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Fractional diffusion equation for an n-dimensional correlated Lévy walk
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Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading
faster than Brownian motion. They have many applications across different disciplines. However, so far the
derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a
fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to
derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time
limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk
diffusion in terms of quantities that can be measured experimentally.
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I. INTRODUCTION

For most of the last century diffusive processes were
understood in terms of Brownian motion, which describes
the random-looking flickering of a tracer particle in a fluid.
This type of stochastic dynamics is characterized by Gaussian
probability density functions (PDFs) for both the position x
and the velocity v of a moving particle by generating a mean
square displacement (MSD) of an ensemble of particles that
increases linearly for large times, (xz) ~ t[1,2]. The Brownian
paradigm was challenged over the past few decades due to
more refined measurement techniques reporting anomalous
diffusion, where the MSD increases nonlinearly in time,
(x?) ~ t” with v # 1 [3-5]. Subdiffusion with an exponent
v < 1 has especially been found for motion in crowded en-
vironments [6], superdiffusion with v > 1 was observed, e.g.,
for chaotic transport of tracer particles in turbulent flows [7] as
well as for foraging biological organisms [8]. The easiest way
to model spreading faster than Brownian motion is in terms
of Lévy flights [5,9,10]: Here the step length £ is a random
variable drawn independently and identically distributed from
a fat-tailed Lévy stable PDF characterized by power law tails,
f) ~ €775 with 0 < & < 2. Correspondingly, Lévy flights
feature infinite propagation speeds and diverging MSDs. This
motivated the formulation of Lévy walks (LWs) [9,10], where
a particle follows straight-line trajectories under the constraint
of finite velocities by stochastically reorienting itself (possibly
with intermittent resting phases) before repeating the process.
They became an important concept for modeling a wide
range of physical processes [10]. LWs belong to the class
of (generalized) velocity jump processes (VIPs): Central to
their description is the running-time distribution, specified by
a PDF, which describes how long a particle moves in one
direction before undergoing a stochastic reorientation event.
LWs are obtained by choosing a Lévy stable running-time PDF
coupled to a corresponding step length PDF by finite velocities,
which generates superdiffusion with finite MSDs. For VJPs
where the running-time PDF is exponentially distributed, in
which case the process is memoryless, or Markov, one recovers
the case of normal diffusion with a MSD that increases linearly
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for large times. These two basic VIPs are special cases of the
more general class of continuous time random walks [3,11].

For a Brownian particle the PDFs of position and velocity
can easily be calculated by solving the standard diffusion
equation, i.e., Fick’s second law, and the corresponding
Fokker-Planck equation. These two equations arise as special
cases of the Klein-Kramers equation, which is a Fokker-
Planck equation both in position and velocity space [1,2].
Deriving corresponding equations for anomalous diffusion
led to fractional differential equations, where noninteger
derivatives are used based on power-law repositioning kernels
with infinite second moments [12]. While for subdiffusion
fractional diffusion equations have been derived based on
subordination or continuous time random walk theory [3,11],
this problem turned out to be much more nontrivial for
Lévy walkers due to the spatiotemporal coupling imposing
finite velocities [10]. Only very recently progress was made
by deriving an integrodifferential wave equation for a one-
dimensional LW [13]. More generally, in position and velocity
space a fractional Klein-Kramers equation containing an
n-dimensional correlated LW as a special case was given
in Refs. [14,15] without resting phases, and in Ref. [16]
when resting phases are included. An open question, however,
is how to extract a fractional diffusion equation for LWs
from such a generalized Klein-Kramers equation. A key
problem for establishing a relationship between LWs and a
fractional diffusion equation is that generally a variety of
fractional Laplace operators is available, and the correct choice
is not obvious. Obtaining such an equation enables one to
analytically solve first passage and arrival time problems,
which is relevant to study search problems for physical and
biological processes [17].

In this paper we derive such an equation for a superdif-
fusive LW by starting from the fractional Klein-Kramers
equation in Refs. [14,16], based on an expansion in terms
of moment equations. Using a Cattaneo approximation, in
the limit of large times we obtain a diffusion equation with
a Dirichlet fractional Laplacian correction term, which can
be solved exactly. That this is not merely a mathematical
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exercise but that our result has profound physical meaning
is demonstrated by the fact that in previous literature exactly
such equations have been written down ad hoc for modeling
intermittent diffusive dynamics as a superposition of Brownian
motion with Lévy flights [18-20]. This dynamics has in turn
been observed in experiments measuring the movements of
biological organisms [21-27]. That our derivation includes
short-range memory makes our result very relevant to such
biophysical applications. Our systematic derivation discloses
how this type of dynamics emerges from autocorrelated LWs
by yielding exact expressions for all quantities involved in our
final equation. These expressions are in turn based on the joint
PDF for the velocities of two successive steps and the running
time PDF, which can be measured experimentally.

We proceed as follows: We first introduce generalized
VIJPs by briefly reviewing previously derived equations. We
then expand the delay kernel characterizing the fractional
Klein-Kramers equation defining a LW in Laplace space for
large time, before inverting the result back to spatiotemporal
variables. Next we derive and investigate the corresponding
moment equations and then close them by use of the Cattaneo
approximation. Finally, we show the equivalence of the Riesz
and Dirichlet fractional Laplacians, which enables us to
write down our central result, a fractional diffusion equation
modeling an n-dimensional correlated LW in the large time
limit. The section following this is devoted to numerical
simulations before we summarize and discuss our results in
the final section.

II. GENERALIZED VELOCITY JUMP EQUATION
WITHOUT RESTS

We give a description of a generalized VJP without rests.
In the case where there is a resting phase of stochastic length
included, see Taylor-King et al. [16].

Attime t = 0, a biological agent chooses a direction 6 and
speed s at random. The agent then travels with velocity v = s6
for T units of time, where t is also drawn from probability
distribution f;. At time ¢ = 7, the agent then instantaneously
reorients itself with a new direction and speed. The process
repeats indefinitely.

This motion is governed by two primary stochastic effects.
We specify these by PDFs, as given below.

(a) Running time. The time spent running, denoted 7, is
governed by the pdf f;(¢), where fooo f:()dt = 1.

