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Simple deterministic dynamical systems with fractal diffusion coefficients
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We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional array of
scatterers with moving point particles. The particles move from one scatterer to the next according to a
piecewise linear, expanding, deterministic map on unit intervals. The microscopic chaotic scattering process of
the map can be changed by a control parameter. The macroscopic diffusion coefficient for the moving particles
is well defined and depends upon the control parameter. We calculate the diffusion coefficent and the largest
eigenmodes of the system by using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that the largest eigenmodes of the
map match the ones of the simple phenomenological diffusion equation. Our main result is that the diffusion
coefficient exhibits a fractal structure as a function of the control parameter. We provide qualitative and
quantitative arguments to explain features of this fractal structure.@S1063-651X~99!15105-5#

PACS number~s!: 05.45.2a, 02.50.2r, 05.40.2a, 05.60.2k
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I. INTRODUCTION

Over the past several years there has been a growin
terest in trying to understand the mechanism of nonequ
rium transport on the basis of dynamical systems the
@1–9#. One line of work is related to computer simulations
nonequilibrium steady states, where interacting ma
particle systems are studied when placed under nonequ
rium conditions, such as in a shear flow or an external fie
The system is then thermostated to maintain a constant
energy, or constant kinetic energy@10–14#. Another line of
research focuses on low-dimensional models such as the
dom @15–18# or periodic@19–31# Lorentz gas. An even sim
pler model which shares certain properties of the perio
Lorentz gas are two-dimensional multi-Baker maps@32–39#.
Lorentz gases and multi-Baker maps have become stan
models in the field of chaos and transport, since, on the
hand, they catch the physical essence of certain real none
librium processes, and, on the other hand, they are
simple enough such that they can be analyzed in detail th
retically. The most elementary models of transport are th
describing deterministic diffusion in one-dimensional ma
first studied by Grossmann and Fujisaka@40–42#, by Geisel
et al. @43–45#, and by Schell, Fraser, and Kapral@46#. These
models are amenable to treatment by several methods
have provided useful systems for the application of perio
orbit expansions@47–51# and other techniques@52–56#. A
very interesting problem in this context is to determinte
value of the diffusion coefficient, when it exists, and to fi
its dependence upon the parameters that describe the ch
scattering of the moving particles. However, for computi
parameter-dependent diffusion coefficients so far either
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deterministic dynamics could not be treated in full detail, a
thus the results were approximate, or the task could be
formed exactly only for a few simple cases of parame
values.

The idea of this paper is to apply methods of dynami
systems theory, as discussed by Gaspardet al. @8,25,32,57#,
to the problem of parameter-dependent deterministic di
sion in one-dimensional piecewise linear maps. In the
maining part of this introductory section, we will explain th
term deterministic diffusion, and we will define the class
dynamical systems we want to analyze. In Sec. II, the n
essary background of our approach will be discussed brie
and in Sec. III, a method will be presented which enables
exact computation of deterministic diffusion coefficients f
a broad range of parameter values. The result for the di
sion coefficient of the simple map considered here turns
to be surprisingly complex so that additional investigatio
performed in Sec. IV, are required to understand the origin
this unexpected nontrivial diffusive behavior. This paper
based on the work of Ref.@58#; for a concise summary of the
main results we refer to Ref.@59#.

In contrast to the traditional picture of diffusion as a
uncorrelated random walk, the theory of dynamical syste
makes it possible to treat diffusion as adeterministic dynami-
cal process: Here, the orbit of a point particle with initia
conditionx0 may be generated by achaotic dynamical sys-
tem

xn115M ~xn!. ~1!

