Rainer Klages, Aleksei V. Chechkin and Peter Dieterich: Watus Fluctuation Relations —
Chap.1 — 2012/6/7 — 19:43 — page 1

1
Anomalous fluctuation relations

Rainer Klages, Aleksei V. Chechkin and Peter Dieterich

Abstract. We study Fluctuation Relations (FRs) for dynamics that a@naious, in the sense
that the diffusive properties strongly deviate from the ©péstandard Brownian motion. We first
briefly review the concept of transient work FRs for stocltadynamics modeled by the ordinary
Langevin equation. We then introduce three generic typelyoémics generating anomalous diffu-
sion: Lévy flights, long-time correlated Gaussian stockagstbcesses and time-fractional kinetics.
By combining Langevin and kinetic approaches we calculagentbrk probability distributions in
the simple nonequilibrium situation of a particle subjecatoconstant force. This allows us to check
the transient FR for anomalous dynamics. We find a new form of RR&h is intimately related
to the validity of fluctuation-dissipation relations. Angbus results are obtained for a particle in
a harmonic potential dragged by a constant force. We arguehhbae findings are important for
understanding fluctuations in experimentally accessibitesys. As an example, we discuss the
anomalous dynamics of biological cell migration both in edpilim and in nonequilibrium under
chemical gradients.

1.1
Introduction

With Fluctuation RelationgFRs) we denote a set of symmetry relations describing
large-deviation properties (see the Chapter by TouchetieHarris in this book) of
the probability distribution functions (PDFs) of statisti physical observables far
from equilibrium. First forms of one subset of them, ofteferesd to as-luctuation
Theoremsemerged from generalizing fluctuation-dissipation iefe to nonlinear
stochastic processé @ 2]. They were then discovered mergezations of the
Second Law of Thermodynamics for thermostated dynamicstksys, i.e., systems
interacting with thermal reservoirs, in nonequilibriuneatly state f m E 6]; see
the Chapters by Reid et al. and by Rondoni and Jepps for tteésrdmistic approach.
Another subset, so-calledlork Relationsgeneralize a relation between work and
free energy, known from equilibrium thermodynamics, to @guilibrium situations
[E, @]; see the Chapters by Alemany et al. and by Spinney amd feo this line

of research. These two fundamental classes were later ondsdend generalized
by a variety of other FRs from which they can partially be dedi as special cases
ﬂg@m 12], as has already been discussed starting fier@hapters by Spinney
and Ford up to the one by Gaspard in this book. Research pegtbover the past
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ten years has shown that FRs hold for a great variety of systeos featuring one
of the rare statistical physical principles that is valigewery far from equilibrium:

see summaries ir{fﬁl 1@@ E 18] for stochastic }smfseﬁ 6:2,[22,
,@] for deterministic dynamics anE[ 26] for quantuystems. Many of

these relations have meanwhile been verified in experin@mntmall systems, i.e.,
systems on molecular scales featuring only a limited nurobeglevant degrees of
freedom [EJV 28, QHESESZ], cf. the Chapters by Cilibettal., Alemany et al.,
and Sagawa and Ueda.

The termanomalousin the title of this chapter refers tanomalous dynami¢s
which are loosely speaking processes that do not obey tredéeonventional sta-
tistical physics and thermodynami@[@, 34, 35]; see, thg.Chapter by Zhang et
al. foranomalous deviations from Fourier’s Law of heat agettbn in small systems.
Paradigmatic examples are diffusion processes where igetime mean square dis-
placement does not grow linearly in time: That {82) ~ ¢*, where the angular
brackets denote an ensemble average, does not increase with as expected
for Brownian motion but eithesubdiffusivelywith « < 1 or superdiffusivelywith
a > 1 @m@] After pioneering work on amorphous semicondisc[39],
anomalous transport phenomena have more recently beervetise a wide variety
of complex systems, such as plasn@ [40], nans [4tierapr spreading [42],
biological cell migration@b] and glassy materials [44),mention a few@SJAG].
This raises the question to which extent conventional FRsvalid for anomalous
dynamics. Theoretical results for generalized Langevimagéigns [Wﬂzﬂg 50],
Lévy flights ﬁ@] and Continuous-Time Random Walk mocﬂéTS;] as well as
computer simulations for glassy dynami@ [54] showed balidity and violations
of the various types of conventional FRs referred to abogpedding on the specific
type of anomalous dynamics considered and the nonequitibconditions that have
been appliecﬁSS].

The purpose of this chapter is to outline how the two difféfégids of FRs and
anomalous dynamics can be cross-linked in order to exptonenich extent conven-
tional forms of FRs are valid for anomalous dynamics. With tarmAnomalous
Fluctuation Relationsve refer to deviations from conventional forms of FRs as they
have been discussed in the previous chapters, which ar@@minalous dynamics.
Here we focus on generic types of stochastic anomalous dgsdmy only checking
Transient Fluctuation RelationdFRs), which describe the approach from a given
initial distribution towards a (non)equilibrium steadgt. Sectioh 1.2 motivates the
latter type of FRs by introducing simple scaling relatioas they are partially used
later on in this chapter. As a warm-up, we then first derivecihreventional TFR for
the trivial case of Brownian motion of a particle moving undeconstant external
force modeled by standard Langevin dynamics. Settidn tr@daces three generic
types of stochastic anomalous dynamics: long-time cdedl&aussian stochastic
processes, Lévy flights and time-fractional kinetics. Weaththese three stochas-
tic models for the existence of conventional TFRs under iimple nonequilibrium
condition of a constant external force. Secfion 1.4 intasdua system exhibiting
anomalous dynamics that is experimentally accessibleciwisi biological cell mi-
gration. We then outline how an anomalous transient flucinaelation might be
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Figure 1.1 Sketch of a colloidal particle confined within a harmonic trap that is dragged through
water with a constant velocity v*, cf. the experiment by Wang et al. [E].

verified for cells migrating under chemical gradients. Wenguarize our results in
Section 1.5 by highlighting an intimate connection betwtenvalidity of conven-
tional TFRs and the validity of fluctuation-dissipationatbns.

