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How does the mathematical description of a system change in dif-
ferent reference frames? Galilei first addressed this fundamental
question by formulating the famous principle of Galilean invari-
ance. It prescribes that the equations of motion of closed systems
remain the same in different inertial frames related by Galilean
transformations, thus imposing strong constraints on the dynam-
ical rules. However, real world systems are often described by
coarse-grained models integrating complex internal and exter-
nal interactions indistinguishably as friction and stochastic forces.
Since Galilean invariance is then violated, there is seemingly no
alternative principle to assess a priori the physical consistency of a
given stochastic model in different inertial frames. Here, starting
from the Kac–Zwanzig Hamiltonian model generating Brownian
motion, we show how Galilean invariance is broken during the
coarse-graining procedure when deriving stochastic equations.
Our analysis leads to a set of rules characterizing systems in differ-
ent inertial frames that have to be satisfied by general stochastic
models, which we call “weak Galilean invariance.” Several well-
known stochastic processes are invariant in these terms, except
the continuous-time random walk for which we derive the cor-
rect invariant description. Our results are particularly relevant for
the modeling of biological systems, as they provide a theoretical
principle to select physically consistent stochastic models before a
validation against experimental data.

stochastic processes | Galilean invariance | anomalous transport |
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C lassical mechanics is built upon the two intimately related
concepts of inertial reference frames and Galilean invari-

ance (GI) (1). The former are coordinate systems where a freely
moving particle (i.e., in the absence of external forces) either is
at rest or exhibits uniform rectilinear motion. The latter prin-
ciple states that in different inertial frames the equations of
motion of closed systems, i.e., including all their interacting con-
stituents, are invariant with respect to Galilean transformations
(GTs). These are in general affine transformations that pre-
serve both time intervals and distances between simultaneous
events (1). For systems whose dynamical evolution can be fully
characterized by microscopic deterministic models, GI plays a
fundamental constitutive role, manifest in the constraints that
it naturally imposes on the functional form of Newton’s equa-
tion. However, a large variety of complex systems in science and
nature are not modeled on a microscopic level with Newtonian
equations of motion, but rather on a mesoscopic level using,
e.g., stochastic Langevin equations or Fokker–Planck diffusion
equations to capture the coarse-grained effects of microscopic
interactions as friction and noise on the relevant degrees of free-
dom. The applications of such equations and their variants are
vast throughout the sciences (2–4).

Coarse-grained diffusive models are particularly relevant to
describe anomalous transport phenomena, where stochasticity
arises due to complex multiparticle interactions, whose precise
form is usually unknown. While for normal diffusion due to
Brownian motion the mean-square displacement (MSD) of an
ensemble of particles with positions X (t) at time t grows linearly

in the long-time limit, 〈X 2〉∼ tβ with β= 1, for anomalous dif-
fusion it scales nonlinearly with β 6=1. Anomalous dynamics has
been observed experimentally for a wide range of physical pro-
cesses like particle transport in plasmas, molecular diffusion in
nanopores, and charge transport in amorphous semiconductors
(5–7) that was first theoretically described in refs. 8 and 9 based
on the continuous-time random walk (CTRW) (10). Likewise,
anomalous diffusion was later found for biological motion (11–
13) and even human movement (14). Recently, it was established
as a ubiquitous characteristic of cellular processes on a molec-
ular level (15). Here, anomalous diffusion is observed, e.g., in
neuronal messenger ribonucleoprotein transport (16); in protein
structural fluctuations (17); and in the intracellular transport of
Saccharomyces cerevisiae mitochondria (18), chromosomal loci
of Escherichia coli cells (19, 20), engulfed microspheres (21),
and lipid and insulin granules (22, 23). However, because of
the intrinsic difficulties in assessing the details of the micro-
scopic interactions in experiments, theoretical models for such
anomalous processes cannot be typically derived from first prin-
ciples and are usually formulated on mostly phenomenological
grounds. In fact, a wealth of diffusive models has been suggested
in the literature, which rely on spatiotemporal memory effects
and non-Gaussian power-law statistics of various observables (5,
7, 24, 25). Unfortunately so far there is no fundamental rule
available that could be used to verify the physical consistency of
such stochastic models a priori. To distinguish between different
models it remains only the comparison with experimental data
that is often imprecise due to limited sample sizes.
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Here, we show that GI can provide precisely such a constitu-
tive principle. Even though the fundamental role of GI seemingly
breaks down for stochastic diffusive models due to the presence
of friction (26), they are nevertheless constrained by a weak form
of GI to be physically consistent in different inertial frames. The
weak GI rules derived below thus represent a general selection
principle for stochastic coarse-grained models. Previously, the
consequences of GI in the context of statistical mechanics were
first explored for fluid dynamics, where it establishes specific
relations between critical exponents of the characteristic param-
eters entering the derivation of the Navier–Stokes equation (27)
[although this result has been challenged (28)]. The problem
carries over to the famous Kardar-Parisi-Zhang equation (29)
whose GI is equally debated (30). Whether or not these statis-
tical equations feature GI has important practical implications
for the modeling of, e.g., fluid flows (28) and nonlinear biologi-
cal growth (31). Specifically, in molecular dynamics simulations
of fluids using stochastic Langevin thermostats it was found
that Langevin dynamics break GI by violating global momentum
conservation, which makes it unsuitable to simulate hydrody-
namic phenomena (32). Curing this deficiency led to novel
GI algorithms, most notably dissipative particle dynamics, now
widely used to simulate soft matter systems and simple liquids
(33–35).