M (x) is a one-dimensional map which determines how
particle gets mapped from positionxn to positionxn11, as
will be introduced in detail below. DefiningM (x) together
with Eq. ~1! gives the full microscopic equations of motio
of the system. This way, thecomplete memoryof the particle
is taken into account. The decisive new fact which dist
guishes this dynamical process from that of a simple unc
related random walk is thus that herexn11 is uniquely deter-
minedby xn , rather than having a distribution ofxn11 for a

lex
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5362 PRE 59R. KLAGES AND J. R. DORFMAN
givenxn . In other words, for the deterministic map the tra
sition probability density is@d(xn112M (xn))#, compared to
r̃(xn112xn) for a typical random walk. If the resulting dy
namics of an ensemble of particles, each governed by
same deterministic dynamical system,M (x), has the prop-
erty that the diffusion coefficient,D, is well defined, this
process is denoted asdeterministic diffusion@40–51#. Here
the diffusion coefficient is defined by

D5 lim
n→`

^~xn2x0!2&
2n

, ~2!

where^ & represents the average over the initial ensem
of values ofx0. We will typically choose the initial ensembl
as one in which the points are distributed uniformly ov
some small interval of the real line. Of course one m
argue thatD is largely independent of the choice of the initi
ensemble.

The deterministic model

Figure 1 shows the model which shall be studied in t
paper. This model has apparently first been introduced
Grossmann and Fujisaka@40,41#. It depicts a ‘‘chain of
boxes’’ which continues periodically in both directions
infinity, and the orbit of a moving point particle. Let

Ma :R→R, xn°Ma~xn!5xn11 , a.1, xnPR,

nPN0 ~3!

be a map modeling the chain of boxes introduced above,
a periodic continuationof discrete one-dimensional piece
wise linear expanding mapswith uniform slope. The indexa
denotes a control parameter, which is the absolute valu

FIG. 1. Illustration of a simple model of deterministic diffusio
see the dynamical system mapL, Eqs.~3! to ~6!, for the particular
slopea53. The dashed line refers to the orbit of a moving partic
Its initial condition is indicated by a black arrow close to thex axis.
The particle moves under the action of the one-dimensional pi
wise linear map shown in the figure by jumping from box to bo
he
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r
t

s
y
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of

the slope of the map,xn is the position of a point particle
and n labels the discrete time. Since the map is expand
i.e., a.1, its Lyapunov exponent, lna, is greater than zero
Thus,Ma(x) is dynamically unstable and may in this sen
be called chaotic@60#. In order for the map to be chaotic an
piecewise linear, it cannot be monotonic, so there must
points of discontinuity and/or nondifferentiability. The ter
‘‘chain’’ in the characterization ofMa(x) can be made more
precise as alift of degree 1,

Ma~x11!5Ma~x!11, ~4!

for which the acronymold has been introduced@61–63#.
This means thatMa(x) is to a certain extent translationa
invariant. Beingold, the full mapMa(x) is generated by the
map of one box, e.g., on the unit interval 0,x<1, which
will be referred to as thebox map. It shall be assumed tha
the graph of this box map is point symmetric with respect
the center of the box at (x,y)5(0.5,0.5). This implies that
the graph of the full mapMa(x) is antisymmetric with re-
spect tox50,

Ma~x!52Ma~2x!, ~5!

so that there is no ‘‘drift’’ in the chain of boxes. Merely fo
the sake of simplicity, the class of maps defined by Eqs.~3!,
~4!, and~5! shall be denoted asclassP ~whereP stands for
piecewise linear!, and maps which fulfill the requirements o
classP shall be referred to asclassP maps. In Fig. 1, which
contains a section of a simple classP map, the box map has
been chosen to

Ma~x!5H ax, 0,x< 1
2

ax112a, 1
2 ,x<1

J , a>2, ~6!

cf. Refs.@40,57,60#. This example can best be classified a
Lorenz map with escape@64–68#. The chaotic dynamics o
these maps is generated by a ‘‘stretch-split-merge’’ mec
nism for a density of points on the real line@65#. As a class
P map, Eq.~6!, together with Eqs.~3!, ~4!, and~5!, will be
referred to as mapL. Other classP maps have been consid
ered in Refs.@40,41,47,57,58,69–72#.