1.2
Transient fluctuation relations

1.21
Motivation

Consider a particle system evolving from some initial stat¢ime¢ = 0 into a
nonequilibrium steady state for— oco. Afamous example that has been investigated
experimentally], cf. also the Chapter by Alemany et &.aicolloidal particle
immersed into water and confined by an optical harmonic sag,Fig. 1... The trap
is first at rest but then dragged through water with a constelutcity v*. Another
paradigmatic example, whose nonequilibrium fluctuatiomgehbeen much studied
by molecular dynamics computer simulatioms [3], is an iat&ng many-particle
fluid under a shear force, which starts in thermal equilibriby evolving into a
nonequilibrium steady state [4].

The key for obtaining FRs in such systems is to obtain the pP@F of suitably
defined dimensionless entropy productigrover trajectory segments of time length
t. The goal is to quantify the asymmetry between positive asghative entropy
production inp(&;) for different timest since, as we will demonstrate in a moment,
this relation is intimately related to the Second Law of Thedynamics. For a very
large class of systems, and under rather general conditiom&s shown that the

following equation holdf[lf&illﬁrzﬁéﬂ,%]:

p(&)
In = . 1.1
p(—¢&t) & (1)
Given that here we consider the transient evolution of aesy$tom an initial into a
steady state, this formula became known adtéesient fluctuation relatiofTFR).
The left hand side we may call the fluctuation ratio. Relatierhibiting this func-
tional form have first been proposed in the seminal work bynSya&Cohen and
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Figure 1.2 lllustration of the dynamics of the probability density function for entropy production
p(&) for different times ¢1 < t2 < t3.

Morriss E], although in the different situation of consiitgy nonequilibrium steady
states. Such a steady state relation was proved a few yéarsieby Gallavotti and
Cohen for deterministic dynamical systems, based on theaed chaotic hypoth-
esis [5[6]. The idea to consider such relations for trargignamics was first put
forward by Evans and Searles [4].

Fig.[1.2 displays the temporal evolution of the PDF for epyrproduction in such
a situation and may be compared to Fig. 12 in the chapter dibéCio) for anal-
ogous results extracted from experimental measuremertie aSymmetry of the
evolving distribution, formalized by the fluctuation rétat Eq. [1.1), is in line with
the Second Law of Thermodynamics. This easily follows from @.1) by noting
that

p(&t) = p(—=&t) exp(§t) > p(—&¢) » (1.2)

where¢; is taken to be positive or zero. Integration from zero to iitfiover both
sides of this inequality after multiplication wit and defining the ensemble average
over the given PDF a§..) = [*_d¢&: p(&) ... yields

(&) > 0. (1.3)

1.2.2
Scaling

By using FRs one is typially interested in assessing largeaten properties of the
PDF of entropy production. That is, one wishes to sampledhg of the distribu-
tions for large times, and not so much the short-time dynandcthe centre of the
distribution. For this purpose it is useful to introducetahbly scaled variables that
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Figure 1.3 lllustration of the dynamics of the probability density function for entropy production
p(&) for different times ¢ < t2 < t3 by using the scaled variable Eq. (1.4).

1

enable us to eliminate the drift associated with the pasiiverage entropy produc-
tion Eq. (1.3). A first option is to look at the PDK¢;) of the scaled variablﬂ%Z]

="t (1.4)

as illustrated in Fig. 1/3. By definition, the PDF is now cedtat(@ =1, hence we
have eliminated any contributions to the left hand side af(fdl) that comes from
the drift, by purely focusing on the asymmetric shape of tis&ithution.

Another way of scaling was used by Gallavotti and Colﬁém[&y@mploying the
scaled time average

L b
“ e -9

yielding the PDF for entropy production displayed in Figt.1With this scaling, and
for ergodic systems, clearly

p(€) = 6(1—§&) (t— o0) (1.6)
with
ﬁ — (&) >0 (t—o0) . a.7)

t
thus illustrating the relation between FRs and the Secomddgain.
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FigAure 1.4 lllustration of the dynamics of the probability density function for entropy production
p(&;) for different times t1 < t2 < t3 by using the scaled time average Eq. (1.5).