(b) Reorientation. We allow velocities from one run to
another to be correlated. We denote the velocity during the
running phase immediately before reorientation by v’ and the
velocity immediately post-reorientation by v, where v',v € V,
for velocity space V C R" in n spatial dimensions. The
velocity v is dependent on v’ and is instantly selected upon
entering a new running phase, governed by the joint pdf
T(v,v"). We assume that this reorientation PDF is separable,
so that T'(v,v") = g(6,0")h(s,s’)/s"~" where @ is a vector of
length (n — 1) containing angles and s = ||v]| is the speed. In
two dimensions, the turning kernel is decomposed as follows:

(i) The angle distribution: g(6,0’), requires the normaliza-
tion [ ¢(0,6')d6 = 1.

(ii) The speed distribution: i(s,s’), requires the normaliza-
tion [, h(s,s")ds = 1.
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In Appendix A we describe a simple Gillespie algorithm
for generating a sample path. We remark that a VJP where
velocities from one run to another are not correlated yields a
conventional LW as a special case [10].

As derived in Ref. [14], the density of particles following a
velocity jump process without rests is given by

9
[5 +v- Vx]p(t,x,v)

= —/ D, (t —s)p(s,x — (t — s)v,v)ds
0

13
+/ D, (t — s)/ T, v)p(s,x — (t — s)v',0")dv'ds,
0 v

ey
where &, (¢) can be found implicitly by the equation
dF; !
=— [ P:()F (1 —s)ds, €5
dt 0

for F;(t) = ftoo fz(s)ds.In Appendix B we offer an alternative
derivation, which may appeal especially to mathematical
biologists. More practically than Eq. (2), one can use the
Laplace space description

M) T—AF()
1 - fr ()\) Fr ()L)
An interesting point to note is that for the Markov velocity

jump process where f; is exponentially distributed with mean
nw= X’l, then @, manifests as a constant rate parameter, so

d,. (1) =

3)

f)=xe ™ = ()= ﬁ )

and therefore

O.(M)=x & O ()= xd(). (5)

III. DELAY KERNEL BEHAVIOR

For us to consider the large time behavior of the velocity
jump process, we wish to explore Eq. (1) for large r.
Conveniently in Laplace space, large time ¢ corresponds to
small Laplace variable A. We now study the form of delay
kernel @, given a running distribution f;. By definition of &,
in Laplace space, we need to investigate Eq. (3).

In the case where the mean and variance of the running
distribution is finite, one can simply Taylor expand the
underlying distribution f; and delay kernel @, in Laplace
space. When either of the first two moments are undefined, one
must be more careful and rely on asymptotic expansions. The
case where both the mean and variance are finite is explored
in Ref. [16]. In this paper we review this case, and we present
analysis for when the variance is infinite. The case when both
the mean and variance of the running distribution is infinite
is more difficult and will be investigated in future work. We
expand the running distribution f; in Laplace space including
terms up to quadratic order.
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A. Finite mean and variance

If the first two moments of f; are defined, then
F)=1—= @+ 50 -, 6)
=1 —ph+ 507+ — .., (7)

where ;1 = E(t) = (1), and 6% = E(r?) — [E(0)]* = (¢3) —
(t)2. Taylor expanding ®, we find that

d(L) = P(0) + D' (0)A + %&)’/(0))\2 +...asx— 0, (8)

1 1/0? 2

=—+4+-—=-1)2+00R)asr — 0. )
mwoo2\u?

Note that Eq. (9) is consistent with Egs. (4) and (5) as when f;

is exponentially distributed u?> = o2. This case was examined

in detail in earlier work [16] and eventually leads to a diffusion

equation in the large time limit.

B. Finite mean, infinite variance

If only the first moment is defined (i.e., finite mean, infinite
variance), then we observe a fat-tailed distribution of the form

fo(t) ~1727% as t — o0, (10)
for & € (0,1]. In Laplace space, this gives the expansion [28]

) =1—(OA+yra™ — =1 —pur4yalt -

Y

as A — 0, where u and y will depend on the parameters of
the distribution f;(¢). In Appendix C, we give an example
expansion of f; for the Pareto distribution.

Using Eq. (3) in conjunction with the expansion given by
Eq. (11), we find that

- M1 — x4+ yate) 1 — pa 4 palte
¢uy~( uA +y ) ur+y a2
M)»—)/)LIJ”" U — YA
Noting the geometric expansion,
1 I = (yrA2\" 1 2 1%)?
a=—z<y )=_+y2+(y3)""
m—yA N nwooop iz
(13)
for |A\*| < u/y, therefore
T 1 y}‘a min{l+4«, 20}
PG~ —+— -2+ 02 2N ash — 0. (14)
woou

Ifa = landy = (0> + u?)/2, then Eq. (14) is consistent with
Eq. (8).

IV. INVERSION BACK TO SPATIOTEMPORAL
VARIABLES

We wish to carry out the analysis for the velocity jump
process without rests. The density is given by Eq. (1). In
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Fourier-Laplace space, we have

A +ik-v]ph,k,v) — po(k,v)
=—d (A +ik-v)p(r.k,v)

+ &, + ik - v)f T, v)p(hk,v)dv'. (15)
%

It is now required that we analyze the term
O\ + ik - v)p(A,k,v). (16)

When we have finite mean and infinite variance, we wish to
evaluate the expansion given by Eq. (14). Therefore, we wish
to evaluate terms of the form

A+ik-v)®
+V( )

d_D()\+ik-v)~|:l 5 —()»+ik-v)i|.
m 1

7)

The term (A + ik - v)* is a multidimensional version of the
fractional material derivative introduced in Ref. [29]. Because
the fundamental solution of the material derivative equation
is only defined in a weak sense [30], and limited analytic
progress made in dimensions higher than one [31], we avoid
using this pseudodifferential operator. If we are considering
the large time limit, then we make the ansatz A = O(||k]|'**).
In this regime we can then use the binomial theorem to simplify
Eq. (17) if we specify that ||v|| ~ 1. We obtain the term

) A 11 . pe—1
[l+ y([ik - v] —i—a)»[zzk v]* 7 4 ..0) —()L+ik-v)i|.
w I

(18)

We henceforth drop the term A[ik - v]®~!; this is because this
term will only be large in the small region when ||k - v|| < 1.

