers to reconsider the old al-

batross data. A correction of these data sets yielded the result shown in Fig. 4.2 as

the red filled circles: One can see that the Lévy stable law with an exponent of µ = 2
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for the flight times is gone. Instead the data now seems to be fit best with a gamma

distribution.

What happened is explained in Ref. [21]: For all measurements the sensors were

put onto the feet of the albatrosses when the birds were sitting on an island, and

at this point the measurement process was started. However, to this time the sen-

sors were dry; and in Ref. [9] these times were interpreted as Lévy flights. The

same applied to the end of a foraging bout when the birds were back on the island.

Subtracting these erroneous time intervals from the data sets eliminated the Lévy

flights.

However, in Ref. [27] yet new albatross data was analyzed, and the old data from

Refs. [9, 11] was again reanalyzed: This time truncated power laws were used for

the analysis, and furthermore data sets for individual birds were tested instead of

pooling together the data for all birds. In this reference it was concluded that some

individual albatross indeed do perform Lévy flights while others do not.

4.3.2 The Lévy Flight Paradigm

The debate about the LFH created a surge of publications testing it both theoreti-

cally and experimentally; see Refs. [8, 17, 20, 25] for reviews. But experimentally

it is difficult to verify the mathematical conditions on which the LFH formulated

in Sec. 4.2.2 is based. Often the LFH was thus interpreted in a much looser sense

by ignoring any mathematical assumptions in terms of what one may call the Lévy

Flight Paradigm (LFP):

Look for power laws in the probability distributions of step lengths of foraging

animals.

We illustrate virtues and pitfalls related to the LFP by data from Ref. [13] on

the diving depths of free-ranging marine predators. Impressively, in this work over

12 million movement displacements were recorded and analyzed for 14 different

species. As an example, Fig. 4.4 shows results for a blue shark: Plotted at the bottom

are probability distributions of its diving depths, called move step length frequency

distribution, where a step length is defined as the distance moved by the shark per

unit time. Included are fits to a truncated power law and to an exponential distribu-

tion. Since here Lévy distributions were used whose longest step lengths were cut

off, the fits do not consist of straight lines but are bent off, in contrast to Fig. 4.2.

The top of this figure depicts the corresponding time series from which the data

was extracted, split into five different sections. Each section is characterized by pro-

foundly different average diving depths. These different sections correspond to the

shark being in different regions of the ocean, i.e., either on-shelf or off-shelf. It was

argued that on-shelf, where the diving depth of the shark is very limited, the data can

be better fitted with an exponential distribution (sections f and h) while off-shelf the

data displays power-law behavior with an exponent close to two (sections g, i and j).

Fig. 4.4 thus suggests a strong dependence of the foraging dynamics on the environ-

ment in which it takes place, where the latter defines the food distribution. Related
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switching behavior between power law-like Lévy and exponential Brownian motion

search strategies was reported for microzooplankton, jellyfish and mussels.

Fig. 4.4 Top: time series of the diving depth of a blue shark. The red lines split the data into

different sections (a - e), where the shark dives deep or the diving depth is more constrained. These

sections match to the shark being off-shelf or on the shelf, respectively. Bottom: double-logarithmic

plots of the move step length frequency distribution (‘rank’) as a function of the step length, which

is the vertical distance moved by the shark per unit time, with the notation (f - j) corresponding

to the primary data shown in sections (a - e). Black circles correspond to data, red lines to fits

with truncated power laws of exponent µ , blue lines to exponential fits. This figure is reprinted by

permission from Macmillan Publishers Ltd: Nature Ref. [13], copyright 2010.

The power law matching to the data in the off-shelf regions was interpreted in

support of the LFH. However, note the periodic oscillations displayed by the time

series at the top of Fig. 4.4. Upon closer inspection they reveal a 24h day-night

cycle: During the night the shark hovers close to the surface of the sea while over

the day it dives for food. For the move step length distributions shown in Fig. 4.4

the data was averaged over all these periodic oscillations. But the distributions in

sections g, i and j all show a ‘wiggle’ on a finer scale. This suggests to better fit

the data by a superposition of two different distributions [14] taking into account

that day and night define two very different phases of motion, instead of using only

one function by averaging over all times. Apart from this, one may argue that this

analysis does not test for the original LFH put forward in Ref. [9]. But this requires

a bit more knowledge about the theory of Lévy motion; we will come back to this

point in Sec. 4.3.5.
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4.3.3 Two different Lévy Flight Hypotheses

Our discussion in the previous sections suggests to distinguish between two different

LFHs:

1. The first is the ‘conventional’ one that we formulated in Sec. 4.2.2, originally

put forward in Ref. [9]: It may now be further specified as the Lévy Search Hy-

pothesis (LSH), because it suggests that under certain conditions Lévy flights

represent an optimal search strategy. Here optimality needs to be defined rig-

orously mathematically. This can be done in different ways given the specific

biological situation at hand that one wishes to model [26]. Typically optimal-

ity within this context aims at minimizing the search time for finding targets.

