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Abstract
If a point particle moves chaotically through a periodic array of scatterers
the associated transport coefficients are typically irregular functions under
variation of control parameters. For a piecewise linear two-parameter map
we analyse the structure of the associated irregular diffusion coefficient and
current by numerically computing dimensions from box-counting and from
the autocorrelation function of these graphs. We find that both dimensions
are fractal for large parameter intervals and that both quantities are themselves
fractal functions if computed locally on a uniform grid of small but finite
subintervals. We furthermore show that there is a simple functional relationship
between the structure of fractal fractal dimensions and the difference quotient
defined on these subintervals.

PACS numbers: 05.45.Df, 05.45.Ac, 05.60.Cd, 02.70.Rr

1. Introduction

Endeavours to understand fundamental laws of nonequilibrium statistical mechanics starting
from the deterministic, chaotic equations of motion of a many-particle system led to the
discovery of specific fractal structures forming the link between microscopic and macroscopic
scales: for dissipative, so-called thermostatted systems in which deterministic transport
processes such as heat or shear flow, or electric conduction, are generated by external fields,
fractal attractors were claimed to be at the origin of the second law of thermodynamics [1–3].
For open Hamiltonian systems the associated repeller usually exhibits fractal properties [4–6],
and in the case of closed Hamiltonian systems the hydrodynamic modes of diffusion and
reaction–diffusion were found to be fractal [7–9]. In all three cases the fractal dimensions of
these irregular structures could be explicitly linked to the transport coefficients of the different
systems [7].
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Singular measures and their fractal structures in phase space were also discovered to
play a fundamental role for the entropy production in simple two-dimensional area-preserving
multibaker maps [5, 6, 10]. Furthermore, for a particle moving chaotically through a periodic
array of scatterers the associated transport coefficients of drift, diffusion and chemical reaction
were found to be irregular, typically fractal functions of control parameters [11–19]. However,
in the latter case a detailed assessment of the irregularity of these curves in terms of fractal
dimensions was not performed up to now. One reason for the lack of such an analysis was
the limited size of the corresponding datasets due to the fact that the precise computation
of such irregular transport coefficients is generally very tedious. More recently, an exact
solution became available for the irregular transport coefficients of a two-parameter piecewise
linear chaotic map defined on the unit interval and periodically continued on the line [20], see
section 2. In this case the explicit expressions for the diffusion coefficient and for the current
were obtained in form of coupled recursion relations that converge very quickly enabling us
to numerically generate, in principle, arbitrarily precise and large datasets.

By using this algorithm, in this paper we analyse the structure of the parameter-dependent
diffusion coefficient and of the current by numerically computing the box-counting dimension
as well as the dimension related to the autocorrelation function of these graphs [21, 22]. These
two methods and our numerical implementation of them are briefly described in section 3.
As is well known [13–15], the type of irregularity of these curves changes by changing the
parameter: for example, in certain parameter regions the diffusion coefficient shares some
features with the self-similar Koch curve, whereas in other regions it looks like a deformed
Takagi function [23] or resembles some Weierstraß function [25]. This appearance of different
seemingly fractal structures in different subintervals motivates us to compute dimensions not
only globally for large intervals, but also locally by dividing these large intervals uniformly
into a grid of small but finite subintervals. This enables us to study the dimensions as functions
of the position of these subintervals. Our main result is presented in the first two parts of
section 4 and states that, firstly, both transport coefficients possess fractal dimensions on large
scales, and secondly, that both dimensions are fractal functions with respect to the position of
the respective subintervals on which they are computed. Hence, we say that these transport
coefficients are characterized by fractal fractal dimensions.

In the same section we compare the results for these two dimensions with the one obtained
from a third method that amounts to computing the difference quotient of the fractal diffusion
coefficient with respect to the same grid of small but finite subintervals. Previously, in
the case of diffusion this quantity was found to exhibit a certain structure as a function of
the respective control parameter that appeared to be related to the structure of the diffusion
coefficient [14]. In this paper we apply a refined analysis along these lines in parallel to our
dimension computations. We find that the local difference quotient exhibits a structure that is
qualitatively strikingly analogous to the functional dependence of the two local dimensions.
That the two dimensions considered here are closely related to each other, though, at least
in practice, quantitatively not necessarily identical, is well known [21, 22]. However, the
qualitative analogy to the difference quotient as a function of the position of the subintervals
suggests a further relationship to this additional quantity which, particularly, is much more
easy to compute than the two dimensions. In section 4.3 we provide a heuristic argument
yielding a straightforward functional relation between the autocorrelation dimension and the
difference quotient that we corroborate numerically. In section 4.4 we critically assess some
subtle numerical problems related to our dimension computations, particularly by comparing
our results for the transport coefficients to the ones obtained from a respective analysis of
the Takagi function. We show that the latter is a fractal that does not exhibit fractal fractal
dimensions and that our functional relation between the autocorrelation dimension and the
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Figure 1. (a) Diffusion coefficient D(a) on the interval 2 � a � 8 with 2000 data points for the
one-dimensional map equations (1), (2) sketched in the upper left edge with bias b = 0 and a as
the slope of the map. It has a box-counting dimension of B(D; 2 � a � 8) = 1.039 ± 0.001 and
an autocorrelation dimension of A(D; 2 � a � 8) = 1.074±0.001. The box-counting dimension
was furthermore computed locally on a regular grid of subintervals of size �a. Figures (b)–(e)
depict this local dimension for �a = 0.6, 0.12, 0.03, 0.006 as a function of the centre a of the
subintervals. By decreasing the size of the subintervals this function is itself getting irregular on
finer and finer scales. Values below one for a → 2 are due to numerical errors.

difference quotient does not hold in this case. One may suspect that in this respect the fractal
transport coefficients under discussion are different from self-affine fractal functions of Takagi
[23], de Rham [24], or Weierstraß [25] type. Section 5 contains a summary of our results and
lists some interesting open questions.

