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Simple Maps with Fractal Diffusion Coefficients
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We consider chains of one-dimensional, piecewise linear, chaotic maps with uniform slope. We study
the diffusive behavior of an initially nonuniform distribution of points as a function of the slope of the
map by solving the Frobenius-Perron equation. For Markov partition values of the slope, we relate
the diffusion coefficient to eigenvalues of the topological transition matrix. The diffusion coefficient
obtained shows a fractal structure as a function of the slope of the map. This result may be typical for
a wide class of maps, such as two-dimensional sawtooth maps.
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The study of simple models for nonequilibrium pro
cesses in statistical physics has been one of the cen
themes in the theory of chaotic dynamical systems [1–3
A great deal of work has been done to describe th
large-scale motion in systems of independent particle
each moving under the action of relatively simpl
maps, operating at discrete intervals of time. For on
dimensional sinusoidal, or piecewise differentiable map
a variety of diffusivelike and ballisticlike behavior has
been studied [4–7]. For two-dimensional, conservativ
Hamiltonian maps, parameter dependent momentu
diffusion coefficients have been computed, often b
a combination of numerical and analytical method
which explore the phase space structure of the dynam
cal system [8–10]. Recently, Gaspard and co-worke
have established an explicit connection between fu
damental quantities of dynamical systems, such as
Kolmogorov-Sinai entropy and Lyapunov exponent
and transport coefficients [11–14]. Related connectio
between transport coefficients and Lyapunov exponen
have been discussed for nonequilibrium systems w
thermostats [15]. There is also a close connection
the work described here to that based on periodic or
expansions for transport coefficients [7,16].

In this Letter, chains of piecewise linear, one
dimensional, chaotic maps

xt11 ­ fxtg 1 masxtd ; Masxtd (1)
will be considered, wheret is the discrete time variable,
fxtg is the largest integer smaller thanxt, masxt 1 1d ­
masxtd represents a periodic function, anda stands for
the control parameter, which is the slope of the map. W
consider a chain of mapsmasxtd with chain lengthL. The
absolute value of the slope is assumed to be unifor
and its logarithm is equal to the Lyapunov exponen
We assume the maps are expanding, i.e., thatjaj . 1.
Following the approach in [11–14], we describe a metho
by which the diffusion coefficient for this class of map
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can be computed for a broad range of parameter valu
The method will be illustrated by the map

masxtd :­

(
axt , 0 , xt #

1
2 ,

axt 1 1 2 a,
1
2 , xt # 1 ,

(2)

a . 0, as sketched in Fig. 1, which has been introduce
and discussed in [3,4,13]. We find that the diffusio
coefficient for this map shows a very rich fractal structur
as a function of the slope.

To describe the dynamical behavior of an arbitrar
initial density for a set of particles on some interva
of the line 2` # x # `, we will need the Frobenius-
Perron equation, supplemented by boundary condition
The Frobenius-Perron equation is given by

rt11sxd ­
Z

dy rts yd dsssx 2 Mas ydddd , (3)

FIG. 1. Illustration of the dynamical system Eqs. (1) and (2
for a particular slope,a ­ 3. The Markov partition given by
the dashed grid leads to the construction of the transition mat
in Eq. (9).
© 1995 The American Physical Society 387
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where rtsxd is the probability density for points on the
line, and Mas yd is the map under consideration. We
suppose that the motion takes place on an interval0 ,

x , L, and we impose periodic boundary conditions, i.e
rts0d ­ rtsLd for all t, or absorbing boundary conditions
rtsxd ­ 0 for x ­ 0, L for all t [17]. Next we use the
argument of Gaspard and co-workers [11–14] to rela
the eigenmodes of the Frobenius-Perron equation to
solution of the diffusion equation

≠nsx, td
≠t

­ D
≠2nsx, td

≠x2
, (4)

where nsx, td is the macroscopic density of particles a
a point x at time t, and D is a diffusion coefficient.
If for large L, and larget, the first few eigenmodes
of the Frobenius-Perron equation are identical to tho
of the diffusion equation, the diffusion coefficient can
be obtained by matching eigenmodes in an appropria
scaling limit. More explicitly, for periodic boundary
conditions ns0, td ­ nsL, td, one can easily see that for
large timesnsx, td has the form

nsx, td ­ const 1 A expf2Ds4p2yL2dt 6 is2pyLdxg .