The interesting biological interpretation of the LSH is that it has been evolved

in biological organisms as an evolutionary adaptive strategy that maximizes the

success for survival. The LSH version of the LFH became most popular.

2. In parallel there is a second type of LFH, which may be called the Lévy En-

vironmental Hypothesis (LEH): It suggests that Lévy flights emerge from the

interaction between a forager and a food source distribution. The latter may be

scale-free thus directly inducing the Lévy flights. This is in sharp contrast to

the LSH, which suggests that under certain conditions a forager performs Lévy

flights irrespective of the actual food source distribution. Emergence of novel

patterns and dynamics due to the interaction of the single parts of a complex

system with each other, on the other hand, is at the heart of the theory of com-

plex systems. The LEH is the hypothesis that to some extent was formulated in

Ref. [9], but it became more popular rather later on [4, 12, 13].

Both the LSH and the LEH are bound together by what we called the Lévy Flight

Paradigm (LFP) in Sec. 4.3.2. The LFP extracts the formal essence from both these

different hypotheses by proposing to look for power laws in the probability distri-

butions of foraging dynamics by ignoring any conditions of validity of these two

hypotheses. Consequently, in contrast to the LSH and LEH the mathematical, phys-

ical and biological origin and meaning of power laws obtained by following the LFP

is typically not clear. On the other hand, the LFP motivated to take a fresh look at

foraging data sets by not only testing for exponential distributions. It widened the

scope by emphasizing that one should also check for power laws in animal move-

ment data.

4.3.4 Intermittent search strategies as an alternative to Lévy motion

Simple random walks as introduced in Section 2.1 represent examples of unimodal

types of motion if the random step lengths are sampled from only one specific distri-

bution. For example, choosing a Gaussian distribution we obtain Brownian motion

while a Lévy-stable distribution produces Lévy flights. Combining two different

types of motion like Brownian and Lévy yields bimodal motion. A simple example
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is shown in Fig. 4.5: Imagine you have lost your keys at home, but you have a vague

idea where to find them. Hence, you are running straightforwardly to the location

where you expect them to be. This may be modeled as a ballistic flight during which

you quickly relocate, say, from the kitchen to the study room. However, when you

arrive in your study room you should switch to a different type of motion, which is

suitably adapted to locally search the environment. For this mode you may choose,

e.g., Brownian motion. The resulting dynamics is called intermittent [25]: It con-

sists of two different phases of motion mixed randomly, which in our example are

ballistic relocation events and local Brownian motion.

Fig. 4.5 Illustration of an intermittent search strategy: A human searcher looks for a target (key)

by alternating between two different modes of motion. During fast, ballistic relocation phases the

searcher is not able to detect any target (non reactive). These phases are interrupted by slow phases

of Brownian motion during which a searcher is able to detect a target (reactive) [25].

This type of motion can be exploited to search efficiently in the following way:

You may not bother to look for your keys while you are walking from the kitchen to

the study room. You are more interested to get from point A to point B as quickly

as possible, and while doing so your search mode is switched off. This is called a

non reactive phase in Fig. 4.5. But as you expect the keys to be in your study room,

while switching to Brownian motion therein you simultaneously switch on your

scanning abilities. This defines your local search mode called reactive in Fig. 4.5.

Correspondingly, for aninmals one may imagine that during a fast relocation event,

or flight, they are unable to detect any targets while their sensory mechanisms be-

come active during slow local search. This is close to what was called a saltaltory

forager in Sec. 4.2.2, but this forager did not feature any local search dynamics.

Intermittent search dynamics can be modeled by writing down a set of two cou-

pled equations, one that generates ballistic flights and another one that yields Brow-

nian motion. The coupling captures the switching between both modes. One fur-

thermore needs to model that search is only performed during the Brownian mo-

tion mode. By analyzing a respective ballistic-Brownian system of equations it was

found that this dynamics yields a minimum of a suitably defined search time under

parameter variation if a target is non-revisitable, i.e., it is destroyed once it is found.

Note that for targets that are non-replenishing the Lévy walks of Ref. [10] did not

yield any non-trivial optimization of the search time. Instead, they converged to pure

ballistic flights as being optimal. The LSH, in turn, only applies to revisitable, i.e.,

replenishing targets. Hence intermittent motion poses no contradiction. A popular
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account of this result was given by Michael Shlesinger in his Nature article ‘How to

hunt a submarine?’ [5].

4.3.5 Theory of Lévy flights in a nutshell

We now briefly elaborate on the theory of Lévy motion. This section may be skipped

by a reader who is not so interested in theoretical foundations. We recommend

Ref. [16] for an outline of this topic from a physics point of view and Chap. 5

in Ref. [19] for a more mathematical introduction. We start from the simple random

walk on the line introduced in Chap. 2 of this book,

xn+1 = xn + ℓn , (4.1)

where xn is the position of a random walker at discrete time n ∈ N moving in one

dimension, and ℓn = xn+1−xn defines the jump of length |ℓn| between two positions.