By inserting the expression given in Eq. (18) into Eq. (17),
putting it into Eq. (15) and then inverting into spatiotemporal
variables, we can write down Eq. (1) with the delay kernel that
relates to a running distribution with finite mean and infinite
variance:

a
[& + V- Vx}p(t’xvv)

——[i+1( V)“—<3+ v)} (t,%,v)
=% sz- x 5 T Ve ) [ptxw

/ 1 y / o 8 /
—i—/T(v,v)[——i——z(v -Vy) —<—+v -Vx)]
v noop ot

x p(t,x,v) dv'. (19)

V. MOMENT EQUATIONS

When integrating over the velocity space, we generate an
equation for the conservation of mass; this equation refers to
the flux of the momentum. More generally, by considering
successively greater monomial moments in the velocity space,
one obtains a system of k£ equations where the equation for the
time evolution of moment k corresponds to the flux of moment
k + 1. It therefore becomes necessary to “close” the system
of equations to create something mathematically tractable. We
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define the notation for the first three moments as

mozfp(t,x,v)dv,m1 :/ vp(t,x,v)dv,
v 1%

and M? = / v’ p(t,x,v)dv. (20)
\4

In order to make progress, we must first make an assumption
on the turning kernel 7'. By considering that the mean post-turn
velocity has the same orientation as the previous velocity, we
define the index of persistence v, via the relation

(V) = / vT (v,v)dv = Y0’ (21)
%

Informally, this means that turning angles between consecutive
velocities have zero mean.

Integrating over v, our equation for m is just conservation
of mass:

am°

— +V,-m'=0. 22
o+ (22)
For m!, our equation becomes
ol
Va [—g’ + V. M2:|

m. |y
=—-0- Ilfd)[— + —2/ v(v - Vy)* p(t,x,v)dv].
158 w=Jv
(23)

One option is to use the Cattaneo approximation to make
progress.

VI. CATTANEO APPROXIMATION STEP

We need to explore our options for methods to close the ve-
locity space. In the velocity jump literature, arguably the most
cogent method is the Cattaneo approximation popularised by
Hillen [16,32,33].

For the case where the speed distribution is independent
of the previous running step, i.e., h(s,s") = h(s), we approx-
imate M2 by the second moment of some function i, =
Unmin(t,X,v), such that u,;, has the same first two moments as
p = p(t,x,v) and is minimized in the L?(V) norm weighted
by h(s)/s"~!. This is essentially minimizing oscillations in
the velocity space while simultaneously weighting down
speeds that would be unlikely to occur [32]. The Cattaneo
approximation is particularly valid for large times, as it
assumes that any initial data in the velocity space has been
smoothed out.

We introduce Lagrangian multipliers A =

A' = Al(z,x) and then define
H(u) = 1/ Wy A0 f dv —m°
u) = —dv — v—m
h(s)/s" 1 v

—A'-(/ vudu—ml). (24)
|4

By the Euler-Lagrange equation [34], we can minimize H (u)
to find that

A%#,x) and

Ao(t,x)h(s) Al'@,x) - v)h(s)

sn—1 sn—1

u(t,x,v) = (25)
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We now use the constraints to find A% and A!. For m° we have

mO:/udvz /@
v v s"

where A, = Area($") and " = {x € R**! : ||x|| = 1} is the
hollow n-sphere centered at the origin. Notice also that the
It v Vh(s) /s"~'dv = 0 by symmetry. For the first moment, we
calculate

h T
m' = [vuav=nal [ B av=stval @)
\4 \4

=AA,_1,  (26)

sh—1

where S,f = [, sPh(s)ds is the fth moment of the speed
distribution &, and V,, = Vol(V"), where V" is the closure of
§"—1 j.e., the filled unit ball around the origin. Therefore, we
can stipulate the form for u;, as

mO(t,x)h(s)
Sn71A11—1

(m'(1,x) - V)h(s)
SZsn=ly,
We now approximate the second moment of p by the second
moment of up,. Noting that A,,_;/V,, = n,

Mmin(l,xsv) = (28)

S2
M*(Uin) = f V0 Uin(t,x,0)dv = L Lm°(t,x).  (29)
vV n

In the nonfractional case, this allows us to close the set of
moment equations by the approximation V. - M? & 57’2’me0.

In the fractional case, one obtains terms of the form
fv v(v - V,)? p dv, to which one must evaluate. We do so in
Appendix D by defining the Riesz derivative, which is needed
to perform these evaluations.

VII. EFFECTIVE FRACTIONAL DIFFUSION EQUATION

For m!, using the Cattaneo approximation, Eq. (23)
becomes
Va aml + Si V,m?
1 — wd n

ml y S}IlJra Sz+0¢
=—4+ = vem® + L —gem' ). (30
Ay M V82 M G0
We can eliminate for m° to obtain
wg  9°m° n am°
1 —) 972 ' ar
(1 —y) ot ot

0(2) o)
u¥a Sh v2m®
T -y n
O(l|k11%)
SH— S2+tx
+ )4 h D1+Cl +y h > ]D}\;»aml . (31)
/'LAn 1\—/—/ V S —
O(l|k||"**) OQH| k|| )

We are using the scaling A = O(||k||'T®) and we can ignore
higher order terms. Therefore, our equation becomes
am’ _ uya S ySit
ot (1 —y) n HAL1

In order to foster tractability, we can relate fractional deriva-
tives via the following theorem.

Vim® + 2 Diremd. (32)
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FIG. 1. Plot of the function Y, (&) forO < a < 1 withd = 2 (red,
bottom) and d = 3 (blue, top).

Theorem 1: The Riesz fractional derivative given by
Eq. (D4) can be related to the Dirichlet fractional Laplacian
for mixing measure M(d@) = d@ via the relationship

DL f(x) = Ta(@) Ay f(x), (33)

where the Dirichlet fractional Laplacian is defined via the
Fourier transform as

F[AL f0)] = 11kl f(k), (34)
and
2./ sin (“T)EEZZ; d=2
Td(a) r 2+a 2 4o .
3/2 o (%) r&=%) _
47T/ SIH(T)(F(#)—@) d=273
(35)

Crucially, T,(«) depends on the dimension d, is a nonmono-
tonic function of «, and therefore has a maximum or minimum
ajj, where %Td(a;) = 0. An illustration of Y;(«) is shown in
Fig. 1for0 <o < 1ford =2,3.

Proof. See Appendix E. ]

We remark that one could conceivably consider another
fractional Laplacian, depending upon the derivation and appli-
cation to be studied. Our choice is motivated by computational

tractability.
Using Theorem 1, one can rewrite Eq. (32) as
P 0 SZ Sl+a Tta
- mVa S0 4 YO0y o)A md. (36)

ot U=y n F T AL

Equation (36) is our central result. To solve this equation,
we make use of the following theorem from Blumenthal and
Getoor [35].