123
Transient fluctuation relation for ordinary Langevin dynam ics

As a preparation for what follows, we may first check the TFR tfee ordinary
overdamped.angevin equationﬁ]

i=F+Ct) (1.8)

with a constant external force given Byand Gaussian white noigét). Note that
for sake of simplicity, here we set all the other constands éne not relevant within
this specific context equal to one. For Langevin dynamick witonstant force the
entropy productiort; defined by the heat, or equivalently the dissipative work, is
simply equal to the mechanical wom57]

Wy = Fa(t) . (1.9)

It follows that the PDF for entropy production, which herédentical to the one for
the mechanical work, is trivially related to the PDF of thesjtion = of the Langevin
particle via

1

p(Wi) = F "o(x,t) . (1.10)

This is very convenient, since it implies that all that rensaio be done in order to
check the TFR Eq| (111) is to solve the Fokker-Planck equdtiothe position PDF
o(z, t) for a given initial condition. Here and in the following, wa@osez(0) = 0,
i.e., in terms of position PDFs we start with a delta-disttibn atz = 0. Note
that for ordinary Langevin dynamics in a given potentiapitgally the equilibrium
density is taken as the initial densimiﬂ 58]. Howevengsiin the following we
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will consider dynamics that may not exhibit a simple equilin state, without loss
of generality here we make a different choice.

For the ordinary Langevin dynamics EQ. (1.8) modeling adim®aussian stochas-
tic process, the position PDF is Gaussian exhibiting nordiflision 56,], cf.
also the Chapter by Ford and Spinney,

Q(Z’,t) =

1 (x — (x))?
\/ﬁ exp <—20%,0> . (1.11)

With the subscript zero we denote ensemble averages in €aseexternal field.
By using the PDF-scaling Eq. (1/10) and plugging this restit the TFR Eq. (1.1),
we easily derive that the TFR for the wovk; holds if

2
o
(Wey = =2, (1.12)

which is nothing else than an example of factuation-Dissipation Relation of the
first kind(FDR1) EGJEO], cf. also the Chapter by Gradenigo et al. Wes trrive at
the seemingly trivial but nevertheless important resut flor this simple Gaussian
stochastic process, the validity of FDR1 Eq. (1.12) imptress validity of the work
TFR Eq.[(1.1). For a full analysis of FRs of ordinary Langesimamics we refer to
van Zon and Cohen Refﬂ 58].

Probably inspired by the experiment of RR[Z?], typicdllgngevin dynamics in
a harmonic potential moving with a constant velocity hasbstedied in the litera-
ture 48,H9%ﬂ1], cf. Fig. 1.1. Note that in this slighthore complicated case
the (total) work is not equal to the he[57]. While for therwone recovers the
TFR in its conventional form Eq. (1.1) in analogy to the cédtion above, surpris-
ingly the TFR for heat looks different for large enough fluations. This is due to
the system being affected by the singularity of the harmpniential, as has nicely
been elucidated by van Zon and Co@ [58]. A similar effestli@en reported by
Harris et al. for a different type of stochastic dynamicg &symmetric zero-range
process@Z]. For deterministic dynamics involving Nosgéeker thermostats analo-
gous consequences for the validity of the Gallavotti-CoRBrhave been discussed
in Ref. @]. See Refmb] for a brief review about the geharachanism underlying
this type of violation of conventional forms of TFRs.

In the following we check for yet another source of deviasidrom the conven-
tional TFR Eq.[(1.1) than the one induced by singular poisti We explore the
validity of work TFRs if one makes the underlying microsaogynamics more com-
plicated by modeling dynamical correlations or using nci€sian PDFs. In order
to illustrate the main ideas along these lines it sufficetwsier a nonequilibrium
situation simply generated by a constant external force.
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1.3
Transient work fluctuation relations for anomalous dynamic s

Our goal is to check the TFR Eq. (1.1) for three generic typlestachastic pro-
cesses modeling anomalous diffusion [46]: @aussian stochastic process€a)
Lévy flights and (3)time-fractional kinetics All these dynamics we model by gen-
eralized Langevin equations. This section reports re$uts Ref. ELS], which may
be consulted for further details.

131
Gaussian stochastic processes

The first type we consider are Gaussian stochastic procelesie®d by the over-
damped generalized Langevin equation

t
/ dt’' &t )yt —t') = F 4+ ¢(t) (1.13)
0
with Gaussian noisé(t) and friction that is modeled with a memory kerngt). By
using this equation a stochastic process can be definedthiaite normal statistics
but with anomalous memory properties in form of non-Markwvlong-time corre-
lated Gaussian noise. Equations of this type can be tracgdadideast to work by
Mori and Kubo around 1965 (ség[GO] and further referencegeth). They form
a class of standard models generating anomalous diffusairhias been widely in-
vestigated, see, e.g., Re@[% '& 65]. FRs for this typ#ynamics have more
recently been analyzed in Refs. \[h?l 48, 49, 50]. Examplegppfications for this
type of stochastic modeling are given by generalized @Iastidels@b], polymer
dynamics@?] and biological cell migration [43].

We now split this class into two specific cases.

1.3.1.1 Correlated internal Gaussian noise

The first case correspondsitdgernal Gaussian noise, in the sense that we require the

S stﬁn to exhibit théluctuation-Dissipation Relation of the second kiffDR?2)
,60]

€C@e) ~at =1, (1.14)

again by neglecting all constants that are not relevantfemtain point we wish to
make here. We now consider the specific case that both the anésthe friction are
correlated by a simple power law,

yt)~t P 0<B<1. (1.15)

Because of the linearity of the generalized Langevin equdfi.13) the position PDF
must be the Gaussian Eq.(1.11), and by the scaling of EQ)(%é havep(W;) ~
oz, t). It thus remains to solve Ed. (1.13) for mean and variancégiwan be done
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in Laplace spacg[SS] yieldingubdiffusion
oot (1.16)

by preserving the FDR1 Eq. (1.12). Here and in the followiregdenote ensemble
averages in case of a non-zero external field with the suiisgri For Gaussian
stochastic processes we have seen in Section 1.2.3 thabrtientional work TFR
follows from FDR1. Hence, for the above power-law corredateternal Gaussian
noise we recover the conventional work TFR Eq. (1.1).