2. A simple map with fractal transport coefficients

Simple models exhibiting deterministic diffusion are one-dimensional maps defined by the
equation of motion

xn+1 = Ma,b(xn) (1)

where a, b ∈ R are control parameters and xn is the position of a point particle at discrete
time n. Ma,b(x) is continued periodically beyond the interval [−1/2, 1/2) onto the real line
by a lift of degree one, Ma,b(x + 1) = Ma,b(x) + 1. The map that was studied in [13–15, 20]
is defined by

Ma,b(x) = ax + b (2)

where a stands for the slope and b for the bias of the map. A sketch of this map is shown
in figure 1. The Lyapunov exponent of this system is given by λ = ln a implying that for
a > 1 the dynamics is chaotic. Let ρn(x) be the probability density for an ensemble of moving
particles evolving according to the Frobenius–Perron continuity equation [26]

ρn+1(x) =
∫

dy ρn(y) δ(x − Ma,b(y)). (3)

Here we are interested in the deterministic current and diffusion coefficient defined by the first
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Figure 2. (a) Diffusion coefficient D(a) as in figure 1. (b) Local box-counting dimension as in
figure 1(e), however, here as well as for (c) and (d ) a running average was performed over any
three neighbouring points. (c) Local autocorrelation dimension A(a), and (d ) the negative of the
absolute value of the local difference quotient Q(a). (b)–(d ) consist of 1000 points each and define
the size of the subintervals.

and second cumulants

J (a, b) := lim
n→∞

1

n
〈x〉 (4)

and

D(a, b) := lim
n→∞

1

2n
(〈x2〉 − 〈x〉2) (5)

respectively, where the angular brackets denote an average over the probability density ρn(x)

as a solution of equation (3) for the map equations (1), (2). The upper panels of all figures
shown in this paper depict the parameter-dependentdiffusion coefficient D(a, b) or the current
J (a, b) of this map either as functions of a for zero or fixed bias, or as functions of b for
fixed a > 1. The upper curves in figures 1(a)–3(c) were first computed in [13–15] by
means of a numerical implementation of analytical (transition matrix) methods. In this paper
all datasets were generated by the extremely efficient algorithm described in [20] yielding
datasets that are precise up to the limits of computer precision, see this reference for further
details.

In [13–15, 20] evidence was provided that all these functions exhibit a nontrivial structure
on arbitrarily fine scales, which here we consider as a qualitative definition for a function to
be fractal [21, 25, 27]. Partly such a behaviour was verified by producing blowups of finer and
finer parameter regions constantly exhibiting irregular structures, partly parameter regimes
could be detected that yielded approximately self-affine [28] structures, cp to the upper panels
of figures 1–3. The physical origin of this fractality can be traced back to the existence of long-
time dynamical correlations in the deterministic dynamics of equations (1), (2). A particular
property of this model is that it is topologically unstable under parameter variation. That is,
depending on the specific choice of parameters certain orbits may be allowed or forbidden,
which in the theory of symbolic dynamics is known as ‘pruning’ of orbits, respectively of the
associated symbol sequences [29]. In [13–15] for a certain parameter interval specific series of
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Figure 3. Diffusion coefficient D(a) for some subintervals of a as well as the corresponding
local box-counting dimension B(a), the autocorrelation dimension A(a) and the local difference
quotient Q(A). In all cases, D(a) consists of 2000 points. The inset in (b) depicts, for comparison,
the famous Takagi function. The dotted lines in the lower panels of (a)–(c) consist of 200 points
each, whereas the solid lines are respectively smoothed curves obtained from suitable running
averages over the original data.

points could be identified at which the dynamics is drastically changed related to this property.
These values indeed identified approximately similar regions appearing on different scales. In
case of diffusion, another approach to understand these fractal structures employs a Green–
Kubo formula [18, 19, 30]. By systematically evaluating the velocity autocorrelation function
of the model the diffusion coefficient can be written as a series whose single terms represent
dynamical correlations of increasingly higher order. The convergence rate of this series turns
out to be parameter dependent hence assessing the irregular structure of these curves. For
the map under consideration, a limiting case of this approach enables us to analytically relate
the shape of the diffusion coefficient to de Rham-type fractal functions of which the famous
Takagi function is a special case [14, 16]. However, these transport coefficients appear to be
especially complicated fractals in the sense that in different parameter regions different types
of fractal structures show up, cp the upper panels of all figures. Even more, these structures do
not seem to obey simple scaling laws, in contrast to Takagi, de Rham, or Weierstraß functions
[23–25], which is related to the fact that their shapes are getting deformed as a function of the
parameter. For the diffusion coefficient this particular property may physically be understood
with respect to the Green–Kubo formula mentioned above showing that this transport
coefficient emerges from two different fractal structures that are coupled to each other via
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integration [14, 16, 19, 30]. For the current there is only one of these two sources of fractality,
however, even this one changes in a very intricate way as a function of the parameter [31] and
does not appear to obey a de Rham-type functional equation [20, 24].

Thus, for the map equations (1), (2) there is already quite some evidence for a non-self-
affine fractality of the associated transport coefficients according to the qualitative definition
mentioned above. However, the irregularity of a curve can also be determined by computing
dimensions such as the box-counting dimension. With respect to such quantities, a set may
be called fractal if a dimension can be assigned to it which is not an integer yielding a
quantitative definition of this property [21, 25, 26, 28]. In this paper we focus on assessing the
irregularity of the transport coefficients of the map equations (1), (2) particularly with respect
to this second definition. Note that we consider both definitions only as being operational;
concerning discussions about a precise definition of fractal we refer to [21, 28].