(5)

Consequently, if one can find a solution of Eq. (3), fo
largeL andt, in the form of

rsx, td ­ const 1 A0 expf2gpsadt 6 is2pyLdxg , (6)

one can relate the decay rategpsad to D by

Dsad ­ lim
L°!`

sLy2pd2 gpsad . (7)

For absorbing boundary conditions one relates the d
fusion coefficient to the escape rate from the syste
by an equation similar to Eq. (7). The escape-rate fo
malism of chaotic dynamics shows that the escape ra
from a system with absorbing boundaries is equal to t
Lyapunov exponent minus the Kolmogorov-Sinai entrop
for particles trapped within the system whose traject
ries lie on a fractal repeller [11]. For the case of map
with slopes of uniform magnitude considered here, th
Kolmogorov-Sinai entropy for the fractal repellerhKSsad
is identical to the topological entropy of points on the re
peller, and it can be computed fromgpsad as hKSsad ­
ln a 2 gpy4 1 OsL23d [13].

The use of maps with uniform slope is not an essent
ingredient in the calculation ofDsad described below,
which can be applied to more general linear maps. T
main idea is that the Frobenius-Perron equation can
written as a matrix equation whenever the parameters
the map are such that one can construct a Markov partiti
of the intervals0, Ld, which has the property that partition
points get mapped onto other partition points by the ma
Masxd [18]. In a related context, these partitions hav
been discussed in [19]. For such values ofa, Eq. (3) can
388
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be written as

rt11 ­ s1yjajd M rt , (8)

wherert is a column vector of the probability densitie
in each of the Markov partition regions at timet, andM
is a topological transition matrix whose elementsMij are
unity if points in regionj can be mapped into regioni and
are zero otherwise.

As a simple example we consider the form of th
matrix M whena ­ 3, the mapMasxd is given by Eqs. (1)
and (2), and periodic boundary conditions are used
an interval of lengthL. In this case the regions of the
partition are all of length1y2, as illustrated in Fig. 1.
ThenM is a2L 3 2L matrix of the form

M ­

0BBBBBBBBBBB@

1 1 0 0 · · · 0 0 1 0
1 1 0 1 0 0 · · · 0 0
1 0 1 1 0 0 · · · 0 0
0 0 1 1 0 1 0 0 · · ·
0 0 1 0 1 1 0 0 · · ·
...

...
...

0 1 0 0 · · · 0 0 1 1

1CCCCCCCCCCCA
. (9)

In the limit t °! `, for anyL, and any Markov partition
value of a, the Frobenius-Perron equation can be solv
in terms of the eigenmodes ofM for any initial value
r0sxd which is uniform in each of the Markov partition
regions. For periodic boundary conditions,M is always
a (block) circulant [20], the largest eigenvalue ofM
is precisely jaj, and the corresponding eigenmode is
constant, representing the equilibrium state. The r
of decay to equilibrium,gpsad, is obtained asgpsad ­
lnsjajyx1d, where x1 is the next largest eigenvalue o
M [13]. Analytical expressions forDsad can be derived
for all integer values ofa $ 2. For even integers, the
results of Grossmann and Fujisaka [4] are recover
Dsad ­ s1y24dsa 2 1dsa 2 2d, and for odd integers we
find Dsad ­ s1y24d sa2 2 1d. To obtainDsad for a general
Markov partition value of a, one can use compute
methods [21].