It has been proposed@41# to look at the dynamics in this
chain of boxes in analogy to the process ofBrownian motion
@73,74#: If a particle stays in a box for a few iterations, i
internal box motion is supposed to get randomized and m
resemble the microscopic fluctuations of a Brownian p
ticle, whereas itsexternaljumps between the boxes could b
interpreted as sudden ‘‘kicks’’ the particle suffers by som
strong collision. This suggests that ‘‘jumps between boxe
contribute most to the actual value of the diffusion coe
cient. Brownian motion is usually described in statistic
physics by introducing some stochasticity into the equati
which model a diffusion process. The main advantage of
simple model discussed here is that diffusion can be trea
by taking the full dynamics of the system into account, i.
thecomplete orbitof the moving particle is considered, with
out any additional approximations. This is another way
understand the notion of deterministic diffusion in contrast
diffusion obtained from stochastic approaches. That is, in

.
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purely deterministic case the orbit of the particle is imme
ately fixed by determining its initial condition.

One should note that the strength of diffusion, and the
fore the magnitude of the diffusion coefficient, are related
the probability of the particle to escape out of a box, i.e.,
perform a jump into another box. This escape probabil
however, as well as the average distance a particle trave
performing such a jump, changes by varying the system
rameter. The problem which will be solved in the followin
is to develop a general method for computing parame
dependent diffusion coefficientsD(a) for class P maps.
Here, mapL will serve as a simple example. However, t
methods to be presented should work as well for any o
classP map, evidently with analogous results~see, e.g.,
@58,71#!.

II. FIRST PASSAGE METHOD

The methodology of first passage, as it has been de
oped in the framework of statistical physics@73,74#, deals
with the calculation of decay or escape rates for ensemble
statistical systems with certain boundary conditions. In
cent work by Gaspardet al., these methods have successfu
been applied to the theory of dynamical syste
@21,25,32,57,75,76#. In the following, the principles of first
passage for the classP of dynamical systems defined abov
will be briefly outlined. The method will turn out to provid
a convenient starting point for computing paramet
dependent diffusion coefficients.

One may distinguish three different steps in applying
method.

Step 1. Solve the one-dimensional phenomenologicaldif-
fusion equation

]P

]t
5D

]2P

]x2
~7!

with suitable boundary conditions, wherePªP(x,t) stands
for the density of particles at pointx and timet. This equa-
tion serves here as adefinitionfor the diffusion coefficientD.

Step 2. Solve theFrobenius-Perron equation

rn11~x!5E dyrn~y!d@x2Ma~y!#, ~8!

which represents the continuity equation for the probabi
densityrn(x) of the dynamical systemMa(y) @60,77#.

Step 3. For a chain of boxes of chain lengthL, consider
the limit chain lengthL and timen to infinity: If for given
slopea the respective largest eigenmodes ofP andr turn out
to be identical in an appropriate scaling limit,then D(a) can
be computed by matching the eigenmodes of the probab
density r to the particle densityP. For periodic boundary
conditions, i.e., P(0,t)5P(L,t) andrn(0)5rn(L), one ob-
tains

D~a!5 lim
L→`

S L

2p D 2

gdec~a!, ~9!

wheregdec(a) is the decay rate in the closed system to
calculated directly from the Frobenius-Perron equation
-

-
o
o
,
by
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therefore determined by quantities of the deterministic
namical system. Forabsorbing boundary conditions, i.e.,
P(0,t)5P(L,t)50 andrn(0)5rn(L)50, the same proce
dure leads to

D~a!5 lim
L→`

S L

p D 2

gesc~a!, ~10!

wheregesc(a) is the escape rate for the open system. T
quantity can be further determined by the escape rate form
ism @9,78# to

gesc~a!5l~R;a!2hKS~R;a!, ~11!