The basic setup of our problem is represented in Fig. 1: Here
S and S̃ are two inertial reference frames, where S is the lab-
oratory frame at rest while S̃ is moving with uniform velocity v0
with respect to S. The GTs connecting the coordinates in the two
frames are given by

x̃ = x − v0t , ṽ = v − v0, [1]

where, for simplicity, we focus on the one-dimensional case.
Eq. 1 is the phase space version of the classical GTs assum-
ing an absolute time (1). A classical system of N + 1 interacting
particles is described by the Hamiltonian function

H (x1, v1; . . . ; xN+1, vN+1) =
∑
i

mi

2
v2
i (t) +

∑
i<j

U (xi(t), xj (t)),

[2]

where xi , vi are the position-velocity coordinates of the i th
particle in the reference frame S and U is the interaction poten-
tial satisfying some mild regularity conditions. Its dynamics is
specified by Hamilton’s equations

ẋi(t) = vi(t), mi v̇i(t) =− ∂

∂xi

∑
i<j

U (xi(t), xj (t)). [3]

Transforming the coordinates to the reference frame S̃ via Eq.
1, we see that ˙̃x i(t) = ṽi(t) and mi

˙̃v i(t) =− ∂
∂x̃i

∑
i<j U (x̃i(t),

x̃j (t)) if U depends only on the relative difference between
the particles’ positions, i.e., U (xi(t), xj (t)) =U (xi(t)− xj (t)),
because in this case x̃i(t)− x̃j (t) = xi(t)− xj (t). We thus
recover Newton’s equations of motion satisfying his third law,
which are identical in both reference frames; i.e., they satisfy GI.
Our goal is now to derive coarse-grained dynamics from systems
described by Eq. 3, where some of the microscopic degrees of
freedom have been eliminated, and to characterize their statistics
on such a mesoscopic level in both frames S, S̃ (Fig. 1).

The transition from Eq. 3 to an effective description in the
form of a stochastic diffusion equation can be made quantita-
tively precise for the specific scenario where one of the particles,
for simplicity let it be the (N + 1)th, is a tagged (tracer) particle
of mass mN+1 =M that interacts with the remaining particles
of equal mass mj =m via a harmonic potential of coupling
strength mω2

j , thus defining the environment as a heat bath;
i.e., U (X , xj ) =

∑N
j=1 mω

2
j [X (t)− xj (t)]

2/2. Conversely, inter-
actions between different bath particles are switched off. This
is a Galilean invariant version of the classical Kac–Zwanzig
model (36), whose relevance has been recently addressed (37).
Denoting by (X (t),V (t)) and (xj (t), vj (t)), j = 1, ...,N the
position and velocity variables of the tracer and heat bath
particles, respectively, in the frame S, their Hamilton’s equa-
tions become MẌ (t) =