Theorem 2. For the transition density fg(¢,x) defined by

e tIEI :/ e 9 fu(t.x)dx, (37
]R’ll

then for 0 < B < 2, f is given by the self-similarity relation
fa(t.x) = fs(1,x/t"/P)/1"/F and

1 o0 B 2
/ ™" T (|1x19)ds,

I0 = G
(38)
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where J,(x) is the nth Bessel function of the first kind. When
B = 2, we obtain the usual Gaussian distribution.
Proof. See Blumenthal and Getoor [35]. |
Therefore, the solution to Eq. (36) is

t t
mo(t’x)=f2<329x>*fl+a<m7x)9 (39)

where * represents the convolution operator and

S2 Sl+a
Dy= MV S und Drw = YO ). (40)
(I—=vYa) n WA,

We note that if D;,, has an interior maximum (i.e.,
there exists some a* € (0,1) such that d%[D1+a]a=a* =0and

ddez[DHa]a:a* < 0), then by examining Eq. (36) in Fourier
space, one can optimally reduce the order 1 modes. While
T,(«) given by Eq. (35) will have an interior maximum, one
would need to choose a particular form of f; in such a way
that D4, has an interior maximum.

VIII. NUMERICAL SIMULATIONS

To demonstrate the validity of Eq. (36) and its solution
Eq. (39), we reconstruct m°(¢,x) from simulations of Algo-
rithm I defined in Appendix A. In Figs. 2 and 3, we plot
the distribution of sample paths released from the origin in
two dimensions for varying D, and Dj4,. As the primary
contribution of this paper is analysis, and there are many
parameters involved with our model, we avoid carrying out a
detailed numerical study. To obtain a sufficient match between
simulation and the analytic expression for m®, 10* simulations
of Algorithm I were carried out. At time T.,q = 103, the
simulations are stopped. The resulting sample paths are binned
into 300 x 300 boxes to re-create the distribution shown in
Fig. 2; a cross section is also shown to show the close match
between distributions in Fig. 3.

The underlying choices made in running distribution f;
and turning kernel 7" are as follows. The running distribution
fz is given by Eq. (Cl) for tp =1/2 and B =3/2 (so
o = 1/2), in which case u = (t) = 1. In two dimensions we
write the turning kernel T as T'(v,v") = g(6,0")h(s)/s and we
choose

P cos(0—0")

2w ly(k)

and we specify that s* = 1. The angle change distribution
g is a von Mises distribution; the index of persistence ¥,
is then ¥y = I1(x)/Ip(x). To vary the contribution from
Gaussian and fractional part of the analytic solution, we
run the simulation twice, once with k =0 (so D, = 0 and
Di4o & 0.493) so to highlight the non-Gaussian nature of m°,
and once with k = 10 (so D, & 9.228 and D, = 0.493) for
a more Gaussian-like solution. We see that we clearly obtain
a close match between the simulation and analytic solution
curves. As the number of simulations increases, the curves
become indistinguishable by eye.

9(0,0)) = and h(s) = 8(s — s™), 41)

IX. DISCUSSION AND CONCLUSIONS

In this paper we have seen that for a generalized VIP, if we
send the second moment of the running distribution to infinity,
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FIG. 2. Comparison of simulations of Algorithm I, see Appendix A, and analytic solution to m°(z,x) given by Eq. (39). Top row: case
where k = 0, (a) simulation, (b) analytic solution. Bottom row: case where ¥ = 10, (c) simulation, (d) analytic solution. Full details in main

text.

in the limit of large time we approximately obtain a fractional
diffusion equation. This is particularly interesting, since for a
running distribution with finite mean w, and variance o2, as
detailed in Ref. [16], we obtain an effective diffusion equation

in the large time limit with coefficient

S 1 1 /02
Dy = 1= —=-1)] 42
a=lma(Ey)) @

When the running-time distribution is exponentially dis-
tributed, the second term in the square brackets is identically
zero. Therefore, we can view our diffusion constant as the
contribution from the exponential component of the running-
time distribution, plus an additional (non-Markovian) term for
nonexponential running times. When considering Eq. (36), we
see essentially a Markov process, plus a non-Markov fractional
correction term. Additionally for Eq. (36), one finds that in
the limit as @ — 1, the diffusion equation is recovered with
diffusion constant given by Eq. (42).

While our theory thus captures non-Markovian memory
effects, it does not carry through the finite velocity constraint
of LWs as implemented, e.g., by Eq. (41) to our fractional
diffusion Eq. (36). This implies that its solution, the PDF
Eq. (39), does not reproduce the ballistic fronts and respective
cutoffs of LW PDFs [10]; see also Figs. 2 and 3. Consequently,
it generates infinite second moments as for Lévy flights. This is
due to the expansion leading from Eq. (17) to Eq. (18), which
is necessary in order to perform an inverse Fourier-Laplace
transform, as well as the Cattaneo approximation. Figure 3
suggests that for large times these fronts are approximately
negligible for reproducing the overall shape of LW PDFs.
Capturing them would necessitate generalizing our theory to
include higher-order moment equations and avoiding the use
of the Binomial expansion in Eq. (17), which we performed
to achieve analytical tractability. However, the focus of our
present theory is not on these fronts but rather on the novel
type of intermittency emerging from LWs with memory, and
the possibility to go to higher dimensions.
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x107°

Prob. density
©w &

N

FIG. 3. Cross section of m°(¢,x) for varying «. For k = 0, the
smooth blue (top) curve shows the analytic solution for m?; the jagged
blue (top) curve shows the simulation constructed m°. For x = 10,
the smooth red (bottom) curve shows the analytic solution for m°; the
jagged red (bottom) curve shows the simulation constructed m°. Full
details in main text.