1.3.1.2 Correlated external Gaussian noise
As a second case, we consider the overdamped generalizgd\iarequation

i=F+Ct)), (1.17)

which represents a special case of Eg. (1.13) with a memarnekenodeled by a
delta-function. Again we use correlated Gaussian noisaee@toy the power law

e ~t—tI?,0<p<1, (1.18)

which one may calexternal because in this case we do not postulate the existence
of FDR2. The position PDF is again Gaussian, and as befgig) ~ o(z,t).
However, by solving the Langevin equation along the saneslas in the previous
case, here one obtaissperdiffusiorby breaking FDR1,

W) ~t oy, p~ttP (1.19)

Calculating the fluctuation ratio, i.e., the left hand siflEq. (1.1), from these results
yields theanomalous work TFR

m LW Cat’ Wy, 0<p<1, (1.20)

p(=Wt)

whereC3 is a constant that depends on physical paraméters [55]. e@dmgpthis
equation with the conventional form of the TFR Eq. (1.1) obseyves that the fluc-
tuation ratio is still linear iV, thus exhibiting the exponential large deviation form
], cf. the Chapter by Touchette and Harris. However, éhae two important
deviations: (1) the slope of the fluctuation ratio as a fiorctdf W; is not equal
to one anymore, and in particular (2) it decreases with tikve. may thus classify
Eg. (1.20) as aveak violation of the conventional TER

We remark that for driven glassy systems FRs have already dietained display-
ing slopes that are not equal to one. Within this context & been suggested to
capture these deviations from one by introducing the conckpn ‘effective tem-
perature’[%lﬁﬂg]. As far as the time dependence of tleffictent is concerned,
such behavior has recently been observed in computer diongeof a paradigmatic
two dimensional lattice gas model generating glassy dycﬁa@]. Fig/ 1.5 shows
the fluctuation ratio as a function of the entropy productbmlifferent timesr as
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Figure 1.5 The fluctuation ratio In(IL, (J7)/IL (J;)) for the entropy production W, = EJ-
with particle current J and field strength E for particle density p at different times 7. The full
line, with slope one, displays the result of the conventional FR Eq. (1.1) in a nonequilibrium
steady state. The figure is from Ref. ﬁ].

extracted from computer simulations of this model, whee BDF has first been
relaxed into a nonequilibrium steady state. It is clearlgrsthat the slope decreases
with time, which is in line with the prediction of the anoma®TFR Eq.[(1.20).
However, to which extent the nonequilibrium dynamics o$ tlhittice gas model can
be mapped onto the generalized Langevin equation Eq. (i Br)open question.

1.3.2
Lévy flights

A second fundamental type of anomalous dynamics can as walefined by the
overdamped Langevin equatian (1.17). However, this timech@ose whitd_évy
noise that is, the random variableis distributed according to the PDF

X~ (o), 0<a<2, (1.21)

In general, the full Lévy stable PDF is defined by its chanastie function. In this
case we are thus dealing with Markovian stochastic prosdbsse are not Gaussian
distributed generating so-callégvy flights which are due to the heavy tails of the
underlying PDF. An introduction to the theory of Lévy flightan be found in Chap-
ter 5 of Ref. @6]; the rigorous mathematical theory is presd in, e.g., RefE?O].
Lévy flights define one of the most paradigmatic models of aloos dynamics
with wide applications, for example, in fluid dynami{:s\[?ilj,the foraging of bio-
logical organismslﬁZ] and in glassy optical material [4e4] highlight only a few
cases.

It can be shown that the position PREz, t) characterizing the process defined by
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Egs. [(1.17)/(1.21) obeys tlspace-fractionaFokker-Planck equation

do do 0%

el "\ AL 1.22

ot oc T ozl (1.22)
where the last term is given by thiesz fractional derivativewhich in real space
is a complicated integro-differential operator. It is thmere convenient to represent

this derivative by its Fourier transform, which takes thale expression
F{0%0/0lz|"} = —|k|"F {0} . (1.23)

Fractional derivatives provide generalizations of ordyrmderivatives by reproducing
them in case of integer values of the derivative parametemddefined by power
law memory kernels, they have proven to be extremely usefdrder to mathe-
matically model anomalous dynamics. The well-developadidiine offractional
calculusrigorously explores the properties of these mathematibgdats; for intro-
ductions to fractional derivatives see, e.g., Refs. \[34L4$ﬂ 73]. A systematic and
comprehensive mathematical exposition of fractional dak is given in Ref.[H4].
After solving Eq.[(1.22) in Fourier space, the resultingifios PDF needs to be con-
verted into the work PDF by using Eq. (1/10). In this case #gasible to apply the
scaling Eq.[(1.4) [52], which here yields the scaled vagab) = Wy /F2t. Express-
ing the work PDF in this variable and using the asymptoticthefLévy stable PDF
Eqg. (1.21), we arrive at the asymptotic TFR for Lévy flights

m V) (1.24)
W;—+oo p(_Wt)