A previous computation of the box-counting dimension for the function presented in
figure 1(a) based on a dataset of 8000 points led to the preliminary result that this dimension
should be larger than, but very close to one [14, 15]. This implies that any dimension
computations are extremely delicate in order to provide evidence for a possible non-integer
dimension. In the following section we briefly describe two standard methods for computing
the dimension of functions as well as our approach by means of the difference quotient before
in section 4 we confirm the above statement about a non-integer dimension by applying these
methods.

3. Methods for assessing the structure of irregular functions

3.1. Box-counting dimension

Let N(ε) be the number of squares needed to cover the graph G ⊂ R × R of a function
f : R → R, where ε is the length of one side of a square. If N(ε) behaves like a power law
for small enough ε, the box-counting dimension B is defined as

B := lim
ε→∞ − ln N(ε)

ln ε
. (6)

Hence, in order to compute the box-counting dimension of a function f for a given interval
[c1, c2] one must count the number of boxes hit by the graph G ⊂ ([c1, c2] × f ([c1, c2])) for
a quadratic grid of grid size ε. By successively decreasing the grid size, B is obtained from
the slope of a linear regression of equation (6). Since numerically a graph always consists
of a finite number of points a double-logarithmic plot of N(ε) as a function of ε may show
nonlinear behaviour in the region of small and large ε. To find the linear portion of the resulting
function is one of the crucial problems in order to minimize the computational error for the
box-counting dimension; for further problems see, e.g., [21, 22, 26, 32].

We have numerically implemented this method by generating from a given graph G for
any ε a vector in which each element consists of a pair of integers referring to the coordinates
of the respective box in the grid of squares that contains this point. This vector was sorted
first in x, and if the x coordinates were identical also in y. Then it was scanned again, and if
neighbouring pairs of unequal coordinates were encountered an integer counter was increased
by one.

3.2. Dimension from the autocorrelation function of a graph

Let f : R → R be a continuous bounded function. If, as in our case, f is only given on a finite
interval [c1, c2], this function is thought to be periodically extended on R. The autocorrelation
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function of f is then defined by [21]

K(h) = lim
c→∞

1

2c

∫ c

−c

dx(f (x + h) − f̄ )(f (x) − f̄ ) (7)

with f̄ := limc→∞ 1/(2c)
∫ c

−c
dx f (x) for the average value of f . Equation (8) can be

rewritten into

K(h) = K(0) − 1

2
lim
c→∞

1

2c

∫ c

−c

dx(f (x + h) − f (x))2 (8)

with K(0) := f̄ 2 − f̄ 2. If the autocorrelation function satisfies

K(0) − K(h) � Ch4−2A (9)

for small enough h ‘it is not unreasonable to expect’ the box-counting dimension B to equal
A [21]. However, it is well known that this is not always the case [22], hence we write the
separate symbol A and denote it as the autocorrelation dimension3. As in the case of the
box-counting dimension, the term 4−2A can be obtained by computing �K := K(0)−K(h)

for successively decreasing h and extracting the slope from a linear regression of this function
in a double-logarithmic plot. Again, the problematic part is to identify the region of linear
behaviour in order to obtain the slope of it.

Note that, in general, the box-counting dimension yields only an upper bound for the
Hausdorff dimension of a graph [22], hence based on the two dimensions introduced above
we cannot conclude about the Hausdorff dimension of the transport coefficients.

3.3. Difference quotient on a grid of small but finite subintervals

Let a function f be defined on the interval [c1, c2] ∈ R. Let us consider a grid of n subintervals
of size �d := (c2 − c1)/n satisfying [di, di+1] , di+1 := di + �d , i ∈ N, with d1 = c1 and
dn = c2. With any subinterval we associate a position di + �d/2 on the parameter line. On
any of these subintervals we now define the local difference quotient as

Q�d(di) := f (di + �d) − f (di)

�d
. (10)

If f is differentiable the limit f ′(di) = lim�d→0 Q�d(di) exists. However, since fractal
functions are by definition not differentiable Q�d(di) will not converge for �d → 0 in this
case. Nevertheless, for given small but finite �d > 0 the quantity Q�d(di) is well defined,
and Q as a function of di may yield some information about the irregularity of f .4 Since in
the following �d will normally be very small and held fixed we drop all indices and simplify
Q(d) ≡ Q�d(di).

4. Results

We arrange our numerical results in two parts: in section 4.1 we focus on the case of zero bias
b = 0 of our model equations (1), (2) for which there is only a nontrivial diffusion coefficient
as a function of the slope a as a parameter. Here we present results for a large parameter
interval as well as for some magnifications of it. In section 4.2 we study the case of a non-zero

3 Note that A is related to the Hölder exponent by H = 2 − A [21, 22], which in the context of Brownian motion
is also known as the Hurst exponent [32]. A may not be confused with the correlation dimension according to
Grassberger and Procaccia [26], which assesses the fractality of probability measures rather than that of graphs of
functions.
4 In [14] Q�d(di ) was denoted as a ‘pseudo-derivative’.
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bias b > 0 for which, additionally, there exists a current. In this case we deal with the
diffusion coefficient as well as with the current as functions of the two parameters a and b. In
section 4.3 we clarify the relation between the dimensions and the difference quotient
analytically and numerically. In section 4.4 we furthermore discuss the Takagi function
and argue that it shows properties that are significantly different from the ones exhibited by
fractal transport coefficients.