where the Lyapunov exponentl(R;a) and the Kolmogorov-
Sinai ~KS! entropyhKS(R;a) are defined on the repellerR
of the dynamical system. This equation is an extension
Pesin’s formula to open systems, which is obtained in
case ofgesc50. Equations~9! and~10! have been applied to
a variety of models, such as the periodic Lorentz gas, tw
dimensional multi-Baker maps, and certain one-dimensio
chains of maps, by Gaspard and co-workers@32,57#. Equa-
tion ~10!, together with Eq.~11!, has first been presented fo
the two-dimensional periodic Lorentz gas@21# and has later
been generalized to other transport coefficients and dyna
cal systems@75,76#. However, although of fundamenta
physical importance, it seems in general to be difficult to u
this equation for practical evaluations ofD(a), because usu-
ally the KS entropy is hard to calculate@60#. Instead, Eq.
~10! with Eq. ~11! can be inverted to get the KS entropy v
the decay rate of the dynamical system of Eq.~9! to
hKS(R;a)5l(R;a)2 1

4 gdec(a)(L→`), or by employing
Eq. ~9! via the diffusion coefficient in the limit of largeL.

III. SOLUTION OF THE FROBENIUS-PERRON
EQUATION

As pointed out above, the problem of computin
parameter-dependent diffusion coefficients essentially
duces to solving the Frobenius-Perron equation for the
namical system in a large size and long time limit. In th
section, a general method will be presented by which t
goal can be achieved. Its principles will be illustrated
performing analytical calculations for some special para
eter values of mapL. Our method is based on finding Ma
kov partitions and on defining respective transition matric
This approach is quite well known, especially in the ma
ematical literature@79–86#, and has been employed by man
authors for the calculation of dynamical systems quanti
@87,64,88–91,55,92–96#. We apply it here to compute th
full parameter-dependent deterministic diffusion coefficie

A. Transition matrix method

As a first example, the diffusion coefficientD(a) shall be
computed for mapL at slopea54, as sketched in Fig. 2
supplemented by periodic boundary conditions. The calcu
tion will be done according to the three-step procedure o
lined above.

Step 1. The one-dimensional diffusion equation~7! can be
solved with periodic boundary conditions straightforward
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P~x,t !5a01 (
m51

`

expF2S 2pm

L D 2

Dt GFamcosS 2pm

L
xD

1bmsinS 2pm

L
xD G , ~12!

wherea0 ,am , andbm are the Fourier coefficients to be d
termined by an initial particle densityP(x,0).

Step 2: To solve the Frobenius-Perron equation, the k
idea is to write this equation as a matrix equation@32,87#.
For this purpose, one needs to find a suitablepartition of the
map, i.e., a decomposition of the real line into a set of s
intervals, calledelements, or parts of the partition. The
single parts of the partition have to be such that they do
overlap except at boundary points, which are referred to
points of the partition, and that they cover the real line com
pletely @87#. In the case of slopea54, such a partition is
naturally provided by the box boundaries. The grid of dash
lines in Fig. 2 represents a two-dimensional image of
one-dimensional partition introduced above, which is gen
ated by the application of the map.

Now an initial density of points shall be considered whi
covers, e.g., the interval in the second box of Fig. 2 u
formly. By applying the map, one observes that points of t
interval get mapped twofold on the interval in the seco
box again, but that there is also escape from this box wh
covers the third and the first box intervals, respective
Since mapL is old, this mechanism applies to any box of th
chain of chain lengthL, modified only by the boundary con
ditions. Taking into account the stretching of the density
the slopea at each iteration, this leads to a matrix equation

rn115
1

a
T~a! rn , ~13!

where fora54 theL3L transition matrixT(4) can be con-
structed to

FIG. 2. Partition of mapL at slopea54 ~dashed grid!.
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T~4!5S 2 1 0 0 ••• 0 0 1

1 2 1 0 0 ••• 0 0

0 1 2 1 0 0 ••• 0

A A A A

0 ••• 0 0 1 2 1 0

0 0 ••• 0 0 1 2 1

1 0 0 ••• 0 0 1 2

D .

~14!

The matrix elements in the upper right and lower left edg
are due to periodic boundary conditions and reflect the m
tion of points from theLth box of the chain to the first one
andvice versa.