This result has first been reported by Touchette and Coherein[RL] by using a
different technique for the different situation of a harrimopotential dragged with
a constant velocity. Note that fer = 2 in the above model we recover the con-
ventional TFR Eq/[(1.1). Far < o < 2, however, we obtain the surprising result
that asymptotically large positive and negative fluctusgiof the scaled work are
equally probable for Lévy flights. The underlying work PDFnisvertheless still
generically asymmetric. Note that the fluctuation ratio Big24) does not display
the exponential large deviation form, hence one may dehates astrong violation
of the conventional TFR

1.3.3
Time-fractional kinetics

The third and final fundamental type of stochastic anomadtymamics that we con-
sider here can be modeled by the so-cafiedordinated_angevin equatimr[?ﬂ(i]

dxz(u)
du
with Gaussian white nois¢(«) and white Lévy noise (u) > 0 with 0 < o < 1. It
can be shown that subordinated Langevin dynamics is ingiipaglated toContinu-
ous Time Random Walk Theowyhich provides a generalization of ordinary random

=F+¢u) , = 7(u) (1.25)
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walk theory by generating non-trivial jump dynamics. Thadeapproach has in
turn been used, e.g., to understand measurements of a oto currents in
copy machinem% microsphere diffusion in the cell mmﬁ, translocations
of biomolecules through membrane pon@ [77] and even dyegaiiprices in finan-
cial markets]. It was demonstrated that this Langeviscdption leads to the
time-fractional Fokker-Planck equatinﬁ [ﬁ, 76]

(1.26)

ot~ otl-«

b0 _ 0 [ ok o
Ox Ox?

for 0 < « < 1 with Riemann-Liouville fractional derivativen the right semi-axis

o 9 1 b o)
G = 3 i , (1.27)

for 0 < § < 1. This equation obeys a (generalized) Einstein relatiorfriotion
and diffusion coefficients (which here are both set to urfily,sake of simplicity).
From Eq.[(1.26), equations for the first and second momentbealerived and then
solved in Laplace space. The second moment in the absenceetternal force
yieldssubdiffusion

oa0~t". (1.28)

A calculation of the currentz) shows that the FDR1 Ed. (1.12) is preserved by
this dynamics. Solving Ed. (1.26) in Laplace space andmyittiverything together,
one recovers the conventional form of the TFR Eq.](1.1) fis tipe of dynamics.
This confirms again that a distinctive role is played by FDRL the validity of
conventional TFRs, even if the work PDFs are not Gaussiain, thss case.

We remark that analogous results are obtained by studyiesgtithree types of
anomalous dynamics for the case of a particle moving in a baitrpotantial that is
dragged with a constant velociﬂSS].

14
Anomalous dynamics of biological cell migration

In order to illustrate the application of anomalous dynamnand possibly of anoma-
lous FRs, to realistic situations, in this section we disceisperiments and theory
about the migration of single biological cells crawling anfaces or in 3d matrices
as examples. We first introduce to the problem of cell migraliy considering cells
in an equilibrium situation, i.e., not moving under the ieffice of any external gra-
dients or fields. This case is investigated by extractingltesgor the mean square
displacement (MSD) and for the position PDFs from experitaledata. We then
show how the experimental results can be understood by aematiical model in
form of a fractional Klein-Kramers equation. As far as MSOlarmlocity autocor-
relation function are concerned, this equation bears samitasity to a generalized
Langevin equation that is of the same type as the one that éws discussed in
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t=0 min =480 min

c

Figure 1.6 Overlay of a biological cell migrating in vitro on a substrate. The cell frequently
changes its shape and direction during migration, as is shown by several cell contours
extracted during the migration process. The inset displays phase contrast images of the cell at
the beginning and to the end of its migration process @].

Section 1.3.1.2. We finally give an outlook to the noneqtiiliim problem of cell
migration under chemical gradients and describe first tesbtained from exper-
iments and data analysis. This research paves the way toueMgrchecking the
existence of anomalous work TFR in biological cell migratiarhe results on cell
migration in equilibrium outlined in this section are basedRef. [E?J].

141
Cell migration in equilibrium

Nearly all cells in the human body are mobile at a given timerdytheir life cycle.
Embryogenesis, wound-healing, immune defense and theafamof tumor metas-
tases are well known phenomena that rely on cell migra@n@,@l}. Figl 1.6
depicts the path of a single biological cell crawling on asttdte measured in an
vitro experiment%]. At first sight, the path looks like the tictry of a Brown-
ian particle generated, e.g., by the ordinary Langevin dyina of Eqg.[(1.8). On the
other hand, according to Einstein’s theory of Brownian miot Brownian patrticle is
passivelydriven by collisions from the surrounding fluid molecule$exeas biolog-
ical cells moveactivelyby themselves converting chemical into kinetic energysThi
raises the question whether the random-looking paths wflicrg biological cells can
really be understood in terms of simple Brownian motm or whether more
advanced concepts of dynamical modeling have to be ap@i Eb@?ﬁ%]



Rainer Klages, Aleksei V. Chechkin and Peter Dieterich: Watus Fluctuation Relations —

14

Chap.1 — 2012/6/7 — 19:43 — page 14

10000 ¢ data/NHE"
data;NHE
& .
£ 1000 b FKK modelNHE® —— | .~
= FKK modellNHE — %"
3 100 1 :
(2]
1S
10 4
I [l 11l
1
2.0 : : :
1.0 : ‘ : :
1 100

10 time [min]

Figure 1.7 Upper part: Double-logarithmic plot of the mean square displacement (MSD) as a
function of time. Experimental data points for both cell types are shown by symbols. Different
time scales are marked as phases I, Il and 11l as discussed in the text. The solid lines represent
fits to the MSD from the solution of our model, see Eq. (1.34). All parameter values of the
model are given in . The dashed lines indicate the uncertainties of the MSD values
according to Bayes data analysis. Lower part: Logarithmic derivative 3(¢) of the MSD for both
cell types as defined by Eq. (1.29).