In Chap. 2 the special case of constant jump length |ℓn| = ℓ was considered, where

the sign of the jump was randomly determined by tossing a coin with, say, plus

for heads and minus for tails. The coin was furthermore supposed to be fair in the

sense of yielding equal probabilities for heads and tails. This simple random walk

can be generalized by considering a bigger variety of jumps. Mathematically this

is modeled by drawing the random variable ℓn from some more general probability

distribution than featuring only probability one half for each of two outcomes. For

example, instead we could draw ℓn at each time step n randomly from a uniform

distribution, where each jump between −L and L is equally possible given by the

probability density ρ(ℓn) = 1/(2L) ,−L ≤ ℓn ≤ L and zero otherwise. Alternatively,

we could allow arbitrarily large jumps by drawing ℓn from an unbounded Gaussian

distribution, see Eq.(2.10) in Chap. 2 (by replacing x therein with ℓn and setting t

constant). For both generalized random walks Eq. (4.1) would still reproduce in the

long time limit the fundamental diffusive properties Eq. (4) discussed in Chap. 2,

i.e., the linear growth in time of the mean square displacement, and Eq. (2.10) in

Chap. 2, the Gaussian probability distribution for the position xn of a walker at time

step n. This follows mathematically from the conventional central limit theorem.

We now further generalize the random walk Eq. (4.1) in a more non-trivial way

by randomly drawing ℓn from a Lévy α-stable distribution [19],

ρ(ℓn)∼ |ℓn|
−1−α (|ℓn| ≫ 1) , 0 < α < 2 , (4.2)

characterized by power law tails in the limit of large |ℓn|. This functional form is

in sharp contrast to the exponential tails of Gaussian distributions and has impor-

tant consequences, as it violates one of the assumptions on which the conventional

central limit theorem rests. However, for the range of exponents α stated above it

can be shown that these distributions obey a generalized central limit theorem: The

proof employs the fact that these distributions are stable, in the sense that a linear

combination of two random variables sampled independently from the same distri-
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bution reproduces the very same distribution, up to some scale factors [16]. This in

turn implies that Lévy stable distributions are scale invariant and thus self-similar.

Physically one speaks of ℓn sampled independently and identically distributed from

Eq. (4.2) as white Lévy noise. As by definition there are no correlations between the

random variables ℓn the stochastic process generated by Eq. (4.1) is memoryless,

meaning at time step (n+1) the particle has no memory where it came from at any

previous time step n. In mathematics this is called a Markov processes, and Lévy

flights belong to this important class of stochastic processes.

What we presented here is only a very rough, mathematically rather imprecise

outline of how to define an α-stable Lévy process generating Lévy flights. Espe-

cially, the function in Eq. (4.2) is not defined for small ℓn, as the given power law

diverges for ℓn → 0. A rigorous definition of Lévy stable distributions is obtained

by using the characteristic function of this process, i.e., the Fourier transform of

its probability distribution, which is well-defined analytically. The full probability

distribution can then be generated from it [16, 19]. For α = 2 this approach repro-

duces Gaussian distributions, hence Lévy dynamics suitably generalizes Brownian

motion [16, 19].

Another important property of Lévy stable distributions is that the mean squared

flight length of a Lévy walker does not exist,

〈ℓ2
n〉=

∫ ∞

−∞
dℓn ρ(ℓn)ℓ

2
n = ∞ . (4.3)

The above equation defines what is called the second moment of the probability

distribution ρ(ℓn). Higher moments are defined analogously by 〈ℓk〉 , k ∈ N, and

for Lévy distributions they are also infinite. This means that in contrast to simple

random walks generating Brownian motion, see again Chap. 2, Lévy motion does

not have any characteristic length scale. However, since moments are rather easily

obtained from experimental data this poses a problem to Lévy flights as a viable

physical model to be validated by experiments.

This problem can be solved by using the very related concept of Lévy walks [20]:

These are random walks where again jumps are drawn randomly from the Lévy

stable distribution Eq. (4.2). But as a penalty for long jumps the walker spends a

time tn proportional to the length of the jump to complete it, tn = vℓn, where the

proportionality factor v, typically chosen as |v|= const., defines the velocity of the

Lévy walker. This implies that both jump lengths ℓn and flight times tn are distributed

according to the same power law. In contrast, for the Lévy flights introduced above

a walker makes a jump of length |ℓn| during an integer time step of duration ∆n = 1,

which implies that contrary to a Lévy walker a Lévy flyer can jump instantaneously

over arbitrarily long distances with arbitrarily large velocities.