∑N
j=1 mω

2
j [xj (t)−X (t)] and mẍj (t) =

−mω2
j [xj (t)−X (t)]. These equations specify the time evolution

of all N + 1 particles of the system (arrows in the box in Fig. 1A)
in S once the initial conditions are prescribed, which we take as
(X (0),V (0)) = (0, 0) and (xj (0), vj (0)) = (xj0, vj0), without loss
of generality. The great advantage of this model is that the effec-
tive dynamics for the tracer can be derived by integrating out the
bath degrees of freedom. This yields (36)

MẌ (t) =−
∫ t

0

Ω(t − t ′)Ẋ (t ′)dt ′+ ξ(t), [4]

where the memory kernel Ω and what later will become the
“noise” ξ in Langevin dynamics are exactly (36)
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Fig. 1. Pictorial representation of the setup: A system of N heat bath particles (black) and one tracer (red) is observed from two different reference frames
S and S̃. While S is at rest, S̃ is moving with velocity υ0 with respect to S. We consider three different levels of description of the original system: (A) The
microscopic system of N + 1 particles is described by deterministic equations of motion leading to trajectories fully specified by the initial conditions. (B1)
Alternatively, one can provide a stochastic coarse-grained model of the tracer dynamics in terms of effective dissipative friction forces and random collisions
with the N bath particles (arrowed spheres), which account for their original microscopic interactions with the probe. (C1) Finally, the system can be studied
in terms of its position and velocity statistics, whose distributions are determined by either experimental measurements or a prescribed stochastic model.
While the relationship between the dynamical evolutions in S and S̃ for A is specified by Galilean transformations of the position and velocity degrees of
freedom, here we derive the corresponding relationships for B1↔ B2 and C1↔ C2, yielding what we call weak Galilean invariance.
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Ω(t) =

N∑
j=1

ω2
j cos(ωj t), [5]

ξ(t) =

N∑
j=1

ωj vj0 sin(ωj t) +

N∑
j=1

ω2
j xj0 cos(ωj t). [6]

As can be seen from Eq. 6, ξ depends explicitly on the initial
conditions of the bath particles, which are related to those in
S̃ by x̃j0 = xj0, ṽj0 = vj0− v0 and X̃ (0) = 0, Ṽ (0) =−v0. Since
everything is exact, the dynamics in S̃ follow by applying the GTs
of Eq. 1 to Eqs. 4–6. Ω is unchanged under the transformation,
but Eq. 6 is changed due to the GTs of the initial velocities of
the bath particles. If we call ξ̃ the noise term in the transformed
frame, i.e., Eq. 6 in ∼ variables, the two noises are related by

ξ(t) = ξ̃(t) + v0

N∑
j=1

ωj sin(ωj t) = ξ̃(t) + v0

∫ t

0

Ω(t ′)dt ′. [7]

Overall, the deterministic coarse-grained equation of the tracer
in S̃ is then just Eq. 4 in ∼ variables

M
¨̃
X (t) =−

∫ t

0

Ω(t − t ′)
˙̃
X (t ′)dt ′+ ξ̃(t) [8]

=−
∫ t

0

Ω(t − t ′)(
˙̃
X (t ′) + v0)dt ′+ ξ(t), [9]

using Eq. 7. The deterministic effective equation of motion for
the tracer thus maintains the GI of the original microscopic
dynamics even after projecting out the degrees of freedom of the
bath particles.

For deriving stochastic Langevin dynamics the next step is to
simplify this coarse-grained description by specifying ξ(t) as a
random force instead of the deterministic force Eq. 6. On the
Langevin level, the dynamics of the tracer then effectively origi-
nates from both dissipative friction forces and random collisions
with the bath particles, accounting for their original microscopic
interactions with the probe. The statistics of ξ(t) are specified by
the distribution of xj0, vj0. Assuming that the heat bath is at equi-
librium in S, the velocity distribution is Maxwellian at the tem-
perature of the system T , implying 〈ξ(t)〉 = 0 and 〈ξ(t1)ξ(t2)〉=
kBTΩ(|t1− t2|) (36). Consequently, the fluctuation–dissipation
relation holds (38). Eq. 4 then defines a generalized Langevin
equation (LE) in S. Crucially, the notion of thermal equilibrium
is not frame invariant such that the stochastic coarse graining is
not possible directly for Eq. 8. Specifying the properties of the
random force that way per se singles out a reference frame and
thus inevitably breaks GI, because according to Eq. 7 the noise ξ̃
acquires a different statistic than ξ. However, after having spec-
ified ξ via the equilibrium assumption in S, Eq. 9 is still valid.
Eqs. 4 and 9 then both represent the same microscopic dynamics
in two different inertial frames. We see that Eq. 9 contains an
additional drift term, which could be obtained directly from Eq.
4 by performing a GT on the coordinates of its deterministic part
only while leaving the noise term unchanged.