1.4.1.1 Experimental results

The cell migration experiments that we now discuss have Ipegformed on two
types of tumor-like migratingransformed renal epithelial Madin Darby canine
kidney (MDCK-F)cell strains: wild-type ¥ HE™') and NHE-deficient ¥ HE ™)
cells. HereNHE™ stands for a molecular sodium hydrogen exchanger thatreithe
is present or deficient. It can thus be checked whether thisastopic exchanger
has an influence on cell migration, which is a typical questisked particularly
by cell physiologists. The cell diameter is about 2Q:80and the mean velocity
of the cells about zm/min. Cells are driven by active protrusions of growingimct
filaments [amellipodial dynamicsand coordinated interactions with myosin motors
and dynamically re-organizing cell-substrate contactse Teading edge dynamics
of a polarized cell proceeds at the order of seconds. Thirtedls were observed
for up to 1000 minutes. Sequences of microscopic phaseasititnages were taken
and segmented to obtain the cell boundaries shown in FigséesRef. [43] for full
details of the experiments.

According to the Langevin description of Brownian motiontloed in Sec-
tion[1.2.3, Brownian motion is characterized by a MSB(t) ~ t (t — o)
designating normal diffusion. Fig. 1.7 shows that both gypé cells behave dif-
ferently: First of all, MDCK-FNHE™ cells move less efficiently thav HE™
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cells resulting in a reduced MSD for all times. As is displéye the upper part of

this figure, the MSD of both cell types exhibits a crossovanien three different
dynamical regimes. These three phases can be best idertifiedtracting the

time-dependent exponepgtof the MSDaﬁ,O(t) ~ ¢ from the data, which can be
done by using the logarithmic derivative

_ dInmsd(t)

Bl = — 7 (1.29)

The results are shown in the lower part of Fig. 1.7. Phase haacterized by
an exponenp(t) roughly below1.8. In the subsequent intermediate phase I, the
MSD reaches its strongest increase with a maximum expafenwhen the cell
has approximately moved beyond a square distance largeitthawn mean square
radius (indicated by arrows in the figuré)t) gradually decreases to abdut. Both
cell types therefore do not exhibit normal diffusion, whiebuld be characterized
by 3(t) — 1in the long time limit, but move anomalously, where the exgras > 1
indicates superdiffusion.

We next study the PDF of cell positions. Since no correlatiogtween: andy po-
sitions could be found, it suffices to restrict ourselvesne dimension. Fig. 1]8 (a),
(b) reveals the existence of non-Gaussian distributiorifferent times. The tran-
sition from a peaked distribution at short times to ratheraor distributions at long
times suggests again the existence of distinct dynamicelgsses acting on differ-
ent time scales. The shape of these distributions can bdifiedy calculating the
kurtosis

4
K(t) := % , (1.30)
which is displayed as a function of time in Fig. 1.8 (c). Fottboell typess(t)
rapidly decays to a constant that is clearly below threeéridhg time limit. A value
of three would be the result for the spreading Gaussianiloligions characterizing
Brownian motion. These findings are another strong maifiest of the anomalous
nature of cell migration.

1.4.1.2 Theoretical modeling

We now present the stochastic model that we have used todeedhe experimen-
tal data yielding the fit functions shown in the previous twgufes. The model is
defined by thdractional Klein-Kramers equatiof89]

11—« 2
%:—%[v‘g}—i—gﬂﬁya {%v—kvfh%}g ,0<a<l. (2.31)
Hereo = o(z,v,t) is the PDF depending on time positionz and velocityv in

one dimensiony, is a friction term andv?, = kpT/M stands for the thermal
velocity squared of a particle of magd¢ = 1 at temperaturd’, wherekp is Boltz-

mann’s constant. The last term in this equation models sliffuin velocity space.
In contrast to Fokker-Planck equations such as[Eq. (1.8i8)etjuation features time
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Figure 1.8 Spatio-temporal probability distributions P(z, t). (a),(b): Experimental data for both
cell types at different times in semilogarithmic representation. The dark lines, labeled FKK,
show the long-time asymptotic solutions of our model Eq. (1.31) with the same parameter set
used for the MSD fit. The light lines, labeled OU, depict fits by the Gaussian distributions

Eq. (1.11) representing Brownian motion. For t = 1 min both P(z,t) show a peaked structure
clearly deviating from a Gaussian form. (c) The kurtosis r(t) of P(z,t), cf. Eq. (1.30), plotted
as a function of time saturates at a value different from the one of Brownian motion (line at

k = 3). The other two lines represent r(t) obtained from the model Eq. (1.31) .