One-dimensional versions of Eq. (36) consisting of a sum
of a conventional Laplacian modeling Brownian motion plus
a fractional one reproducing Lévy flights have been written
down ad hoc in previous literature based on physical reasoning.
This demonstrates the physical significance of our derivation
and its result: Lombholt er al. [18] proposed an equation of
this type in order to model the optimal target search on a
fast-folding polymer chain by an ensemble of proteins. Here
the conventional Laplacian reproduced the one-dimensional
diffusive sliding of proteins or enzymes along the DNA chain
while the fractional Laplacian captured the intersegmental
transfers, or jumps, at chain contact points due to polymer
looping. A generalized version of this model was considered
by Lomholt et al. [19] in order to study an intermittent search
process that switches between local Brownian search events
and Lévy relocation times. On a purely mathematical level,
equations of this type form a subclass of distributed-order
fractional diffusion equations; see Ref. [20], Egs. (39) and (41)
for modeling a diffusion equation with a superposition of
two (fractional) Laplacians, and its solution Eq. (42) in terms
of a convolution. We remark that this type of intermittent
dynamics is different from the one considered by Bénichou
et al. [17]: There it was explicitly distinguished between
a Brownian search mode during which a target could be
found, and relocation dynamics during which a searcher was
insensitive for any target search. This dynamics was modeled
by a set of two coupled equations, with a different one for each
process. In that sense, equations like Eq. (36) are somewhat
closer to the concept of composite Brownian motion [25,36]:
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This dynamics was designed to model the search of a forager,
or particle, in patchy environments [23], where inter- and
intrapatch movements were defined by Brownian motion
with different mean step lengths. This stochastic motion
was generalised by Reynolds [37] in terms of an adaptive
LW encompassing composite Brownian motion, where the
Brownian inter-patch movements were replaced by a LW.
Note, however, that in all the above models the intermittent
dynamics is put in by hand as a sum of two different stochastic
processes reproducing local search and non-local relocation
events while our Eq. (36) emerges from a single auto-correlated
LW: Interestingly, here the Brownian term is due to short-range
auto-correlations in the LW dynamics while the Lévy term
results from the power law jumps. Our mathematical derivation
thus gives all terms in equations that are of the type of Eq. (36)
precise physical meaning.

This is important especially in view of a number of
recent experiments: For the dinoflagellate Oxyrrhis marina,
Bartumeus et al. [27] reported a switching between Lévy and
Brownian search strategies depending on the density of its
prey distribution. Similar results were obtained for coastal
jellyfish (Rhizostoma octopus) [24]. Movement patterns of
crawling mussels (Mytilus edulis) shifted from Lévy toward
Brownian motion with increasing mussel density, where the
Brownian motion emerged from frequent encounters between
the mussels in dense environments [22]. Such types of
intermittency can also be generated by a predator due to
spatiotemporal sampling of prey in different environments:
Sims et al. found a switching between Lévy and Brownian
search patterns for a variety of free-ranging marine predators,
where the animals were hunting either for sparse prey in
deep ocean or for abundant prey close to the more productive
shelf-edge [21,26]. In all these works the experimental data
was analyzed in view of either Brownian or Lévy dynamics
but not by a superposition of both. Our new diffusion Eq. (36)
allows for the latter analysis by shedding light on the origin
of this dynamics in terms of correlated LWs. Important
for experimental applications is also that the (generalized)
diffusion coefficients Eq. (40) quantifying this dynamics can
be extracted from measuring the PDFs for speed, running time,
and turning angle. That our approach explicitly includes cor-
relations is especially promising for describing the movement
of biological organisms, where memory often matters [38,39].
Along these lines it would be interesting to derive a fractional
Klein-Kramers equation that is more general than Eq. (1)
by containing long-range correlations beyond two successive
steps. Following our approach, one may then try to extract
a fractional diffusion equation for a long-range correlated
Lévy walk. In terms of more general applications, we note
that an intermittent switching between Lévy and Brownian
search may be advantageous to optimize the random search of
a mobile robot for adapting efficiently under changing target
density [40].

Note added in proof. We have recently become aware
of the following references: Metzler et al. [41], contains a
recent review about Lévy walks and flights; Barkai et al.
[42], shows an alternative way to derive Lévy walks from
physical principles; and in Barkai et al. [43], another version
of a correlated Lévy walk was studied.
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APPENDIX A: GILLESPIE ALGORITHM

Here we give a simple Gillespie algorithm [44] for
generating a sample path up until time T¢,q > 0. It should
be noted that the sample path will need to be truncated as the
algorithm generates positions beyond T¢pq.

Algorithm 1: Algorithm to generate a single generalized VI
sample path without rests.

Data: Initialize time ¢t = 0, starting position at x(r = 0) = x( and
starting velocity at v(t = 0) = vy.

Assume particle has just initiated a running state.

while r < T,,q do

Sample time spent running 7 ~ f;(¢).

Update position: x(f + 7) <« x(¢) + tv(?).

Sample new velocity for next running phase: v(t + 7) ~ T'(- ,v(¢)).
Update time t < 1 + 7.

APPENDIX B: ALTERNATIVE DERIVATION

We present now an alternative way to derive the main
governing Eq. (1) for the density p(¢,x,v), using Alt’s
structural approach [45]. One can consider the motion of an
individual (bacteria, cell, etc.) that runs with the velocity v
during the run time 7 and stops at (¢,x) with given probability
B,(7) per unit time. We define the mean structural density of
individuals, o (¢,x,v,7), at point x and time ¢ that move with
the velocity v and having started the move 7 units of time ago.
The governing equation for o (¢,x,v,7) takes the form [45]

do do

o TV VOt g
We assume that at the initial time # = 0 all individuals have
Zero running time,

= —p(1)o. (BI)

0(0,x,v,7) = po(x,v)é(7), (B2)

where po(x,v) is the initial density. Our purpose is to obtain
the master equation for the density

p(t,x,v):/ o(t,x,v,7)dr. (B3)
0

We set up the boundary condition at zero running time t = 0:

o(t,x,v,O):/ ﬁ,(r)/ T(v,v")o(t,x,v',0)dv'dr. (B4)
0 v

The master equation for p(¢,x,v) can be found by differenti-
ating Eq. (B3) with respect to time ¢,
ap

E.,.,,.pr:—i(t,x,v)+j(t,x,v), (BS)
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where the switching terms are

i(t,x,v) =/ B (t)o(t,x,v,T)dtr, j(t,x,v)=o0(t,x,0,0).
0

(B6)
By using the method of characteristics we find from Eq. (B1)
fort < 1t,

o(t,x,v,71) =0 —t,x —v7,v,0)exp {— ﬂ,(s)ds}.
0

(B7)
The exponential factor in the above formula is the survival
function,

F,(t):exp{—/ ﬂ,(s)ds}. (B8)
0

By using Eq. (B7) and the Laplace transform technique
[46-48], we find the expressions for the switching terms:

i(t,x,v) = / Q. (t —s)p(s,x —v(t —s5),v)ds, (B9)
0
j(t,x,v):/ <I>T(t—s)/T(v,v/)p(s,x—(t—s)v’,v’)dv’ds.
0 v