The transformation rules of the stochastic equations of motion
imply that the resulting position–velocity processes (X , V ) and
(X̃ , Ṽ ) are related via a GT, even in the presence of stochastic-
ity, which can be shown by explicitly solving Eqs. 4 and 9, while
correctly accounting for the different initial conditions in the two
frames (SI Appendix, section 1). Consequently, also the probabil-
ity density functions (PDFs) for position and velocity in different
inertial frames can be related to each other directly. Including

the position coordinates as Ẋ (t) =V (t) and ˙̃
X (t) = Ṽ (t) we

have for underdamped dynamics the PDF transformation rule

P(x , v , t) = 〈δ(x −X (t))δ(v −V (t))〉

=
〈
δ(x − X̃ (t)− v0t)δ(v − Ṽ (t)− v0)

〉
= P̃(x − v0t , v − v0, t), [10]

since the expected value in both inertial frames is over the fluc-
tuations of the same heat bath defined in S. In terms of its
Fourier–Laplace transform [from now on denoted by different
independent variables according to (x , v , t)→ (k , p,λ)] the con-
nection is P(k , p,λ) = e−ipv0 P̃(k , p,λ− ikv0). For overdamped
dynamics the respective results are P(x , t) = P̃(x − v0t , t) and
in Fourier–Laplace space

P(k ,λ) = P̃(k ,λ− iv0k). [11]

The evolution equations of P(x , v , t) and P(x , t) can also be
shown to transform via a GT on their independent variables (SI
Appendix, section 2).

So far we have shown that a stochastic coarse-grained descrip-
tion inherently violates GI. Nevertheless, Eq. 7 characterizes the
stochastic dynamics in all different Galilean frames uniquely as
follows: (i) Stochastic equations of motion transform via a GT
on their position and velocity processes only; consequently, (ii)
Fokker–Planck (FP) and Klein–Kramers equations also trans-
form via a GT on their independent variables, and (iii) PDFs
transform as in Eqs. 10 and 11. The validity of the properties i–iii
is nontrivial and needs in principle to be shown for any specific
stochastic model at hand following a coarse-graining procedure.
These three Galilean transformation rules for coarse-grained
stochastic dynamics and their statistical counterparts yield what
we call weak GI: Apart from a shift of v0 or v0t for velocity
and position variables, respectively, the corresponding PDFs in S̃
remain unchanged compared with the ones in S. It is important
to distinguish these weak GI rules from conventional microscopic
GI. In systems satisfying the latter, the equations of motion
are strictly identical in all inertial frames, while their stochastic
coarse-grained equivalents are different.

Clearly, all processes described by the generalized LE (Eq.
4) satisfy i–iii, which includes normal diffusive processes. In this
case the FP equation in S̃ is the well-known advection–diffusion
equation. Eq. 4 also models anomalous diffusion if one uses for
Ω a power-law kernel in time (39), which highlights that these
properties are preserved in the anomalous regime. However, in
modeling anomalous diffusion a large variety of processes are
used for which a similarly rigorous coarse-graining procedure
is not available (5, 7, 24, 40). While the accurate determina-
tion of an underlying anomalous stochastic process ultimately
relies on the comparison of statistical quantities beyond the
MSD with experimental data (11), we propose that weak GI can
serve as an important criterion to assess the physical consistency
of stochastic models from a purely theoretical first-principles
perspective.