evolution both in position and velocity space. What distiisges this equation from
an ordinary Klein-Kramers equation, the most general mofi@rownian motion
@], is the presence of the Riemann-Liouville fractionafidative of orderl — a,
Eqg. (1.27), in front of the terms in square brackets. Not¢fiian = 1 the ordinary
Klein-Kramers equation is recovered. The analytical sofubf this equation for the
MSD has been calculated in R[89] to

02 o(t) = 208, t° B 3(—7at®)  — QDL“ (t — o) (1.32)

’ ’ r'is—a)

with Do = v?, /7o and thetwo-parametricor generalized Mittag-Leffler function
(see, e.g., Chapter 4 of Ref. [46] and Refs. , 90])

> k
2
Ea,ﬁ(z):;m,a,ﬂ>0,z€C . (1.33)



Rainer Klages, Aleksei V. Chechkin and Peter Dieterich: Watus Fluctuation Relations —
Chap.1 — 2012/6/7 — 19:43 — page 17

17

Note thatE1 1(z) = exp(z), henceE, z(z) is a generalized exponential function.
We see that for long times Eq. (1.32) yields a power law, whégtuces to the long-
time Brownian motion result in case af= 1.

In view of the experimental data shown in Fig. 1.7, Eq. (1.82% amended by
including the impact of random perturbations acting on vamgrt time scales for
which we take Gaussian white noise of varianée This leads td@l]

U?:,O;noise(t) = U:%,O(t) + 2772 . (134)

The second term mimicks both measurement errors and flimbsabf the cell cy-
toskeleton. In case of the experiments with MDCK-F c@s],[th}a value ofy can be
extracted from the experimental data and is larger than stimmated measurement
error. Hence, this noise must largely be of a biological reauind may be understood
as being generated by microscopic fluctuations of the lapoelia in the experiment.

The analytical solution of Eq. (1.31) fe(z, v, t) is not known, however, for large
friction v, this equation boils down to a fractional diffusion equation which
o(z,t) can be calculated in terms of a Fox function [92]. The experital data in
Figs.[1.7 and 1]8 was then fitted consistently by using theebolutions with the
four parameter&?h, «a,~ andn? in Bayesian data analysis [43].

In summary, by statistical analysis of experimental datehaee shown that the
equilibrium migration of the biological cells under considtion is anomalous. Re-
lated anomalies have also been observed for other typesgrétinig cells E4E5,
@@1—88] These experimental results are coherenthodemed by a mathemati-
cal model in form of a stochastic fractional equation. We red&borate on possible
physical and biological interpretations of our findings.

First of all, we remark that the solutions of Eg. (1.31) fottbthe MSD and the
velocity autocorrelation function match precisely to tldusions of the generalized
Langevin equatiorWSS]

b= —/Ot dt’ A(t —tYo(t) + (1) - (1.35)

Here £(t) holds for Gaussian white noise andt) ~ ¢t~ for a time-dependent
friction coefficient with a power law memory kernel, whichtezhatively could be
written by using a fractional derivativb—[bS]. Folt) ~ 4(t) the ordinary Langevin
equation is recovered. Note that the position PDF genetayethis equation is
Gaussian in the long time limit and thus does not match to teedd the fractional
Klein-Kramers equation Ed. (1.B1). However, alternagivehe could sample from
a non-Gaussiaf(t) to generate a non-Gaussian position PDF. Strictly spealieg
spite equivalent MSD and velocity correlations E@s. (1&1d (1.35) define differ-
ent classes of anomalous stochastic processes. The preusselinks between the
Langevin description and the fractional Klein-Kramers &ipn are subtléjLQB] and
to some extent still unknown. The advantage of Eq. (1.35has it allows more
straightforwardly a possible biophysical interpretatafrthe origin of the observed
anomalous MSD and velocity correlations, at least paytiallterms of the existence
of a memory-dependent friction coefficient. The latter,umt might be explained
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by anomalous rheological properties of the cell cytoskelgtvhich consists of a
complex biopolymer gem4].

Secondly, what could be the possible biological signifieant the observed
anomalous cell migration? There is an ongoing debate abbether biological
organisms such as, e.g., albatrosses, marine predatofsudrities have managed
to mimimize the search time for food in a way that matches tintping search
strategies in terms of stochastic processes; see @f@i}’and further references
therein. In particular, it has been argued that Lévy flightssuperior to Brownian
motion in order to find sparsely, randomly distributed, egp$hing food sources
[@]. However, it was also shown that in other situatiomgrmittent dynamicss
more efficient than pure Lévy motioW[95]. For our cell expeent, both the exper-
imental data and the theoretical modeling suggest tha¢ theists a slow diffusion
on short time scales, whereas the long-time motion is mustefawhich resembles
intermittency as discussed in Ré£[95]. Hence, the resutanomalous cell migra-
tion presented above might be biologically relevant in vigfasuitably optimized
foraging strategies.

1.4.2
Cell migration under chemical gradients

We conclude this section with a brief outlook to cell migoatiunder chemical gra-
dients [@6]. In new experiments conducted by Lindemann atth@b [57],murine
neutrophilcells have been exposed to concentration gradients of clagtmactants.
A plot of trajectories of an ensemble of cells crawling undeemotaxis is shown in
Fig.[1.9.