Lévy walks belong to the broad and important class of continuous time random

walks [19, 28, 29], which further generalize ordinary random walks by allowing a

walker to move by non-integer time steps. We do not discuss all the similarities

and differences between Lévy walks and Lévy flights, see Ref. [20] for details, but

instead highlight only one important fact: While for Lévy flights the mean square

displacement 〈x2〉, see Eq.(1) in Chap. 2, does not exist, which follows from our
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discussion above, for Lévy walks it does. This is due to the finite velocities, which

truncate the power law tails in the probability distributions for the positions of a

Lévy walker. However, in contrast to Brownian motion where it grows linearly in

time as shown in Chap. 2, see Eq.(2), for Lévy walks it grows faster than linear,

〈x2〉 ∼ tγ (t → ∞) , (4.4)

with γ > 1. If γ 6= 1 one speaks of anomalous diffusion [19, 28]. The case γ > 1

is called superdiffusion, since a particle diffuses faster than Brownian motion, cor-

respondingly γ < 1 refers to subdiffusion. There is a wealth of different stochas-

tic models exhibiting anomalous diffusion, and while superdiffusion appears to be

more common among foraging biological organisms than subdiffusion the whole

spectrum of anomalous diffusion is found in a variety of different processes in the

natural sciences, and even in the human world [19, 28, 30].

Often the difference between Lévy walks and flights is not quite appreciated in

the experimental literature, see, e.g., Fig. 4.4, where move step length frequency

distributions were plotted. By definition a move step length x per unit time corre-

sponds to what we defined as a jump length ℓn by Eq. (4.1) above, x = ℓn. Hence, a

truncated power law fit ∼ x−µ to the distributions plotted in Fig. 4.4 corresponds to

a fit with a truncated form of the jump length distribution Eq. (4.2) with exponent

µ = 1+α testing for truncated Lévy flights [20]. The truncation cures the problem

of infinite moments exhibited by random walks based on ordinary Lévy flights men-

tioned above. However, this analysis does not test the LFH put forward in Ref [10],

which was derived from Lévy walks. But checking for Lévy walks requires an en-

tirely different data analysis [3, 20].

4.4 Beyond the Lévy Flight Hypothesis: foraging bumblebees

The LFH and its variants illustrated the problem to which extent biologically rele-

vant search strategies may be identified by mathematical modeling. What we then

formulated as the LFP in Sec. 4.3.2 motivated to generally look for power laws in

the probability distributions of step lengths of foraging animals. Inspired by the long

debate about the different functional forms of move step lengths probability distri-

butions, and by further diluting the LFP, an even weaker guiding principle would

be to assume that the foraging dynamics of biological organisms can be understood

by analyzing such probability distributions alone. In the following we discuss an

experiment, and its theoretical analysis, which illustrate that one may miss crucial

information by studying only probability distributions. In that respect, this last sec-

tion provides a look beyond the LFH that focuses on such distributions.
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4.4.1 Bumblebees foraging under predation risk

In Refs. [31] Thomas Ings and Lars Chittka reported a laboratory experiment in

which environmental foraging conditions were varied in a fully controlled manner.

The question they addressed with this experiment was whether changes of environ-

mental conditions, in this case exposing bumblebees to predation threat or not, led

to changes in their foraging dynamics. This question was answered by a statistical

analysis of the bumblebee flights recorded in this experiment on both spatial and

temporal scales [14].

(a) (b) (c)

Fig. 4.6 Illustration of a laboratory experiment investigating the dynamics of bumblebees foraging

under predation risk: (a) Sketch of the cubic foraging arena together with part of the flight trajectory

of a single bumblebee. The bumblebees forage on a grid of artificial flowers on one side of the box.

While being on the landing platforms, they have access to nectar. All flowers can be equipped with

spider models and trapping mechanisms simulating predation attempts as shown in (b), (c) [14,31].

The experiment is sketched in Fig. 4.6: Bumblebees (Bombus terrestris) were

flying in a cubic arena of ≈ 75cm side length by foraging on a 4×4 vertical grid of

artificial yellow flowers on one wall. The 3D flight trajectories of 30 bumblebees,

tested sequentially and individually, were tracked by two high frame rate cameras.

On the landing platform of each flower nectar was given to the bumblebees and

replenished after consumption. To analyze differences in the foraging behavior of

the bumblebees under threat of predation, artificial spiders were introduced. The

experiment was staged into several different phases of which, however, only the

following three are relevant to our analysis:

1. spider-free foraging

2. foraging under predation risk

3. a memory test one day later

Before and directly after stage 2 the bumblebees were trained to forage in the pres-

ence of artificial spiders, which were randomly placed on 25% of the flowers. A

spider was emulated by a spider model on the flower and a trapping mechanism,

which briefly held the bumblebee to simulate a predation attempt. In stages 2 and

3 the spider models were present but the traps were inactive in order to analyze
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the influence of previous experience with predation risk on the bumblebees’ flight

dynamics; see Ref [31] for full details of the experimental setup and staging.