In fact, we verified the validity of our conjecture for several
other stochastic models generating both sub- and superdiffu-
sion that are commonly used in the literature, such as fractional
and scaled Brownian motion (41–43), the fractional LE (42–44),
Lévy flights (45–47), Lévy walks (24, 48–50), and the CTRW
(5, 10, 51). An overview is presented in SI Appendix, Table S1,
where for simplicity we demonstrate only the validity of property
ii (details of the calculations are discussed in SI Appendix, sec-
tion 2). Remarkably, apart from the CTRW, all representations
exhibit weak GI; i.e., applying a GT to the given Langevin or FP
description yields solutions in agreement with Eqs. 10 and 11.
For fractional Brownian motion, scaled Brownian motion, and
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the fractional LE (as a special case of the generalized LE), this
result can be proved based on the Gaussian nature of the process.
For Lévy flights it is a direct consequence of the Lévy–Khintchine
representation of Lévy processes (52). In these examples, the
Langevin dynamics can be expressed in terms of an additive
noise process and thus the transformation into frame S̃ by GT
is unproblematic, leading to an advective term v0∂/∂x as for
normal diffusion. Even though such a simple structure does not
apply to Lévy walks, surprisingly the same consistency is satis-
fied, as can be checked by imposing a GT onto the respective FP
equation (50) and verifying that the solutions in each frame are
related by Eq. 11. The FP equation in S̃ describes a Lévy walk
with asymmetric velocity jumps switching between −v0 + u and
−v0− u , where±u is the velocity in S, which clearly is physically
correct.

We now clarify the situation for the CTRW, a model that has
huge applications across all branches of the sciences (5–7, 40). In
the overdamped regime the PDF P of a CTRW in the frame S
is the solution of the diffusion equation (53, 54)

∂

∂t
P(x , t) =LDtP(x , t), L=σ

∂2

∂x2
, [12]

where σ is a generalized diffusion constant and Dt is a nonlocal
time operator defined as DtP(x , t) = ∂

∂t

∫ t

0
dt ′K (t − t ′)P(x , t ′),

which generalizes the Riemann–Liouville fractional differential
operator to arbitrary waiting-time distributions. The kernel K is
related to the so-called Laplace exponent Φ of the waiting-time
distribution by K (λ) = Φ(λ)−1 (53, 54). Therefore, its Fourier–
Laplace representation is DtP(x , t)→λP(k ,λ)/Φ(λ). In the
CTRW framework a constant drift can be incorporated by com-
plementing the diffusion operator with v0∂/∂x , which would sug-
gest that the FP equation in S̃ is given by ∂

∂t
P̃ =

[
v0

∂
∂x

+L
]
Dt P̃ .

Alternatively, another time nonlocal FP equation was previously
derived, in particular for Φ(λ) =λα (0<α< 1) corresponding to
Lévy stable distributed waiting times, by using the transformation
rule Eq. 11 and performing a Taylor expansion in the Fourier
variable up to the lowest approximation order (5, 55, 56). This
procedure leads to the equation ∂

∂t
P̃ = v0

∂
∂x

P̃+LDt P̃ .
However, both equations are not correct representations of

microscopic dynamics in view of the rules i–iii yielding weak GI.
In fact, the former does not satisfy the general rule Eq. 11 as
becomes clear by solving it in Fourier–Laplace space. The same
is true for the latter, whose solutions are even unphysical, as they
do not satisfy the requirement of positivity of a PDF (Fig. 2A

and SI Appendix, section 3). Therefore, a simple transformation
of the fractional diffusion equation obtained by arbitrarily adding
an advective term v0∂/∂x as for the Gaussian models and Lévy
flights (SI Appendix, Table S1) is not correct. Likewise, imple-
menting GTs directly on the Langevin description of CTRWs in
terms of subordination (51, 54, 57) is problematic (shown below).