(B10)

The main advantage of the present derivation is that it can
be easily extended for the nonlinear case [46]. Superdiffusive
equations can be obtained for the following rate [49,50]:
o
() = —, 0 2. Bl11
Br (1) et (B11)

The rate Eq. (B11) leads to a power-law (Pareto) survival

function,
70 «
F(t) = il (B12)
0
and corresponding running time PDF,
_ 9% B13
f- (@) = (e (B13)

APPENDIX C: LAPLACE SPACE EXPANSION OF PARETO
POWER-LAW DISTRIBUTION

Consider the Pareto power-law distribution with parameters
79 and S,

lBt(f} r B tor
f= (1) = ( — fr(W) = B(rod) e I'(=B,701),

7o+ 1)1+A
(C1)

where we used the incomplete y function I'(x,y):=
f;o t*~le~'dr. The mean and variance are both infinite for
0 < B < 1, but the distribution has finite mean for 1 < 8 < 2.
Using the asymptotic expansion

ra-a

N(—B,y) = — 3 +y gt
—B

yl

+1—ﬁ

+... asy—0, (C2)
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we recover an expansion of the form given in Eq. (11), where
p=r/aandy = -7, T (~a)for f = 1 +a.

APPENDIX D: APPROXIMATION OF FRACTIONAL TERM

By closing the set of moment equations as explained in
Sec. VI, in the fractional case one obtains terms of the form
f y o V. )? p dv. To evaluate these terms requires the use of
the Riesz derivative, which we define first.

Definition 1. In the Meerschaert’s framework [51-53], for
scalar function f : R” — R the multidimensional fractional
derivative is given by

Vh fx) = f

[161]=1

0D} f(x)M(a0)

_ / 00 -V, f(x)M(@0), (D)
[161]=1

for x € R" and B € (0,1), where 8 = (6, ...,6,) is a unit
column vector. We require that M(d@) is positive finite
measure, called a mixing measure. The term (@ - V,)? is called
the B-order fractional directional derivative given by
FAO -V f(0)) = (0 - k) f (k).

For the vector valued function f : R" — R, we define the
fractional gradient by

L) = /

[1611=1

_ / 86 -V.)P10 - f(x)IM(d8), (D3)
[16]|=1

(D2)
ODL10 - f(x)IM(d0)

where x € R"” and B € (0,1). In the case when M(d#) =
const df, we get the Riesz derivative. For the remainder of
this paper, we always assume this constant is identically one.
We then define the fractional Laplacian for scalar function

J by

DI )=V, - VE )= f

[161]=1

0 - V)" f(x)M(a0).

(D4)
Additionally, for the vector valued function f, we write

D, f(x)

=V, I f) = / - VOO - F1MA8).

[10]1=1
(D5)
We now wish to evaluate terms of the form
/ v(v- V)" pt,x,v)dv. (D6)
1%

From Eq. (28), we gave a form for uy,(¢,x,v). This allows us
to evaluate the fractional flux term as

/ v(v : Vx)aumindv
%

0
:f v(v-Vx)“|:m t )
Vv

Sn—lA”71

(m'(t,x) - v)h(S)}
dv,

S,zls”—1 V,
(D7)
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Evaluating Eq. (D7) in polar and spherical coordinates, one
obtains

/ v(v- V) Unindv
|4

1 o0
= / s"Tn(s)ds f
Au—1 Jo 116]1=1

00-V,)*m’(t,x)de,

1 o0
+= / sz+°‘h(,v)ds/ 00-V,)*(m'(1,x)-0)do,
SiVa Jo 16]/=1
S}ﬁa 0 SI%HX 1
= A\ Jym: . D8
Anfl Mm + Vn ;21 Mm ( )
APPENDIX E: PROOF OF THEOREM 1
We wish to prove
14+o e
Dy fx) = Ya(@)Ax® f(x), (ED

for M(d@) = d@. We first consider the left-hand side. In
Fourier space, this is

DY fdo = [ a6k foae. E2)

l16f1=1

In the two-dimensional case, rewriting Eq. (E2), using
the substitution k = ||k||(cos ¥, sin ) [for ¢ € [0,27)] and
using polar coordinates, we identify Y, («) as

o) — 7 (cosy\ (cosd 1+ad9 3
2@) = — o ! siny ]\ sin@ ' (E3)

The negative sign appears from the definition of the fractional
Laplacian [given in equation (34)]. Using trigonometric
identities, we manipulate Eq. (E3), finding

2
Ta(a) = —/ {i cos(8 — )} Tede
0

/2
— 00 (=) /0 {cos(m)**dn

oy |y TR
:45111(7){7@}, (E4)

and the two-dimensional case is proved.

For the three-dimensional case, we wish to evaluate
an integral similar to Eq. (E3). Using the representa-
tion k = ||k||(sin Y| cos ¥y, sin iy sin Yo, cos ¢rp) [for ¢ €
(0,), Y € (0,27)], and using spherical coordinates this
integral can be evaluated similar to that of Y ().

012104-9



TAYLOR-KING, KLAGES, FEDOTOV, AND VAN GORDER

[1] N. van Kampen, Stochastic Processes in Physics and Chemistry
(North Holland, Amsterdam, 1992).

[2] H. Risken, The Fokker-Planck Equation (Springer, Berlin,
1996).

[3] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

[4] R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161
(2004).

[5]1 R. Klages, G. Radons, and 1. Sokolov (eds.), Anomalous
Transport (Wiley-VCH, Berlin, 2008).

[6] Y. Meroz and I. Sokolov, Phys. Rep. 573, 1 (2015).

[7]1 T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev.
Lett. 71, 3975 (1993).

[8] G. M. Viswanathan, M. G. E. da Luz, E. P. Raposo, and H. E.
Stanley, The Physics of Foraging (Cambridge University Press,
Cambridge, 2011).

[9] J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Today 49(2),
33 (1996).

[10] V. Zaburdaev, S. Denisov, and J. Klafter, Rev. Mod. Phys. 87,
483 (2015).

[11] J. Klafter and 1. Sokolov, First Steps in Random Walks: From
Tools to Applications (Oxford University Press, Oxford, 2011).

[12] I. Sokolov, J. Klafter, and A. Blumen, Phys. Today 55(11), 48
(2002).