4.1. Diffusion coefficient for zero bias

We first quantitatively assess the irregularity of the diffusion coefficient D(a) for the bias
b = 0 on the interval 2 � a � 8 as shown in figure 1(a) by computing values for the
box-counting dimension B and the autocorrelation dimension A. In order to get numerically
reliable values we studied the dependence of the two dimensions on the size of datasets with
uniformly distributed points. For B we considered up to 1000 000 data points of D(a), for A

up to 2000 000. We found that the box-counting dimension converged quickly from below to a
value of B(D; 2 � a � 8) = 1.039 ± 0.001, where the numerical error denotes the maximum
amplitude of the fluctuations around the asymptotic value for large enough datasets. In contrast,
the autocorrelation dimension A was monotonously decreasing from above by indicating slow
convergence to an asymptotic value. In this case the data points were fitted by a constant plus
power law and the numerical error was obtained with respect to the upper and lower bounds
resulting from different fit parameters leading to A(D; 2 � a � 8) = 1.074 ± 0.001. Both
values are not the same, however, both are very close to but different from one indicating the
existence of a fractal according to our quantitative definition given in section 2. For all the
other datasets presented in the following we were not able to do this tedious error analysis but
computed the dimensions only for a fixed, large number of points. This implies that, because
of the weak convergence of A to an asymptotic value as mentioned above, results for A are
less reliable than for B.

We are now interested in the variation of these two dimensions if defined on a grid of
small but finite subintervals. For this purpose we split a given large parameter interval into
a large number of subintervals as described in section 4.3. On each subinterval a dataset of
1000 000 points was generated in case of B, and of 100 000 points in case of A, for which
the respective dimension was computed. The dimension as a function of the position of these
subintervals we may denote as the local dimension B�a(a). First of all, figures 1(b)–(d ) show
that for D(a) on 2 � a � 8 this function is not constant but varies irregularly with values
close to one. This quantifies the observation of [13–15] that D(a) exhibits different types of
fractal structures in different parameter regions5. However, even more figure 1 shows that
by decreasing the size of the subintervals more and more structure in the local box-counting
dimension becomes visible. This appearance of irregular structure on finer and finer scales
indicates that, according to our first, qualitative definition of fractality, down to the size of
the subintervals the local box-counting dimension behaves again like a fractal function. How
this function evolves if the size of the subintervals goes to zero may deserve more detailed
investigations that go beyond the scope of this paper. There exist lower and upper bounds for
the local box-counting dimension, see also section 4.4; however, though bounded one may
strongly suspect that the limiting case of B�a(a) for �a → 0 is typically not well defined.
Note furthermore the somewhat similar oscillatory behaviour of D(a) in figure 1(a) and of the

5 In [14] this property was called multifractal. However, this denotation already appears to be occupied for
characterizing the irregular structure of probability measures with respect to exhibiting a spectrum of non-integer
dimensions, see, e.g., [26]. Hence, we refrain from such a denotation.
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local dimension in figure 1(e). Analogous results were obtained for the local autocorrelation
dimension.

In figure 2(b) a slightly ‘smoothed’ version of the graph of figure 1(e) is shown by
having performed a running average over any three neighbouring points. This procedure
was applied to most of the following local quantities in order to eliminate irregularities that
may have resulted from numerical errors. Figures 2(c) and (d ) present respective results
for the local autocorrelation dimension A(a) of D(a) on 2 � a � 8 shown again in
figure 2(a) as well as for the local difference quotient Q(a) on the same subintervals according
to equation (10). As for Q(a), in the following we drop the index �a for A and B, however,
the respective values can be obtained from the figure captions. Figures 2(b)–(d ) show a
striking similarity between the local box-counting dimension, the autocorrelation dimension
and the negative of the absolute value of the local difference quotient. Why we chose
particularly the absolute value of Q(a) will become clear in section 4.3. The behaviour of
the local difference quotient suggests a somewhat simple functional relationship between
the two local dimensions and this quantity. It seems to indicate an explanation of the
irregular structure of all these curves with respect to ‘differentiating’ the original function of
figure 2(a) over the set of subintervals; however, as we will discuss in section 4.4 in general this
interpretation has to be handled with much care. Note furthermore that on finer scales there
are some systematic deviations between these three curves as can be detected, for example, by
looking at the envelope of the extrema of B(a) and A(a) compared to −|Q(a)|. Note also the
quantitative deviations between the local box-counting dimension and the local autocorrelation
dimension6.

Due to the limited datasets of 1000 points for the graphs shown in figures 2(b) and
(c) together with the associated numerical errors we were not able to compute any reliable
box-counting dimensions for these graphs of fractal dimensions. These problems do not
exist for Q(a), but instead the same difficulty as we discussed for the local dimensions even
more clearly shows up, namely, that this quantity is not well defined in the limit of small
subintervals. Indeed, by plotting −|Q(a)| for datasets between 1000 and 1000 000 points one
observes that the local minima keep decreasing thus indicating that the structure of this curve
changes profoundly with respect to the given number of subintervals. However, by trying
to compute the box-counting dimensions of these different datasets we observed that, over
a significant range of scales, the respective functions obeyed a power-law behaviour, which
enabled us to extract values for this dimension. We found that it monotonously increased
from B(−|Q(a)|; 2 � a � 8) � 1.32 for 1000 points up to B(−|Q(a)|; 2 � a � 8) � 1.66
for 1000 000 points. Hence, although Q(a) may not be well defined in the limiting case of
infinitely small subintervals we conclude that for a finite number of subintervals and down
to certain scales it exhibits characteristics of a fractal function according to our second,
quantitative definition of fractality. Due to the similarity between the local dimensions and
−|Q(a)| one may conjecture that the same applies if the local dimensions were computed on
finer and finer scales, which appears to be supported by the qualitative assessment of figure 1.
Consequently, we say that D(a) as shown in figure 2(a) is characterized by a fractal fractal
dimension.