In Eq. ~13!, the transition matrixT(a) is applied to a
column vectorrn of the probability densityrn(x) which, in
the case ofa54, can be written as

rn[urn~x!&ª~rn
1 ,rn

2 , . . . ,rn
k , . . . ,rn

L!* , ~15!

where ‘‘*’’ denotes the transpose andrn
k represents the com

ponent of the probability density in thekth box, rn(x)
5rn

k ,k21,x<k,k51, . . . ,L, rn
k being constant on eac

part of the partition.
In the case ofa54, the transition matrix is symmetric an

can be diagonalized by spectral decomposition. Solving
eigenvalue problem

T~4! ufm~x!&5xm~4! ufm~x!&, ~16!

wherexm(4) andufm(x)& are the eigenvalues and eigenve
tors of T(4), respectively, one obtains

urn11~x!&5
1

4 (
m50

L21

xm~4! ufm~x!&^fm~x!urn~x!&

5 (
m50

L21

expS 2n ln
4

xm~4! D ufm~x!&^fm~x!ur0~x!&,

~17!

whereur0(x)& is an initial probability density vector and ln
is the Lyapunov exponent of the map. Note that the choice
initial ensemble densities is restricted by this method to th
which can be written in the vector form of Eq.~15!. For
matrices of the type ofT(4), it is well known how to solve
their eigenvalue problems@97–99#. This is performed in Ap-
pendix A1 for a more general case, which includes the
ample under consideration. For slopea54, one gets

xm~4!5212cosum , umª
2p

L
m, m50, . . . ,L21,

ufm~x!&5~fm
1 ,fm

2 , . . . ,fm
k , . . . ,fm

L !* ,

fm
k 5ãmfm,1

k 1b̃mfm,2
k ,

fm,1
k

ªcosum~k21!, fm,2
k

ªsinum~k21!,

k51, . . . ,L, k21,x<k ~18!
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with ãm and b̃m to be fixed by suitable normalization cond
tions.

Step 3. To compute the diffusion coefficientD(4), it re-
mains to match the first few largest eigenmodes of the di
sion equation to the ones of the Frobenius-Perron equa
In the limit as the timet and the system sizeL approach
infinity, the particle densityP(x,t), Eq. ~12!, in the diffusion
equation becomes

P~x,t !.const1expF2S 2p

L D 2

Dt GFA cosS 2p

L
xD

1B sinS 2p

L
xD G , ~19!

where the constant represents the uniform equilibrium d
sity of the equation.

Analogously, for discrete timen and chain lengthL to
infinity, one obtains for the probability densityrn11(x) of
the Frobenius-Perron equation, Eq.~17! with Eq. ~18!,

rn11~x!.const1exp„2gdec~4!n…F Ã cosS 2p

L
~k21! D

1B̃ sinS 2p

L
~k21! D G ,

k51, . . . ,L, k21,x<k ~20!

with a decay rate of

gdec~4!5 ln
4

212 cos~2p/L !
~21!

of the dynamical system, determined by the second lar
eigenvalue of the matrixT(4), see Eq.~18!. Note that the
largest eigenvalue is equal to the slope of the map so tha
the first term in Eq.~20! the exponential vanishes, and on
obtains a uniform equilibrium density. Apart from gener
discretization effects in the time and position variabl
which may be neglected in the limit of time to infinity an
after a suitable spatial coarse graining, the eigenmode
Eqs.~19! and ~20! match precisely so that, according to E
~9!, the diffusion coefficientD(4) can be computed to

D~4!5S L

2p D 2

gdec~4!5
1

4
1O~L24!. ~22!

This result is identical to what is obtained from a simp
random walk model@46,58,71#. The procedure can be gen
eralized straightforward to all even integer values of
slope, as is shown in the Appendix, Sec. 1, and leads
parameter-dependent diffusion coefficient of

D~a!5
1

24
~a21!~a22!, a52k, k P N, ~23!

in agreement with the results of Ref.@41#.
A slightly more complicated example is the case of slo

a53, see, e.g., Fig. 1, which will be treated in the followin
In analogy to the previous example, fora53 a simple par-
tition can be constructed, the parts of which are all of len
-
n:

n-

st

or

,

of

e
a

e

h

1/2. According to this partition, a transition matrixT(3) can
be determined, given schematically by

T~3!5S 1 1 0 0 ••• 0 0 1 0

1 1 0 1 0 0 ••• 0 0

1 0 1 1 0 0 ••• 0 0

0 0 1 1 0 1 0 0 •••

0 0 1 0 1 1 0 0 •••

A A A

0 1 0 0 ••• 0 0 1 1

D .