[13] S. Fedotov, Phys. Rev. E 93, 020101(R) (2016).

[14] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Phys. Rev. E 74,
041103 (20006).

[15] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Phys. Rev. Lett.
96, 230601 (2006).

[16] J. P. Taylor-King, E. van Loon, G. Rosser, and S. J. Chapman,
Bull. Math. Biol. 77, 1213 (2015).

[17] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev.
Mod. Phys. 83, 81 (2011).

[18] M. A. Lomholt, T. Ambjornsson, and R. Metzler, Phys. Rev.
Lett. 95, 260603 (2005).

[19] M. A. Lombholt, T. Koren, R. Metzler, and J. Klafter, Proc. Natl.
Acad. Sci. USA 105, 11055 (2008).

[20] A. Chechkin, I. Sokolov, and J. Klafter, in Fractional Dynamics,
edited by S. L. J. Klafter and R. Metzler (World Scientific,
Singapore, 2011), pp. 107-127.

[21] D. Sims, N. Humphries, R. Bradford, and B. Bruce, J. Anim.
Ecol. 81, 432 (2012).

[22] M. de Jager, F. Bartumeus, A. Kolzsch, F. Weissing, G.
Hengeveld, B. Nolet, P. Herman, and J. van de Koppel, Proc.
Roy. Soc. B 281, 20132605 (2013).

[23] P. Zollner and S. Lima, Ecology 80, 1019 (1999).

[24] G. C. Hays, T. Bastian, T. K. Doyle, S. Fossette, A. C. Gleiss,
M. B. Gravenor, V. J. Hobson, N. E. Humphries, M. K. S.
Lilley, N. G. Pade, and D. W. Sims, Proc. Roy. Soc. B 279, 465
(2012).

PHYSICAL REVIEW E 94, 012104 (2016)

[25] M. Plank, M. Auger-Méthé, and E. Codling, in Dispersal,
Individual Movement and Spatial Ecology, edited by M. A.
Lewis, P. Maini, and S. V. Petrovskii (Springer, Berlin, 2013),
pp. 33-52.

[26] N. Humphries, N. Queiroz, J. Dyer, N. Pade, M. Musy, K.
Schaefer, D. Fuller, J. Brunnschweiler, T. Doyle, J. Houghton
et al., Nature 465, 1066 (2010).

[27] FE. Bartumeus, F. Peters, S. Pueyo, C. Marrasé, and J. Catalan,
Proc. Natl. Acad. Sci. USA 100, 12771 (2003).

[28] I. G. Portillo, D. Campos, and V. Méndez, J. Stat. Mech.: Theor.
Exp. (2011) P02033.

[29] I.M. Sokolov and R. Metzler, Phys. Rev. E 67, 010101 (2003).

[30] A. Jurlewicz, P. Kern, M. M. Meerschaert, and H.-P. Scheffler,
Comp. Math. Appl. 64, 3021 (2012).

[31] M. Magdziarz and M. Teuerle, arXiv:1510.00315 (2015).

[32] T. Hillen, Discr. Cont. Dyn. Sys. Ser. B 5, 299 (2005).

[33] T. Hillen, Discr. Cont. Dyn. Sys. Ser. B 4, 961 (2004).

[34] R. D. Gregory, Classical Mechanics (Cambridge University
Press, Cambridge, 2006).

[35] R. M. Blumenthal and R. K. Getoor, Trans. Amer. Math. Soc.,
95, 263 (1960).

[36] S. Benhamou, Ecology 88, 1962 (2007).

[37] A. Reynolds, Physica A 388, 561 (2009).

[38] F. Lenz, T. C. Ings, L. Chittka, A. V. Chechkin, and R. Klages,
Phys. Rev. Lett. 108, 098103 (2012).

[39] E. Lenz, A. V. Chechkin, and R. Klages, PLoS ONE 8, ¢59036
(2013).

[40] S. Nurzaman, Y. Matsumoto, Y. Nakamura, K. Shirai, S.
Koizumi, and H. Ishiguro, Proc. IEEE IROS, pp. 1927-1934
(2010).

[41] R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.
Chem. Chem. Phys. 16, 24128 (2014).

[42] E. Barkai, E. Aghion, and D. A. Kessler, Phys. Rev. X 4, 021036
(2014).

[43] E. Barkai and V. N. Fleurov, Phys. Rev. E 56, 6355 (1997).

[44] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).

[45] W. Alt, J. Math. Biol. 9, 147 (1980).

[46] S. Fedotov, Phys. Rev. E 88, 032104 (2013).

[47] S. Fedotov, A. Tan, and A. Zubarev, Phys. Rev. E 91, 042124
(2015).

[48] P. Straka and S. Fedotov, J. Theor. Biol. 366, 71 (2015).

[49] S. Fedotov and S. Falconer, Phys. Rev. E 87, 052139 (2013).

[50] R. Ferrari, A. Manfroi, and W. Young, Physica D 154, 111
(2001).

[51] M. D’Ovidio and R. Garra, Electron. J. Probab 19, 1 (2014).

[52] M. M. Meerschaert, J. Mortensen, and H.-P. Scheffler, Fract.
Calc. Appl. Anal. 7, 61 (2004).

[53] M. M. Meerschaert, J. Mortensen, and S. W. Wheatcraft, Physica
A 367, 181 (2006).