Figure 3 presents similar results for B(a),A(a) and Q(a) on some selected subintervals
of D(a), 2 � a � 8, which exhibit different fractal structures as shown respectively in the
upper panels of (a)–(c). In (a), though barely visible, there is an underlying triangular-
like self-affinity that reminds a bit of a Koch curve [14]. The inset of (b) shows the plot

6 We remark that, by using the code of [20], similar qualitative and quantitative results concerning the local box-
counting dimension and the local difference quotient were obtained by Koza [33].
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Figure 4. (a) Current J(a) on the interval 2 � a � 8 for b = 0.01. Note the regions of negative
currents, e.g., above odd integer slopes a. As before, (b) depicts the local box-counting dimension
B(a), (c) the local autocorrelation dimension A(a) and (d ) minus the absolute value of the local
difference quotient Q(a). J(a) consists of 2000 points, the other three graphs consist of 600 points
each and are smoothed out by running averages over three neighbouring points.

of the Takagi function as computed from the respective functional equation [5, 6, 23],
which is strictly self-similar [28] on arbitrarily fine scales and (c) may more generally
remind one of some Weierstraß function [25]. In case (a) the dimension computations
were particularly difficult probably corresponding to the fact that for a → 2 the diffusive
dynamics of the model equations (1), (2) approaches a random walk behaviour connected
to a smooth functional dependence of the diffusion coefficient [13–15]. As for figure 2,
we have computed the box-counting dimension for D(a) on these three subintervals
leading to (a) B(D; 2 � a � 3) = 1.021, (b) B(D; 3 � a � 3.1) = 1.044 and (c)
B(D; 5.6 � a � 5.7) = 1.041. The numerical error is approximately in the last digits. For
the autocorrelation dimension of (a) to (c) our results indicate that A > B. In all these cases
also the two local dimensions as well as the local difference quotient were computed, see
figure 3, demonstrating again a considerable similarity between the structure of all these three
local quantities.

4.2. Diffusion coefficient for non-zero bias

If we choose for the map equations (1), (2) a non-zero bias b > 0 the diffusion coefficient
becomes a function of two parameters D(a, b). Based on stochastic theory one may not
necessarily expect that a diffusion coefficient explicitly depends on the bias, however, in
case of this deterministic chaotic model the nontrivial dynamical correlations mentioned in
section 2 cause D to also be a function of b. Furthermore, for b > 0 because of symmetry
breaking there exists a nonzero current J (a, b) that, again, is a function of the two parameters.
In the upper panels of figures 4 and 5 we present results for the current J (a) at fixed b close
to zero as well as for the diffusion coefficient D(b) and the current J (b) for a close to the
onset of chaos at a = 1, where the Lyapunov exponent of the system is zero. Typically, the
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Figure 5. The upper panel in (a) shows the diffusion coefficient D(b) on the interval 0 � b � 0.5
for a = 1.125, the respective part in (b) the current J(b) for the same setting. The inset in (b)
presents the current divided by the bias in order to magnify the fractal fine structure of this function.
In both cases the parameter regions of zero diffusion coefficient, respectively the plateau regions
of the current and the linearly decreasing regions in J(b)/b, correspond to Arnold tongues. The
lower two panels in (a) and (b) depict the local box-counting dimension B(b) as well as, in contrast
to the previous figures, the positive absolute value of the local difference quotient Q(a) for both
transport coefficients. Both D(b) and J(b) consist of 2000 points each, the other graphs consist
of 600 points each and are smoothed like figures 4(b) and (c).

current is a fractal function of the two control parameters, however, as shown in figure 5(b)
certain parameter intervals display smooth behaviour, which is reminiscent of phase-locked
dynamics in so-called Arnold tongues [20]. The inset of figure 5(b) depicts a blowup of the
current divided by the bias magnifying the irregular structure of the current on fine scales.
The Arnold tongues also show up in the diffusion coefficient presented in figure 5(a). Another
interesting feature is the existence of current reversals in figure 4(a), that is, depending on the
slope a the sign of the current is either positive or negative reminding of ratchet-like dynamics
[20, 31].

As before, for figures 4(a) and 5 the box-counting dimension B was computed for the
whole intervals displayed in these figures yielding B(J ; 2 � a � 8; b = 0.01) = 1.015 for
figure 4(a), B(D; a = 1.125; 0 � b � 0.5) = 1.021 for figure 5(a) and B(J ; a = 1.125; 0 �
b � 0.5) = 1.030 for figure 5(b), with B < A again in all three cases. Hence, also in
the general case of two parameters both the current and the diffusion coefficient are fractal
functions according to our quantitative definition of fractality.

For the current of figure 4(a) as previously the two local dimensions as well as the
local difference quotient were computed (see figures 4(b)–(d )). As far as the regions of
negative currents are concerned, they do not seem to be reflected in specific properties of the
corresponding local quantities. Apart from that, we observe the qualitative similarity between
these three different quantities as already discussed before. This seems to confirm that there
is a simple functional relationship between B,A, and the negative of the absolute value of
Q. However, figure 5 clearly contradicts this statement by showing that, in these two cases,
B is qualitatively similar to the positive absolute value of Q. These results indicate that the
relationship between the two local dimensions and Q may indeed be more intricate asking
for an explanation of this sign change. Note furthermore the similarity between D,B and, to
some extent, |Q|; however, compared to the previous figures it appears that, by matching the
local maxima and minima, for D and for J there are more deviations between these different
structures on finer scales than before.
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4.3. The functional relation between the autocorrelation dimension and the difference
quotient

The previous figures provided numerical evidence for the existence of a relationship between
the local box-counting dimension, respectively the autocorrelation dimension and the local
difference quotient. As pointed out in the introduction, the relation between box-counting and
the autocorrelation function is basic [21], hence it remains to clarify the relation of these two
quantities to the difference quotient only. Figures 2–4 show that both B and A are apparently
similar to −|Q|, whereas figure 5 clearly tells us that these two local dimensions are similar to
+|Q|. This puzzle will be solved in the following based on some simple analytical arguments.