It is important to observe that neither the LSH nor the LEH can be tested by this

experiment, as the flight arena is too small: The bumblebees always sense the walls

and may adjust their flight behavior accordingly. However, there is a cross-link to

the LEH in that this experiment studies the interaction of a forager with the envi-

ronment, and its consequences for the dynamics of the forager, in a very controlled

way. The weaker guiding principle derived from the LFP that we discussed above

furthermore suggests that the main information to understand the foraging dynamics

may be contained in the probability distributions of flight step lengths only. On this

basis one may naively expect to see different step lengths probability distributions

emerging by changing the environmental conditions, which here is the predation

risk.

4.4.2 Velocity distributions vs. velocity correlations: experimental

results

 0.01

 0.1

 1
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v y

)
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Fig. 4.7 Semi-logarithmic plot of the distribution of velocities vy parallel to the y-axis in

Fig. 4.6(a) (black crosses) for a single bumblebee in the spider-free stage 1. The different lines

represent maximum likelihood fits with a Gaussian mixture (red line), exponential (blue dotted),

power law (green dashed), and single Gaussian distribution (violet dotted) [14].

Figure 4.7 shows a typical probability distribution of the horizontal velocities

parallel to the flower wall (cf. the y-direction in Fig. 4.6(a)) for a single bumblebee.

This distribution is in analogy to the move step length frequency distributions of the

shark shown in Fig. 4.4, which also represent velocity distributions if the depicted

step lengths are divided by the corresponding constant time intervals of their mea-

surements as discussed in Sec. 4.3.5. The distribution of bumblebee flights per unit

time is characterized by a peak at low velocities. Only a power law and a Gaussian
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distribution can immediately be ruled out by visual inspection as matching func-

tional forms. However, a mixture of two Gaussian distributions and an exponential

function appear to be equally possible. Maximum likelihood fits supplemented by

respective information criteria yielded the former as the most likely functional form

matching the data. This result can be understood biologically as representing two

different flight modes near a flower versus far away from it, which is confirmed by

spatially separated data analysis [14]. That the bumblebee switches to a specific dis-

tribution of lower velocities when approaching a flower reflects a spatially adapted

flight mode to accessing the food sources. As a result, here we encounter another

version of intermittent motion: In contrast to the temporal switching between dif-

ferent flight modes discussed in Sec. 4.3.4 this one is due to switching in different

regions of space.

Surprisingly, when extracting the velocity distributions of single bumblebees at

the three different stages of the experiment and comparing their best fits with each

other, qualitatively and quantitatively no differences could be found in these distri-

butions between the spider-free stage and the stages where artificial spider models

were present [14]. This means that the bumblebees fly with the very same statistical

distribution of velocities irrespective of whether predators are present or not. The

answer about possible changes in the bumblebee flights due to changes in the en-

vironmental conditions is thus not given by analyzing the probability distributions

of move step lengths, as one may infer from our diluted LFP guiding principle. We

will now see that it is provided by examining the correlations of horizontal veloci-

ties vy(t) parallel to the wall for all bumblebee flights. They can be measured by the

velocity autocorrelation function

vac
y (τ) =

〈

(vy(t)−µ)(vy(t + τ)−µ)
〉

σ2
. (4.5)

Here µ and σ2 denote the mean and the variance of the corresponding velocity dis-

tribution of vy, respectively, and the angular brackets define an average over all bum-

blebees and over time. This quantity is a special case of what is called a covariance

in statistics. Note that velocity correlations are intimately related to the mean square

displacement introduced in Chap. 2 of this book: While the above equation defines

velocity correlations that are normalized by subtracting the mean and dividing by

the variance, unnormalized velocity correlations emerge straightforwardly from the

right hand side of Eq. (2.1) in Chap. 2 by rewriting it as products of velocities. This

yields the (Taylor-)Green-Kubo formula expressing the mean square displacement

exactly in terms of velocity correlations [32]. Note that the velocity autocorrela-

tion function is defined by an average over the product between the initial velocity

at time τ = 0 and the velocity at time lag τ along a trajectory: By definition it is

maximal and normalized to one at τ = 0, because the initial velocity is maximally

correlated with itself. It will decay to zero if on average all velocities at time τ are

randomly distributed with respect to the initial velocities. Physically this quantity

thus measures the correlation decay in the dynamics over time τ by giving an indi-

cation to which extent a dynamics loses memory. For example, for a simple random
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walk as defined in Chap. 2 and by Eq. (4.1) in our section the velocity correlations

would immediately jump to zero from τ = 0 to τ 6= 0, which reflects that these ran-

dom walks are completely memory-free. This property was used in Chap. 2 to derive

Eq. (2.2) from Eq. (2.1) by canceling all cross-correlation terms.