Instead, the correct transformation of Eq. 12 into the frame
S̃ can be derived straightforwardly in Fourier–Laplace space.
Without loss of generality, we assume P(x , 0) = δ(x ). Thus, its
transform is λP(k ,λ)− 1 =−σk2[λ/Φ(λ)]P(k ,λ). Using prop-
erty iii, the GT is then implemented by the variable transfor-
mation λ→λ+ ikv0 and the transformation rule Eq. 11 relat-
ing P , P̃ . This immediately leads to a FP equation including
retardation effects

∂

∂t
P̃(x , t) = v0

∂

∂x
P̃(x , t) +LD(v0)

t P̃(x , t), [13]

where the operator D(v0)
t is the fractional substantial derivative

(49, 54, 58)

D(v0)
t P̃(x , t) =

[
∂

∂t
− v0

∂

∂x

]∫ t

0

dt ′K(t − t ′)P̃(x + v0(t − t ′), t ′),

[14]
which has Fourier–Laplace representation D(v0)

t P̃(x , t)→ (λ+

iv0k)P̃(k ,λ)/Φ(λ+ iv0k). Setting v0 = 0 recovers Eq. 12.
To further support our result, we also derive Eq. 13 directly

in (x , t) space. This requires a careful analysis due to the nonlo-
cal character of the operator Dt . On the one hand, the left-hand
side (lhs) of Eq. 12 and the time derivative in Dt transform
with the substitution ∂/∂t→ ∂/∂t − v0∂/∂x (chain rule applied
to Eq. 1). On the other hand, recalling the explicit definition
of a PDF in terms of probability (denoted as P) of events
(denoted as {·}), the integrand PDF is defined as P(x , t ′) =
P({x ≤Y (t ′)≤ x + dx}), where Y (t) denotes the position of
the CTRW. According to property i, Y (t ′) becomes Ỹ (t ′) + v0t

′

in the comoving frame S̃, while the measured position x trans-
forms at the later time t in agreement with the lhs of Eq.
12; i.e., x → x + v0t . Therefore, P(x , t ′) =P({x + v0(t − t ′)≤
Ỹ (t ′)≤ x + v0(t − t ′) + dx}) = P̃(x + v0(t − t ′), t ′). Note that
dx is invariant because the shift cancels out. Combining these
arguments yields Eq. 13. The fractional substantial derivative in
Eq. 14 highlights the existence of a space–time coupling, which
is absent in the frame S but is naturally required: Let y be the
position of the CTRW in S after its last jump occurred at time
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Fig. 2. Position distribution in the comoving frame S̃. (A) Propagator of the FP equation ∂
∂t P̃ = υ0

∂
∂x P̃+LDt P̃ suggested in refs. 5, 55, and 56 instead of Eq.

13. The explicit expression for the propagator is given in SI Appendix, Eq. S47. This function not only violates weak GI, but also exhibits nonphysical negative
values. Here, Φ(λ) =λα with α= 0.5, υ0 =−1, σ= 1, x0 = 0. (B) PDF solution of Eq. 13 (SI Appendix, Eq. S68) showing weak GI. Parameters are the same as

for A. We find perfect agreement with Monte Carlo simulations of the Langevin equation ˙̃Y(t) =−υ0 + ξ(t) (colored markers). (C) PDF solution of Eq. 13 (SI
Appendix, Eq. S68) with K(t) = tα−1/Γ(α) and α analytically continued to yield superdiffusion at α= 1.5. Other parameters are the same as for A. Again,
weak GI is observed.
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t and τ , ∆y respectively be the waiting time to the next jump
and its length. In S its position at time t + τ is then y + ∆y . In
S̃ this is y − v0τ + ∆y (Eq. 1, lhs). Thus, the final position in S̃
depends on both the jump amplitude ∆y and the waiting time τ .
Interestingly, a similar coupling is constitutive of the Lévy walk
model (24), which explains why it satisfies weak GI.

What is now the corresponding Langevin dynamics of the
anomalous diffusive process described by Eq. 13? The key is
to describe the CTRW directly in physical time rather than in
the widely used subordination picture (51, 54, 57). In the phys-
ical time representation a CTRW in S is given as Ẏ (t) = ξ(t),
where ξ is the derivative of a subordinated Brownian motion
(59). This is equivalently written as the formal definition ξ(t) =∫∞
0
ξ(s)δ(t −T (s)), where ξ is a white Gaussian noise with

〈ξ(t)〉= 0 and 〈ξ(t1)ξ(t2)〉= 2σδ(t1− t2), and T is a strictly
increasing Lévy process. Using this representation, we can calcu-
late the characteristic functional G of ξ for a general test function
u (SI Appendix, section 4),