We start from the observation that the autocorrelation function in the form of equation (8)
already contains the difference �f (x, h) := f (x + h) − f (x) for a function f (x). Here
we are interested in the autocorrelation function for f on a small parameter interval
[d − �d/2, d + �d/2], thus we rewrite equation (8) in these variables and combine it with
the assumed power-law decay of the autocorrelation function (9) yielding

1

2�d

∫ d+�d/2

d−�d/2
dx(�f (x, h))2 = Ch4−2A (h 
 1). (11)

Let now in addition be �d 
 1 and h � �d . For small enough �d we approximate the
average over this interval by

1

�d

∫ d+�d/2

d−�d/2
dx(�f(x, h))2 � [f (d + �d/2) − f (d − �d/2)]2 ≡ (�f (d))2 (�d 
 1)

(12)

leading to
1
2 (�f (d))2 � C(�d)4−2A. (13)

However, there is no reason why only A may be a function of d, hence C ≡ C(d), as was
already remarked in [22]. By furthermore noting that Q(d) ≡ �f (d)/�d as introduced in
equation (10), equation (13) yields the important result

|Q(d)| �
√

2C(d)(�d)1−A(d). (14)

This equation predicts a simple relationship between the absolute value of the difference
quotient Q on the left-hand side and a combination of C and A on the right-hand side as
functions of d for fixed subinterval size �d .

We now discuss the validity of this equation for the two cases of (i) D(a) on the interval
of 2 � a � 8, cp to figures 1, 2, as well as for (ii) D(b) on the interval 0 � b � 0.5, cp to
figure 5(a). The second panels of figures 6(a) and (b) from above show the local autocorrelation
dimension A of these two curves, the third panels the associated local difference quotient Q
in its original form, i.e., without taking the absolute value, whereas the lowest panels contain,
among others, the respective absolute values of Q. Equation (14) explains why only the
absolute value of Q should be related to C, respectively to B. That this is the correct solution is
indeed confirmed by figure 6 by very carefully matching the functions depicted in the second
to the fourth panels of figure 6(a) to each other, say, just above a = 7. Apart from such very
fine details, the apparent constant upper bound of A(a) also points to the absolute value of
Q(a).

More important is to understand, on the basis of this equation, this apparent ‘sign
change’ in the relation between C and |Q| as observed before. For this purpose we further
simplify equation (14) in order to check whether we arrive at a simple linear relationship
between these quantities as suggested by figures 2–5. We first expand the right-hand side of
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Figure 6. Assessing the relation between the autocorrelation dimension A and the difference
quotient Q for two representative examples: (a) depicts the decisive quantities for the diffusion
coefficient D(a) on the interval 2 � a � 8, see also figures 1, 2, whereas (b) shows the same
quantities for the diffusion coefficient D(b) on 0 � b � 0.5, cp to figure 5(a). The upper panels
contain results for the prefactor C of the power-law equation (9), whereas the next panels show
again the local autocorrelation function obtained from the exponent of the same power law, for (a)
cp to figures 1 and 2. Remarkable are the irregularities of C in both cases and that the oscillations
are opposite to A in (a), whereas they are parallel to A in (b). The third panels depict again the
local difference quotient Q, see also figure 2 for (a) and 5(a) for (b). The fourth panels show a
comparison between the absolute value of Q, which is the left-hand side of equation (14) (black
line) in comparison with the right-hand side P (a) of the same equation that is a function of C and
A (grey/dotted curve). Both curves are almost indistinguishable. In (a) all curves consist of 1000
points, in (b) the curves in the upper three panels as well as the grey curve in the fourth consist of
600 points each. Q(b) in the fourth panel is different from the one in the third panel with respect
to having chosen 3000 points.

equation (14) according to (�d)1−A � 1 + (1−A) ln(�d)+ · · ·. The bounds 0 � 1−A � 0.2
and −10 � ln(�d) � −5 obtained from the numerical data presented in our figures indicate
that we can safely neglect all terms of higher order yielding

|Q(d)| �
√

2C(d)[1 + (1 − A) ln(�d)]. (15)

For the two cases depicted in figure 6 we checked numerically that this equation is indeed
a very good approximation. Since �d 
 1 and A � 1, the logarithmic term in the above
equation is strictly positive. Hence, the origin of a possible ‘sign change’ between |Q(d)|
and A(d) can only be due to the prefactor C(d). The functional dependence of C(d)

indeed turns out to provide the key for a complete understanding: in the upper panels of
figures 6(a) and (b) C is plotted as a function of the respective control parameters. In
both cases it obviously exhibits an irregular structure that is quite analogous to the irregular
structures shown by the corresponding quantities A,Q, and B. Hence, Q and A are not the
only functions in equation (14), respectively equation (15), exhibiting fractal behaviour but
there is a third fractal function C involved in the functional relation between them. In a
way, this appears to be natural, since there is no reason why by assuming the power law
equation (9) for the autocorrelation function and extracting a fractal local autocorrelation
dimension from its exponent the respective prefactor should not also be a fractal. Figure 6
shows that in the case of the diffusion coefficient as a function of a for zero bias b = 0, i.e.,
if the map equation (2) is anti-symmetric, the oscillations of C(a) are somewhat opposite to
the ones of the corresponding A(a), whereas in the case of symmetry breaking with non-zero
bias b > 0 the oscillations of the respective function are parallel to the associated A(b).