(a)
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Fig. 4.8 Velocity autocorrelation function Eq. (4.5) for bumblebee velocities vy parallel to the

wall at three different stages of the experiment shown in Fig. 4.6: (a) Experimental results for

stage 1 without spiders (red), 2 under predation threat (green), and 3 under threat a day after the

last encounter with the spiders (blue). The data show the effect of the presence of spiders on the

bumblebee flights. The inset presents the resampled autocorrelation for the spider-free stage in the

region where the correlation differs from the stages with spider models, which confirms that the

positive autocorrelations are not a numerical artifact. (b) Theoretical results for the same quantity

obtained from numerically solving the Langevin equation (4.6) by switching off (red triangles,

upper line) / on (green circles, lower line) a repulsive force modeling the interaction of a bumblebee

with a spider. These results qualitatively reproduce the experimental findings in (a).

Figure 4.8(a) shows the bumblebee velocity autocorrelations defined by Eq. (4.5)

for all three stages of the experiment. While for the spider-free stage the correlations

remain positive for rather long times, in the presence of spiders they quickly become

negative. This means that the velocities are on average anti-parallel to each other, or

anti-correlated. In terms of flights, when predators are not present the bumblebees

thus fly on average more often in the same direction for short times while in the

presence of predators on average they often reverse their flight directions for shorter

times. This result can be biologically understood as reflecting a more careful search

under predation threat: When no predators are present, the bumblebees forage with

more or less direct flights from flower to flower. However, under threat the bum-

blebees change their direction more often in their search for food sources, rejecting

flowers with spiders. Mathematically this means that the distributions of velocities

remain the same, irrespective of whether predators are present or not, while the

topology, i.e., the shape of the bumblebee trajectories changes profoundly being on

average more ‘curved’.

In order to theoretically reproduce these changes we model the dynamics of vy

by a Langevin equation [33]. It may be called Newton’s Law of stochastic physics,

as it is based on Newton’s Second Law: F = m · a, where m is the mass of a tracer

particle in a fluid moving with acceleration a = d2x/dt2 at position x(t) (for sake of

simplicity we restrict ourselves to one dimension). To model the interaction of the
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tracer particle with the surrounding fluid, the force F on the left hand side is written

as a sum of two different forces, F = FS+Fb: a friction term FS =−ηv =−η dx/dt

with Stokes friction coefficient η , which models the damping by the surrounding

fluid; and another term Fb that mimicks the microscopic collisions of the tracer

particle with the surrounding fluid particles, which are supposed to be much smaller

than the tracer particle. The latter interaction is modeled by a stochastic force ξ (t) of

the same type as we have described in Sec. 4.3.5 for which here one takes Gaussian

white noise. Interestingly, the stochastic Langevin equation can be derived from

first principles starting from Newton’s microscopic equations of motion for the full

deterministic dynamical system of a tracer particle interacting with a fluid consisting

of many particles [32].

At first view it may look strange to apply such an equation for modeling the

motion of a biological organism. However, for a bumblebee the force terms may

simply be reinterpreted: While the friction term still models the loss of velocity due

to the surrounding air during a flight, the stochastic force term now mimicks both

the force actively exerted by the bumblebee to perform a flight and the randomness

of these flights due to the surrounding air, and to sudden changes of direction by the

bumblebee itself. In addition, for our experiment we need to model the interaction

with predators by a third force term. This leads to Eq. (20) stated in Chap. 2, which

for bumblebee velocities vy we rewrite as

dvy(t)

dt
=−ηvy(t)−

dU(y(t))

dy
+ξ (t) . (4.6)

Here we have combined the mass m with the other terms on the right hand side. The

term Fi =−dU(y(t))/dy with potential U mimics an interaction between bumblebee

and spider, which can be switched on or off depending on whether a spider is present

or not. Data analysis shows that this force is strongly repulsive [14]. Computing the

velocity autocorrelation function Eq. (4.5) by solving the above equation numer-

ically for a suitable choice of a repulsive force qualitatively reproduces a change

from positive to negative correlations when switching on the repulsive force, see

Fig. 4.8(b).

These results demonstrate that velocity correlations can contain crucial informa-

tion for understanding foraging dynamics, here in the form of highly non-trivial

correlation decay emerging from the interaction of a forager with predators. This

experiment could not test the LSH, as the mathematical assumptions on its validity

were not fulfilled. However, conceptually these results are in line with the idea un-

derlying the LEH: Theoretically the interaction between forager and environment

was modeled by a repulsive force, to be switched on in the presence of predators,

which qualitatively reproduced the experimental results. Together with the spatially

intermittent dynamics when approaching the food sources as discussed before, these

findings illustrate a complex spatio-temporal adjustment of the bumblebees both to

the presence of food sources and predators. This is in sharp contrast to the scale-free

dynamics singled out by the LFH.
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Of course, modeling bumblebee flights by a Langevin equation like Eq. (4.6)

ignores many fine details. A more sophisticated model that reproduces bumble-

bee flights far away from the flowers more appropriately has been constructed in

Ref. [15] based on the same data as discussed above.