012104-10


http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1016/j.physrep.2015.01.002
http://dx.doi.org/10.1016/j.physrep.2015.01.002
http://dx.doi.org/10.1016/j.physrep.2015.01.002
http://dx.doi.org/10.1016/j.physrep.2015.01.002
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1063/1.881487
http://dx.doi.org/10.1063/1.881487
http://dx.doi.org/10.1063/1.881487
http://dx.doi.org/10.1063/1.881487
http://dx.doi.org/10.1063/1.881487
http://dx.doi.org/10.1103/RevModPhys.87.483
http://dx.doi.org/10.1103/RevModPhys.87.483
http://dx.doi.org/10.1103/RevModPhys.87.483
http://dx.doi.org/10.1103/RevModPhys.87.483
http://dx.doi.org/10.1063/1.1535007
http://dx.doi.org/10.1063/1.1535007
http://dx.doi.org/10.1063/1.1535007
http://dx.doi.org/10.1063/1.1535007
http://dx.doi.org/10.1063/1.1535007
http://dx.doi.org/10.1103/PhysRevE.93.020101
http://dx.doi.org/10.1103/PhysRevE.93.020101
http://dx.doi.org/10.1103/PhysRevE.93.020101
http://dx.doi.org/10.1103/PhysRevE.93.020101
http://dx.doi.org/10.1103/PhysRevE.74.041103
http://dx.doi.org/10.1103/PhysRevE.74.041103
http://dx.doi.org/10.1103/PhysRevE.74.041103
http://dx.doi.org/10.1103/PhysRevE.74.041103
http://dx.doi.org/10.1103/PhysRevLett.96.230601
http://dx.doi.org/10.1103/PhysRevLett.96.230601
http://dx.doi.org/10.1103/PhysRevLett.96.230601
http://dx.doi.org/10.1103/PhysRevLett.96.230601
http://dx.doi.org/10.1007/s11538-015-0083-7
http://dx.doi.org/10.1007/s11538-015-0083-7
http://dx.doi.org/10.1007/s11538-015-0083-7
http://dx.doi.org/10.1007/s11538-015-0083-7
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01914.x
http://dx.doi.org/10.1098/rspb.2013.2605
http://dx.doi.org/10.1098/rspb.2013.2605
http://dx.doi.org/10.1098/rspb.2013.2605
http://dx.doi.org/10.1098/rspb.2013.2605
http://dx.doi.org/10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2
http://dx.doi.org/10.1098/rspb.2011.0978
http://dx.doi.org/10.1098/rspb.2011.0978
http://dx.doi.org/10.1098/rspb.2011.0978
http://dx.doi.org/10.1098/rspb.2011.0978
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1038/nature09116
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1103/PhysRevE.67.010101
http://dx.doi.org/10.1103/PhysRevE.67.010101
http://dx.doi.org/10.1103/PhysRevE.67.010101
http://dx.doi.org/10.1103/PhysRevE.67.010101
http://dx.doi.org/10.1016/j.camwa.2011.10.010
http://dx.doi.org/10.1016/j.camwa.2011.10.010
http://dx.doi.org/10.1016/j.camwa.2011.10.010
http://dx.doi.org/10.1016/j.camwa.2011.10.010
http://arxiv.org/abs/arXiv:1510.00315
http://dx.doi.org/10.3934/dcdsb.2005.5.299
http://dx.doi.org/10.3934/dcdsb.2005.5.299
http://dx.doi.org/10.3934/dcdsb.2005.5.299
http://dx.doi.org/10.3934/dcdsb.2005.5.299
http://dx.doi.org/10.3934/dcdsb.2004.4.961
http://dx.doi.org/10.3934/dcdsb.2004.4.961
http://dx.doi.org/10.3934/dcdsb.2004.4.961
http://dx.doi.org/10.3934/dcdsb.2004.4.961
http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1090/S0002-9947-1960-0119247-6
http://dx.doi.org/10.1890/06-1769.1
http://dx.doi.org/10.1890/06-1769.1
http://dx.doi.org/10.1890/06-1769.1
http://dx.doi.org/10.1890/06-1769.1
http://dx.doi.org/10.1016/j.physa.2008.11.007
http://dx.doi.org/10.1016/j.physa.2008.11.007
http://dx.doi.org/10.1016/j.physa.2008.11.007
http://dx.doi.org/10.1016/j.physa.2008.11.007
http://dx.doi.org/10.1103/PhysRevLett.108.098103
http://dx.doi.org/10.1103/PhysRevLett.108.098103
http://dx.doi.org/10.1103/PhysRevLett.108.098103
http://dx.doi.org/10.1103/PhysRevLett.108.098103
http://dx.doi.org/10.1371/journal.pone.0059036
http://dx.doi.org/10.1371/journal.pone.0059036
http://dx.doi.org/10.1371/journal.pone.0059036
http://dx.doi.org/10.1371/journal.pone.0059036
http://dx.doi.org/10.1039/c4cp03465a
http://dx.doi.org/10.1039/c4cp03465a
http://dx.doi.org/10.1039/c4cp03465a
http://dx.doi.org/10.1039/c4cp03465a
http://dx.doi.org/10.1103/PhysRevX.4.021036
http://dx.doi.org/10.1103/PhysRevX.4.021036
http://dx.doi.org/10.1103/PhysRevX.4.021036
http://dx.doi.org/10.1103/PhysRevX.4.021036
http://dx.doi.org/10.1103/PhysRevE.56.6355
http://dx.doi.org/10.1103/PhysRevE.56.6355
http://dx.doi.org/10.1103/PhysRevE.56.6355
http://dx.doi.org/10.1103/PhysRevE.56.6355
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1007/BF00275919
http://dx.doi.org/10.1007/BF00275919
http://dx.doi.org/10.1007/BF00275919
http://dx.doi.org/10.1007/BF00275919
http://dx.doi.org/10.1103/PhysRevE.88.032104
http://dx.doi.org/10.1103/PhysRevE.88.032104
http://dx.doi.org/10.1103/PhysRevE.88.032104
http://dx.doi.org/10.1103/PhysRevE.88.032104
http://dx.doi.org/10.1103/PhysRevE.91.042124
http://dx.doi.org/10.1103/PhysRevE.91.042124
http://dx.doi.org/10.1103/PhysRevE.91.042124
http://dx.doi.org/10.1103/PhysRevE.91.042124
http://dx.doi.org/10.1016/j.jtbi.2014.11.012
http://dx.doi.org/10.1016/j.jtbi.2014.11.012
http://dx.doi.org/10.1016/j.jtbi.2014.11.012
http://dx.doi.org/10.1016/j.jtbi.2014.11.012
http://dx.doi.org/10.1103/PhysRevE.87.052139
http://dx.doi.org/10.1103/PhysRevE.87.052139
http://dx.doi.org/10.1103/PhysRevE.87.052139
http://dx.doi.org/10.1103/PhysRevE.87.052139
http://dx.doi.org/10.1016/S0167-2789(01)00234-2
http://dx.doi.org/10.1016/S0167-2789(01)00234-2
http://dx.doi.org/10.1016/S0167-2789(01)00234-2
http://dx.doi.org/10.1016/S0167-2789(01)00234-2
http://dx.doi.org/10.1214/EJP.v19-2854
http://dx.doi.org/10.1214/EJP.v19-2854
http://dx.doi.org/10.1214/EJP.v19-2854
http://dx.doi.org/10.1214/EJP.v19-2854
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/j.physa.2005.11.015