Figure 2(a) shows the results for the diffusion coef
cient of the dynamical system Eqs. (1) and (2) for va
ues ofa in the range2 # a # 8. In Figs. 2(b)–2(d), we
present magnifications of three small regions in this inte
val [22]. One can see clearly thatDsad has a complicated
fractal structure with regions exhibiting self-similarity
In Fig. 3, we show an enlargement of the region f
2 # a # 3. The dashed line is the prediction ofDsad
for a simple random-walk model suggested by Sche
Fraser, and Kapral [5]. Note that the model correct
accounts for the behavior ofDsad neara ­ 2. The wig-
gles in this graph can be understood by considering
transport of particles from one unit interval to anothe
These regions are coupled to each other byturnstiles,
where points in one unit interval get mapped outside th
particular interval into another unit interval. As in th
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FIG. 2. Diffusion coefficientDsad computed for the dynami-
cal system Eqs. (1) and (2) and some enlargements. Graph
consists of 7908 single data points. In graphs (b)–(d), the d
are connected with lines. The number of data points is 476 f
(b), 1674 for (c), and 530 for (d).

case of two-dimensional twist maps, such as the sawto
map, these turnstiles are crucial for large-scale transp
[2,23].

The region2 # a # 3 can be analyzed by studying the
interaction of turnstiles [24]. One can recognize thre
distinct series of values ofa, each of which provides a
cascade of apparently self-similar regions of decreasi
size, as the limitsa ! 2 or a ! 3 are approached. To
understand these series, consider the trajectory of a po
that starts just to the left atx ­ 1y2. The first iterate

FIG. 3. Enlargement of the region of slopea # 3 with
the solution for a simple random-walk model (dashed line
and labels for the values which are significant for “turnstil
dynamics” (see text). For some points, the turnstile couplin
is shown by pairs of boxes. The graph shows 979 single da
points.
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of x ­ 1y2 is in the second intervals1, 2d. The seriesa

values ofa are defined by the condition that the secon
iterate ofx ­ 1y2 is at the leftmost point of the upward
turnstile in the second intervals1, 2d sa ­ 2.732d, or that
the third iterate is at the corresponding point in the thir
interval sa ­ 2.920d, etc. The numbers on the graph
refer to the number of intervals the image ofx ­ 1y2
has traveled before it gets to the appropriate point o
the turnstiles. Seriesb points are defined in a similar
way, but they are allowed to have two or more intern
reflections within an interval before reaching the left edg
of a turnstile. Seriesg points are defined by the condition
that some image ofx ­ 1y2 has reached the rightmost
edge of an upward turnstile (i.e., some pointx ­ n 1 1y2,
wheren is an integer), and consequently an increase ina
will lead to a decrease inDsad. These cascades provide a
basis for a physical understanding of the features ofDsad
in this region: Particles leave a particular unit interva
through a turnstile and undergo a number of iteration
before they are within another turnstile. Whether the
continue to move in the same or the reverse directio
at the next and later turnstiles is a sensitive function
the slope of the map. Thus the fractal structure of th
Dsad curve is due to the effects of long-range correlation
among turnstiles, and these correlations lead to change
Dsad on an infinitely fine scale. A similar argument can
be employed to explain, at least qualitatively, the fract
structure ofDsad for higher values of the slope, although
more work needs to be done before a full understandi
of this curve is obtained [25].

We conclude with a few remarks: (a) Our result
appear to be the first example of a system whose diffusi
coefficient has an unambiguously fractal structure. W
suspect that similar results are obtained for all other on
dimensional, piecewise linear maps [26], which migh
be of interest, e.g., for chaotic scattering [27], as we
as for transport in maps of more than one dimensio
such as sawtooth maps. We note that oscillations of t
diffusion coefficient with respect to an appropriate contr
parameter, which could be a field strength, have alrea
been found in the standard [8] and the sawtooth m
[10]. (b) It is not known whether this fractal structure
persists for smooth maps where the functionMasxd is
C1 or where the map contains some randomness. (c) W
have numerical evidence that the Markov points are den
for a $ 2, and we believe that our results give the fu
structure of theDsad function. Nevertheless, it would be
valuable to have a mathematical proof.
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thank the Institute for Physical Science and Technolog
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