4.5 Lévy flights embedded in Movement Ecology

The main theme of our chapter was the question posed to the end of the introduc-

tion: Can search for food by biological organisms be understood by mathematical

modeling? While about a century ago this question was answered by Karl Pearson

in terms of simple random walks yielding Brownian motion, about two decades ago

the LFH gave a different answer by proposing Lévy motion to be optimal for for-

aging success, under certain conditions. Discussing experimental results testing it,

we arrived at a finer distinction between two different types of LFHs: The LSH cap-

tured the essence of the original LFH by stating that under certain conditions Lévy

flights represent an optimal search strategy for finding targets. In contrast the LEH

stipulates that Lévy flights may emerge from the interaction between a forager and

possibly scale-free food source distributions. A weaker version of these different

hypotheses we coined the LFP, which suggests to look for power laws in the prob-

ability distributions of move step lengths of foraging organisms. An even weaker

guiding principle derived from it is to assume that the foraging dynamics of bio-

logical organisms can generally be understood by analyzing step length probability

distributions alone. We thus have a hierarchy of different LFHs that have all been

tested in the literature, in one way or the other.

By elaborating on experimental results, exemplified by selected publications, we

outlined a number of problems when testing the different LFHs: miscommunication

between theorists and experimentalists leading to incorrect data analysis; the diffi-

culties to mathematically model a specific foraging situation by giving proper credit

to all relevant biological details; and problems with an adequate statistical data anal-

ysis that really tests for the theory by which it was motivated. We highlighted that

there are alternative stochastic processes, such as intermittent search strategies, that

may outperform Lévy strategies under certain conditions, or at least lead to similar

results, such that it may be hard to clearly distinguish them from Lévy motion. We

also discussed an experiment on foraging bumblebees, which showed that relevant

information to understand a biological foraging process may not always be con-

tained in the probability distributions that are at the heart of all versions of the LFH.

These experimental results suggested that biological organisms may rather perform

a complex spatio-temporal adjustment to optimize their search for food sources,

which results in different dynamics on different spatio-temporal scales. This is at

variance to Lévy motion, which by definition is scale-free.

However, these results are well in line with another, more general approach to

understand the movements of biological organisms, called the Movement Ecology

Paradigm [7]: This theory aims at more properly embedding the movements of bi-
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Fig. 4.9 Sketch of the Movement Ecology Paradigm: It cross-links four other existing paradigms

representing different scientific disciplines, which describe specific aspects of the movements of

biological organisms. The aim is to mathematically model the dynamics emerging from the in-

terplay between these different fields by an equation like Eq. (4.7); from [7], copyright (2008)

National Academy of Sciences, U.S.A.

ological organisms into their biological context as shown in Fig. 4.9. In this figure,

the theory centered around the LFH is rather represented by the region labeled ‘ran-

dom’, which focuses on analyzing movement paths only. However, movement paths

of organisms cannot properly be understood without embedding them into their bi-

ological context: They are to quite some extent determined by the cognitive abilities

of the organisms and their biomechanical abilities, see the respective two further re-

gions in this diagram. Indeed, only on this basis the question about optimality may

be asked, cf. the fourth region in this diagram, which here is rather understood in a

biological sense than as purely mathematical efficiency. Physicists and mathemati-

cians are used to think of diffusive spreading, which underlies foraging, primarily in

terms of moving point particles; however, living biological organisms are not point

particles but interact with the surrounding world in a very different manner. The aim

of this approach is to model the interaction between the four core fields sketched in

this diagram by a state space approach. This requires to identify relevant variables,

cf. the diagram, by establishing functional relationships between them in form of an

equation

ut+1 = F(ΩΩΩ ,ΦΦΦ ,rt ,wt ,ut) , (4.7)

where ut is the location of an organism at time t. A simple, boiled-down example

of such an equation is the Langevin equation Eq. (4.6) that we proposed to describe
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bumblebee flights under predation threat. Here dut+1/dt = vy(t) and the potential

term is related to the variable rt above while all the other variables are ignored.

4.6 Conclusions

The discussion about the LFH is still very much ongoing. As an example we refer

to research on movements of mussels, where experimental measurements seemed

to suggest that Lévy movement accelerates pattern formation [22]; however, see the

discussion that emerged about these findings as comments and replies to the above

paper, which mirrors our discussion in the previous sections. A second example is

the debate about a recent review by Andy Reynolds [24], in which yet another new

version of a LFH was suggested; again, see all the respective comments and the

authors’ reply to them. While these two articles are in support of the LFH, we refer

to a recent review by Graham Pyke [23] as an example of a more critical appreciation

of it.