Let us first discuss the case where the oscillations of both quantities are parallel to each
other, cf to figure 6(b). Then there is no mechanism inverting the oscillations on the right-hand
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side of equation (15) that may mimic a minus sign. In the case of figure 6(a) the situation is
more difficult: since the oscillations of C(a) and A(a) are opposite to each other it is not clear
in advance which contribution dominates equation (15). However, a quantitative evaluation
yields 1 � A � 1.13 and −10 � ln(�a) � −5, hence 1 � 1 + (1 − A) ln(�a) � 2.3. On
the other hand, with 0 � C � 40 it is 0 �

√
2C � 9; indeed, as shown by figure 6(a), for

large a intervals it is C � 1. Hence, one would expect that for most intervals the first term
in equation (15) dominates the second one indicating that the most pronounced features of
|Q(a)| are rather related to C(a) than to A(a). A look at the envelope of the largest local
maxima of C(a) and Q(a) compared with A(a) confirms this heuristic argument.

In order to assess the validity of our explanation quantitatively, the lowest panels of
figures 6(a), (b) display the left-hand side of equation (14), that is, the absolute value of the
respective local difference quotient Q, in comparison with the right-hand side of this equation
P(d) := √

2C(d)(�d)1−A(d) before linearization. Both figures show an excellent agreement
of these two functions thus confirming the validity of equation (14). Note that in (b) the
number of points of both datasets is not equal indicating that the relation between these two
functions holds over a broad range of subinterval sizes �b. The linearization equation (15)
is indistinguishable from equation (14) on the scale of the figures, hence it was not included.
We thus come to the conclusion that in the case of the fractal transport coefficients under
discussion indeed the autocorrelation dimension A and the absolute value of the difference
quotient Q are related to each other by a simple, under certain circumstances approximately
linear functional relationship. However, in addition this relation involves another fractal
function, which is the prefactor of the power-law equation (9) that is itself a fractal function
of the same variable. The oscillations of this function C can be either parallel or opposite to
the oscillations of A and hence determine whether the oscillations of |Q| are in turn parallel
or opposite to A consequently explaining this sign change that previously was introduced ad
hoc in the respective relationship.

4.4. The Takagi function compared with the fractal diffusion coefficient

An important question is whether the results presented above are specific to these fractal
transport coefficients or whether they more generally apply to self-affine fractal functions of
Takagi, de Rham, or Weierstraß type. Below we discuss this point starting from the Takagi
function [23] and then compare our findings with the previous results providing some insight
into the problems with and limitations of assessing a curve by computing local dimensions
and difference quotients.

Let us first remind ourselves of the fundamental property of monotonicity of any dimension
such as box-counting, which says that if E is a subset of F then dim(E) � dim(F ) [21, 22].
This property poses a strict upper bound to any local dimension, which is the value of the
dimension computed on the respective larger interval that got subdivided. The numbers for
the box-counting dimension B of the interval shown in figures 1, 2 and for its blowups of
figure 3 appear to be consistent with this inequality within the bounds of numerical errors.
As explained in section 4.1, for our local B we were not able to quantify the numerical error,
hence this consistency check indirectly yields some indication of the size of these errors: in
figures 1(b) and (c), 3(a) (which was already noted to be problematic), and 5(a), (b) the local
fluctuations significantly exceed these upper bounds indicating that all structures are mostly
within the numerical errors. As was already discussed, for the local autocorrelation dimension
A the numerical errors are even larger. This is demonstrated by figure 3 where the local A of
the blowups partly drastically exceed the ones associated to figure 2 exemplifying again how
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delicate dimensional computations for these fractal transport coefficients are, as we already
remarked at the end of section 2.

In order to understand similarities and differences between fractal transport coefficients
and self-affine fractal functions we now elaborate on the dimensionality of the Takagi function
depicted in the inset of figure 3(b), which appears to be strikingly similar to the diffusion
coefficient shown in the same figure. First of all, as is proved in [21] for the Takagi function
it is exactly B = 1. However, this value is identical with the respective lower bound for
B, hence according to monotonicity any subinterval must also have B = 1. Consequently,
the Takagi function does not exhibit any irregularities in the local B. On the other hand, the
local difference quotient Q of the Takagi function still fluctuates irregularly due to the fact
that this function is nowhere differentiable. This appears to contradict the main result of
section 4.3 that there is an intimate relation between B and Q via A. But this relation is based,
among others, on the assumption that A decays like a power law, see equation (9), whereas
numerical computations for the Takagi function yield that A decays exactly logarithmically.
Consequently, the autocorrelation dimension is not well defined in this case and the link
between box-counting and the difference quotient breaks down.

At this point we may emphasize again that for our fractal transport coefficients such as
the Takagi-like one shown in figure 3(b) we unambiguously find non-logarithmic decay for
the autocorrelation function corresponding to a power law for small enough variables. Further
differences between both graphs of figure 3(b) can be detected in the variations of the local
Q, which in the case of the Takagi function are strictly self-similar reflecting the construction
of this function and which diverge symmetrically to plus and minus infinity whenever this
function shows a local minimum. The local Q of the diffusion coefficient, in comparison,
is inherently non-symmetric, as already indicated by the lower panel of figure 3(b), and
diverges much more slowly to minus infinity than to plus infinity. We also did preliminary
computations for the local B of the Takagi function and compared them with our computations
of the respective diffusion coefficient. For the Takagi function there is an extremely poor
convergence to the box-counting power-law equation (6), and if by mistake one computes
local dimensions from these transient regimes one erroneously generates fluctuations of the
local B that look analogous to the fluctuations of the local Q. However, upon closer scrutiny
one finds that the different functions N(ε) assessing the local variation of B according to the
prescription in section 3.1 slowly converge to each other without any intersections. For our
transport coefficient computations we did not observe any such peculiar convergence of these
functions in the case of local dimensions, instead we detected clear intersections indicating
that we do not obtain local fluctuations that are due to some initial transient regime. In the
case of figure 3(b) these differences furthermore show up in the quantitative values obtained
for the local B, which are 1 � B � 1.05 for the Takagi function, with larger portions of B
being close to one, and approximately 1.02 � B � 1.05 for the diffusion coefficient.