G[u(r)] =

〈
exp

[
−σ
∫ ∞
0

[u(T (s))]2 ds

]〉
, [15]

where the brackets denote an average over the realizations of the
process T . A GT can now be performed without problems, lead-

ing to ˙̃
Y (t) =−v0 + ξ(t). Remarkably, using functional tech-

niques (60) together with the result in Eq. 15, we can show
that the FP equation for this process is precisely given by Eq.
13, thus completing the picture (SI Appendix, section 4). The
Langevin description in physical time highlights that to correctly
implement the change of frame, the constant advective force
exerted on the underlying random walk in the frame S̃ needs
to act at each time step, i.e., also during the trapping times.
This simple physical scenario underlies the complicated space–
time coupling manifest in the retardation of Eq. 13. Its modeling
in terms of subordination thus inevitably couples the equations
for the position and elapsed time processes, which makes any
analytical treatment challenging (an example is discussed in SI
Appendix, section 5, where we derive Eq. 13 for the process Ỹ
using its representation in terms of coupled subordinated equa-
tions). Further, using the characteristic functional of the noise ξ
in Eq. 15 one can derive its analytical solution

P̃(k ,λ) =
1

λ+ ikv0

[
1− σk2

Φ(λ+ ikv0) +σk2

]
, [16]

whose inverse Fourier–Laplace transform is plotted in Fig. 2B
for the particular case of T being a Lévy stable process of order
α (SI Appendix, Eq. S68). We observe the typical distribution of
a force-free CTRW (5) time-shifted with velocity v0, in perfect
agreement with numerical simulations of Ỹ .

Moreover, we find that Ỹ can also generate a superdiffusive
MSD, thus providing a unified model for both sub- and superdif-

fusion. This surprising fact relies on the Langevin description
in physical time and the equivalent characterization of ξ by
means of its multipoint correlation functions (59). In particu-
lar, its FP equation is still Eq. 13, which can be derived by
a generalization of Novikov’s theorem via functional methods
(61, 62) (SI Appendix, section 6), and the resulting PDF sat-
isfies weak GI. In Fig. 2C we plot its propagator for K (t) =
tα−1/Γ(α), now for 1<α< 2 (SI Appendix, Eq. S68, analyti-
cally continued in α). For v0 = 0, this PDF was first discussed in
ref. 63.

In summary, using a Galilean invariant version of the paradig-
matic Kac–Zwanzig model, we have derived the weak GI prop-
erties i–iii that need to be satisfied to consistently describe the
same stochastic system in different inertial frames. While these
properties hold for normal diffusion based on our analytical
derivation, by using these rules consistent anomalous diffusive
models can be constructed for both sub- and superdiffusion, even
though a precise coarse-graining procedure is missing for them.
We demonstrated this by providing the missing representation
for the important class of CTRW models, which shows that the
correct form is not at all suggested from the representation in
the rest frame. Moreover, the Langevin representation i discloses
that in a comoving frame the heat bath leads generally to an addi-
tive flow field on the tracer particle irrespective of the details of
the underlying coupling. Consequently, the definitions of work,
heat, and entropy production used within the recent theory of
stochastic thermodynamics (64) have to be modified to account
for the contribution of the external flow (65), highlighting fun-
damental similarities between normal and anomalous diffusive
systems, even though the stochastic thermodynamics of the latter
are so far not well understood (66). Along these lines, con-
nections between GI and the validity of fluctuation–dissipation
relations on the one hand and the celebrated fluctuation rela-
tions generalizing the second law of thermodynamics (64) on
the other hand have been suggested (66, 67) and need to be
investigated further. But our most important statement is that
ignoring our weak GI rules can easily lead to unphysical mod-
els, as exemplified by the CTRW with an ad hoc advective term
(Fig. 2A). The consequences of our results are thus far reaching.
Weak GI is expected to constrain all mesoscopic diffusive models
whose microscopic representation is expected to satisfy conven-
tional GI. As such, it provides an important selection principle
for stochastic models preceding comparison with data, which can
guide modeling approaches throughout the physical, chemical,
and biological sciences.
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Application to turbulence. Phys Rev Lett 58:1100.
49. Sokolov IM, Metzler R (2003) Towards deterministic equations for Lévy walks: The
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