We conclude that one needs to be rather careful with following power law hy-

potheses, or paradigms, for data analysis, here applied to the problem of under-

standing the search for food by biological organisms. These laws are very attractive

because of their simplicity, and because in certain physical situations they repre-

sent underlying universalities. While they clearly have their justification in specific

settings, these are rather simplistic concepts that ignore many details of the biolog-

ical situation at hand. This can cause problems when biological processes are more

complex. What we have outlined represents not an entirely new scientific lesson;

see, e.g., the discussion about power laws in self-organized criticality. On the other

hand, the LFH did pioneer a new way of thinking that goes beyond applying simple

traditional random walk schemes to understand biological foraging.

Financial support of this research by the MPIPKS Dresden and the Office of

Naval Research Global is gratefully acknowledged.

References

1. M. Chupeau, O. Bénichou, R. Voituriez, Nat. Phys. 11, 844 (2015)

2. R. Klages, Physik Journal 14, 22 (2015)

3. T. Harris, E. Banigan, D. Christian, C. Konradt, E.T. Wojno, K. Norose, E. Wilson, B. John,

W. Weninger, A. Luster, Nature 486, 545 (2012)

4. G. Ramos-Fernández, J.L. Mateos, O. Miramontes, G. Cocho, H. Larralde, B. Ayala-Orozco,

Behav. Ecol. Sociobiol. 55, 223 (2003)

5. M. Shlesinger, Nature 443, 281 (2006)

6. L. Stone, Theory of Optimal Search, 2nd edn. (Informs, Hanover, MD, 2007)

7. R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse, Proc. Natl.

Acad. Sci. 105, 19052 (2008)

8. V. Méndez, D. Campos, F. Bartumeus, Stochastic Foundations in Movement Ecology. Springer

series in synergetics (Springer, Berlin, 2014)



4 Search for Food of Birds, Fish and Insects 21

9. G. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince, H. Stanley, Nature 381, 413

(1996)

10. G. Viswanathan, S. Buldyrev, S. Havlin, M. da Luz, E. Raposo, H. Stanley, Nature 401, 911

(1999)

11. A. Edwards, R. Phillips, N. Watkins, M. Freeman, E. Murphy, V. Afanasyev, S. Buldyrev,

M. da Luz, E. Raposo, H. Stanley, G. Viswanathan, Nature 449, 1044 (2007)

12. D. Sims, E. Southall, N. Humphries, G.C. Hays, C.J.A. Bradshaw, J.W. Pitchford, A. James,

M.Z. Ahmed, A.S. Brierley, M.A. Hindell, D. Morritt, M.K. Musyl, D. Righton, E.L.C. Shep-

ard, V.J. Wearmouth, R.P. Wilson, M.J. Witt, J.D. Metcalfe, Nature 451, 1098 (2008)

13. N. Humphries, N. Queiroz, J. Dyer, N. Pade, M. Musy, K. Schaefer, D. Fuller,

J. Brunnschweiler, T. Doyle, J. Houghton, G. Hays, C. Jones, L. Noble, V. Wearmouth,

E. Southall, D. Sims, Nature 465, 1066 (2010)

14. F. Lenz, T.C. Ings, L. Chittka, A.V. Chechkin, R. Klages, Phys. Rev. Lett. 108, 098103/1

(2012)

15. F. Lenz, A.V. Chechkin, R. Klages, PLoS ONE 8, e59036 (2013)

16. M. Shlesinger, G. Zaslavsky, J. Klafter, Nature 363, 31 (1993)

17. G. Viswanathan, M. da Luz, E. Raposo, H. Stanley, The Physics of Foraging (Cambridge

University Press, Cambridge, 2011)

18. K. Pearson, Biometric ser. 3, 54 (1906)

19. R. Klages, G. Radons, I. Sokolov (eds.), Anomalous transport (Wiley-VCH, Berlin, 2008)

20. V. Zaburdaev, S. Denisov, J. Klafter, Rev. Mod. Phys. 87, 483 (2015)

21. M. Buchanan, Nature 453, 714 (2008)

22. M. de Jager, F.J. Weissing, P.M.J. Herman, B.A. Nolet, J. van de Koppel, Science 332, 1551

(2011)

23. G. Pyke, Meth. Ecol. Evol. 6, 1 (2015)

24. A. Reynolds, Phys. Life Rev. 14, 59 (2015)

25. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83, 81 (2011)

26. A. James, J.W. Pitchford, M.J. Plank, Bull. Math. Biol. 72, 896 (2009)

27. N. Humphries, H. Weimerskirch, N. Queiroz, E. Southall, D. Sims, PNAS 109, 7169 (2012)

28. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

29. J. Klafter, I. Sokolov, First Steps in Random Walks: From Tools to Applications (Oxford Uni-

versity Press, Oxford, 2011)

30. R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004)

31. T.C. Ings, L. Chittka, Current Biology 18, 1520 (2008)

32. R. Klages, Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics,

Advanced Series in Nonlinear Dynamics, vol. 24 (World Scientific, Singapore, 2007)

33. F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, Auckland, 1965)