We conclude that, although at first view the diffusion coefficient of figure 3(b) resembles
very much a Takagi function, the latter has significantly different dimensional properties: it
is a fractal according to our qualitative definition of a fractal in section 2, whereas to our
quantitative definition it provides a counterexample, since B = 1. Furthermore, the local B
is simply constant, A is not well defined and hence, as far as we can tell, there is no simple
functional relation between the local Q and any local dimension. It might be interesting
to analyse generalized Takagi functions with non-integer box-counting and autocorrelation
dimensions such as the ones introduced in [21, 22] along the same lines. One may suspect that
they yield further examples of self-affine fractals that do not exhibit fractal fractal dimensions
and for which the simple relation to the local difference quotient suggested by equation (14)
does not hold.
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5. Summary and conclusions

The goal of this paper was to assess the irregular structure of the parameter-dependent transport
coefficients of a simple chaotic model system, which is a two-parameter piecewise linear map
defined on the line. For computing these transport coefficients, which are the diffusion
coefficient and the current as functions of the slope and of the bias of the map, we used
a known numerical algorithm that is based on an exact solution of this problem [20]. The
resulting datasets were evaluated by computing the box-counting dimension and the dimension
related to the autocorrelation function of the respective graphs. Both quantities were computed
globally for large parameter intervals as well as locally on a regular grid of small but finite
subintervals yielding them as functions of the position of these subintervals. Furthermore, we
computed the local difference quotient on the same set of subintervals.

Our main findings are that, firstly, both the diffusion coefficient and the current of this
model are fractal functions of the two control parameters, in the quantitative sense that our
numerical computations yielded box-counting and autocorrelation dimensions for them that
are, except in regions of phase locking, larger than one. Secondly, we find that if both
dimensions are evaluated locally and plotted as functions of the position of the respective
subintervals they again exhibit nontrivial structure on finer and finer scales, which is in
agreement with our qualitative definition of fractality. Computations of the box-counting
dimension for the qualitatively similar local difference quotient yielded values for these local
variations that were significantly larger than one. Hence, we concluded that both transport
coefficients are characterized by what we called fractal fractal dimensions. Thirdly, we
detected a striking qualitative similarity between the local box-counting dimension, the local
autocorrelation dimension, and the local difference quotient. While the relation between
box-counting and the autocorrelation function is standard, we showed by means of a simple
analytical approximation that there is an additional simple functional relationship between the
autocorrelation dimension and the difference quotient. This result was verified numerically.
A key ingredient was the observation that not only these local quantities are fractal functions
of the control parameters but that furthermore another prefactor resulting from the power-
law behaviour of the autocorrelation function turned out to be fractal in the same way. This
enabled us to explain why partly the oscillations of the local autocorrelation function and of the
local box-counting dimension are opposite to the ones of the absolute value of the difference
quotient while in other cases they are parallel to each other.

Finally, we applied the same analysis to the Takagi function in order to learn to which
extent the fractality of physical transport coefficients is similar to, or different from, the one of
self-affine fractal functions of generalized Takagi, de Rham, or Weierstraß type. We found that
the Takagi function does not exhibit fractal fractal dimensions and that there is no functional
relationship to the local difference quotient, in sharp contrast to our findings for the transport
coefficients. As we discussed, it is extremely difficult to obtain reliable numerical results if all
dimensions are close to one, however, our conclusion is that the fractal transport coefficients
analysed in this paper belong to a different class of fractal functions than the self-affine fractals
of the type mentioned above. This is exemplified by these significantly different properties
and may be understood with respect to the physical origin of the fractality of the transport
coefficients. It would be important to further study these similarities and differences by
analysing other self-affine fractals along the same lines.

Another important, more mathematical problem concerns the limiting behaviour of both
local dimensions and the local difference quotient in the case of fractal transport coefficients.
It seems evident that, for all three quantities, the respective limiting cases for the size of the
subintervals going to zero will not exist, however, it might be helpful to learn more about
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the specific type of the supposed non-convergence possibly by looking at lower and upper
bounds for these functions in this limiting case. We furthermore remark that similar irregular
dependencies of local dimensions may hold not only for the case of fractal functions but also
for probability measures on fractal sets such as attractors in dissipative systems. Another
direction of possible future research may concern the computation of power spectra for these
fractal transport coefficients in order to learn about the frequency dependence of the fractal
oscillations [21]. One may also think of applying a wavelet analysis to these functions. We
finally remark that practically the local difference quotient is, of course, way easier to compute
than any local box-counting or autocorrelation dimension. Although at the moment we see
no straightforward way to obtain quantitative values for these two local dimensions based on
computing local difference quotients, since there is no simple scaling between these different
quantities, it appears that the latter yields quite some information about the structure of fractal
transport coefficients. Hence, if one is primarily interested in the qualitative fluctuations of
local dimensions of the transport coefficients studied in this paper the local difference quotient
provides a convenient access road to first approximate results.
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