Statistical analysis of the experimental data [98] yieldduhear drift in the direc-
tion of the gradient,

(z(@) ~t . (1.36)
The MSD in the co-moving frame, on the other hand, was fourizeto
os m(t) = (@(®)® ~ ¢ (1.37)

with the same exponerit > 1 as obtained for the equilibrium dynamics discussed
before. Consequently FDR1, cf. E. (1.12), is broken. Thesalts suggest that,
for obtaining a stochastic model, the force-free fractldfiein-Kramers equation
Eg. (1.31) needs to be generalized by including an exteorakfas discussed by
Metzler and SokoIO\}EQ],

do 0 o« 0 F 9 o 0

ot~ or YT gia e |3t T Saman T Vhaz| O

(1.38)

Note that there exist two different ways in the literaturenofv to include the force
Fin Eq. (1.31) [89, 99]. These choices lead to different rssidr drift and MSD.

The above results obtained from experimental data anatiessly select the version
of Ref. [99] as the adequate type of stochastic model in @se by rejecting that of



Rainer Klages, Aleksei V. Chechkin and Peter Dieterich: Watus Fluctuation Relations —
Chap.1 — 2012/6/7 — 19:43 — page 19

19

200

150 - -
increasing
100 chemotactic \

) gradient &%P{d

0

y [um]

-50

-100

-150

-200
-100 -50 0 50 100 150 200 250 300

X [pm]

Figure 1.9 Trajectories of an ensemble of 40 murine neutrophil cells exposed to a chemical
gradient of the chemoattractant fMLP which increases along the positive z-axis. Cells were
observed over 30 min with a time interval of 5 sec. Starting points have been transformed to
the origin of the coordinate system (filled circle). It can be seen that there is an average drift of
the ensemble towards the positive z-axis [&h

Ref. @] which, however, might well work in other situatmnThe (approximate) an-
alytical solutions of Eq/(1.38) reproduce correctly ditSD, velocity correlations
and (for large enough friction coefficient, and long enough times) the position
PDFs of the measured nonequilibrium cell dyna [98].

Along these lines, one might also check for the form of thekWbFR in case of
cell migration. This has already been done in an experimerthe cellular slime
mold Dictyostelium discoideupin this case under eIectrotax?[iOO]. By plotting
the fluctuation ratio as a function of the cell positions ab wifferent times it was
concluded that the conventional TFR Eq. (1.1) was confirmethts experiment.
In Fig.]1.10, however, we show experimental results for thetflation ratio of the
neutrophils of Fig. 1.9 as a function of the cell positionshate different times. In
complete formal analogy to Fig. 1.5, the slopes clearly &&se with increasing time,
which indicates a violation of the conventional TFR Eq. J1.To further explore
the validity of work TFRs in cell migration experiments thagpears to be a very
interesting, important open problem.
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Figure 1.10 The fluctuation ratio In(P(A)/P(—A)) as a function of A = z(7) — z(0) for
7 = 5 min (open squares), 7 = 10 min (open triangles) and 7 = 15 min (open pentagons)
obtained from 90 independent trajectories of murine neutrophils moving in a chemotactic
gradient of the substance fMLP as depicted in Fig.|1.9] Data show a linear increase in A,
however, the reduction of the slope as a function of 7 indicates deviations from the
conventional TFR Eq. (1.1).

1.5
Conclusions

In this chapter we have applied the concept of FRs as disgus$iee previous book
chapters to anomalous stochastic processes. This cnidésgienables us to address
the question whether conventional forms of FRs are validfore complicated types
of dynamics involving non-Markovian memory and non-Gaasslistributions. We
have answered this question for three fundamental types@halous stochastic
dynamics:

For Gaussian stochastic processes with correlated ntiseexistence of FDR2
implies the existence of FDR1, and we have found that FDRLrim implies the
existence of work TFR in conventional form. That is, analgticalculations showed
that the conventional work TFR holds for internal noise. légar, a weak violation
of the conventional form was detected in case of externaengielding a pre-factor
that is not equal to one and in particular depends on time raxgtviolation of the
conventional work TFR was derived fepace-fractional Lévy dynamicenfirming
previous results from the literature. We have also found titve conventional work
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TFR holds for a typical example dime-fractional dynamics These generic mod-
els suggest an intimate connection between FDRs and FRs&éafeanomalous
dynamics.

As a realistic example of anomalous dynamics, we have thetugsed biologi-
cal cell migration. By extracting the MSD and the positionfPlBom experimental
data for cells crawling in an equilibriurim vitro situation, we found that the cells
under investigation exhibited different dynamics on d#f& time scales deviating
from simple Brownian motion. For longer times, these celts/ed superdiffusively.
These experimental findings were reproduced by a stochrastiel in form of a frac-
tional Klein-Kramers equation. For cells moving in nonéiuium under chemo-
taxis, new data showed a breaking of FDR1 leading to a sttichmedeling in form
of a suitably extended fractional Klein-Kramers equatiéiurther analysis of this
data indicated the existence of anomalous work TFRs.

To better understand work TFRs in biological cell migratimth theoretically and
experimentally remains an important open problem. Howateright also be inter-
esting to experimentally check for anomalous work TFR ireazfsa particle dragged
through a highly viscous gel instead of through water [2@t,the fluctuations of a
driven pendulum in gel [101], for granular gases exhibitgupdiffusion ’[l—Ob], or
for glassy systems [5 6569]. On the theoretical side btsc results reported
in this chapter suggest to systematically check the remgivariety of conventional
fluctuation relationﬂéll 1] for anomalous generaiora.
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