~24!

Note that, in contrast to the case ofa54, here the matrix is
formed by submatrixblockswhich move periodically to the
right every two rows. Since the partition ofa53 is a bit
more complicated than fora54, the blocks refer to the par
tition of each box, whereas the shift again is related to the
property of theold map. The matrixT(3) is not symmetric.
However, the eigenvalue problem of this matrix can still
solved analogously to the case ofa54 ~see the Appendix,
Sec. 1!. The spectrum of the matrix turns out to be high
degenerate. Most importantly,T(3) cannot be simply diago
nalized anymore. This is due to the fact that the matrixT(3)
is non-normal, i.e., T(3)T* (3)ÞT* (3)T(3), which means
that it does not provide a system of orthogonal eigenvec
@100#. This is a well-known feature of deterministic dynam
cal systems of this type@8,93,95,96#. Of course it is still
possible to transform this matrix into a Jordan block for
However, this procedure is not necessary here as the first
eigenvalues and eigenvectors ofT(3) can still be determined
using a method analogous to the analytical solutions of E
~19! and ~20! for slopea54. Figure 3 shows a plot of the
two second largest eigenmodes ofT(3) in comparison to the
solution of the diffusion equation. Again, one observes to
agreement, except for differences in the fine structure.
same is true for the other first few largest eigenmodes
T(3). Thus, although straightforward diagonalization an
therefore, a simple solution of the Frobenius-Perron equa
like Eq. ~17! are not possible anymore, the largest eige
modes ofT(3) behave correctly in the sense of the pheno
enological diffusion equation so that it is suggestive to co
pute the diffusion coefficientD(3) via the second larges
eigenvalue ofT(3) again. With

g~3!5 ln
3

112 cos~2p/L !
, ~25!

see the Appendix, Sec. 1, and Eq.~9!, one gets

D~3!5
1

3
1O~L24!. ~26!

As for a54, this result is obtained as well from a simp
random walk model. However, to produce this value, t
respective random walk has to be defined in a slightly d
ferent way than fora54 @58,71#. Analogously to the case o
even integer slopes, the exact calculations can be genera
to all odd integer values of the slope and lead to~see the
Appendix, Sec. 1!
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D~a!5
1

24
~a221!, a52k21, k P N, ~27!

which again is identical to the result of Ref.@41#.
Before this approach will be extended to other parame

values of the slope in the following section, we discuss so
important features of the methods and results just presen
and briefly outline the extension of the method to absorb
boundary condiditons.

1. Diffusion coefficients for integer slopes

Equations~22! and ~26! show already thatD(4),D(3),
which is at first sight counterintuitive. By evaluating the ge
eral formulas ofD(a) given by Eqs.~23! and ~27! at other
even and odd integer slopes, one realizes that this inequ
reflects a general oscillatory behavior ofD(a) at integer
slopes. This result has already been obtained by Fujisaka
Grossmann@41#, and a similar oscillatory behavior has be
observed for deterministic diffusion in certain classes of tw
dimensional maps@101–105#. This behavior cannot be un
derstood completely by one consistent simple random w
model @58,71#.

2. Matching lower eigenmodes

There appear serious problems in trying to extend
matching eigenmodes procedure to arbitrarily low eig
modes, even in the case ofa54, where the matrix is diago
nalizable. With Eq.~18!, one can check that

fm,1
k 5fL2m,1

k , fm,2
k 52fL2m,2

k ; k51, . . . ,L,

m51, . . . ,L21, ~28!

i.e., themth and the (L2m)th eigenmodes are identical, ex
cept a minus sign. That is, in contrast to them eigenmodes of
the diffusion equation~7!, the frequency of each eigenmod
of T(4) does not increase monotonically inm. This is due to

FIG. 3. The two second largest eigenmodes of mapL, chain
length L5100, for slopea53 with periodic boundary conditions
ev(x) stands for the amplitude of the eigenmode. The eigenmo
exhibit a steplike fine structure and differ by a phase shift. In co
parison, the respective two eigenmodes obtained from solving
diffusion equation~7! have been included as dashed lines. They
almost indistinguishable from the map eigenmodes.
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the discretization of the position variablex in the diffusion
equation tok in the Frobenius-Perronmatrix equation~13!
by means of a finite Markov partition, which was one of t
basic ingredients for the possibility to construct transiti
matrices.

Moreover, one should note that, according to Eq.~18!, the
smallest eigenvalue ofT(4) is equal to zero. ForT(3), a
large number of eigenvalues are even less than zero@see Eq.
~A16! in the Appendix, Sec. 1 fora53#. Thus, except for the
first few largest eigenmodes, which still match reasona
well to the eigenmodes of the diffusion equation in the lim
time n and chain lengthL to infinity, one cannot expect the
method to work simply that the components of a ‘‘tim
dependent’’ diffusion coefficientDn(a) are determined by
smaller eigenvalues of the transition matrices in strai
analogy to Eq.~9!. This could be taken as a hint that,
obtain more details of the dynamics, refined methods
needed. For example, in Ref.@106# the first orders of a
position-dependent diffusion coefficient have been de
mined for a classP map according to a procedure whic
avoids the discretization of the real line.

3. Absorbing and periodic boundary conditions

The same procedure as outlined for periodic bound
conditions can also be employed for absorbing boundarie
shall be sketched briefly, according to the three steps dis
guished before.

Step 1. The one-dimensional diffusion equation with a
sorbing boundary conditions can be solved as

P~x,t !5 (
m51

`

am expF2S pm

L D 2

Dt GsinS pm

L
xD ~29!

with am denoting again the Fourier coefficients.
Step 2. The transition matrices fora54 anda53 at these

boundary conditions are identical to the ones of Eqs.~14!
and ~24!, except that the matrices now contain zeros as m
trix elements in the upper right and lower left corners. Ho
ever, due to this slight change in their basic structure ther
no general method to solve the eigenvalue problems for th
types of matrices anymore, in contrast to the case of perio
boundary conditions. At least fora53 anda54, it is still
possible to obtain analytical solutions by straightforward c
culations analogous to the ones performed in Ref.@32# ~see
the Appendix, Sec. 2!, but for any higher integer value of th
slope even these basic methods fail. This appears to
caused by strong boundary effects. Figure 4 shows nume
solutions for the largest eigenmodes of the first odd inte
slope transition matrices in comparison to the solutions
the diffusion equation~7! ~details of the numerics applie
here are given in the following section!. It can be seen tha
near the boundaries, there are pronounced deviations
tween the Frobenius-Perron and the diffusion equation s
tions. These deviations are getting smaller in the interior
gion of the chain, but are gradually getting stronger w
increasing the value of the slope, as is shown in the ma
fication. The same behavior can be found for even inte
slopes, although the quantitative deviation of these eig
modes from those of the diffusion equation solutions
slightly less than for odd values of the slope. Thus, obviou
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absorbing boundary conditions disturb the deterministic
namics significantly, whereas similar effects do not occur
periodic boundary conditions, which therefore could be ch
acterized as a kind of ‘‘natural boundary condition’’ for th
periodic dynamical system.

Step 3. The different boundary conditions not only sho
up in the eigenmodes of the transition matrices, but also
the calculation of the diffusion coefficients. In analogy
periodic boundary conditions, the escape rate of the dyna
cal system ata53 anda54 is determined to

gesc~a!5 ln
a

xmax~a!
~30!

with xmax(a) being the largest eigenvalue of the transiti
matrix ~see the Appendix, Sec. 2!,

xmax~3!5112 cos
p

L12
and xmax~4!5212 cos

p

L11
.

~31!

Feeding this into Eq.~10! via matching eigenmodes, on
obtains

D~3!.
1

3

L2

~L12!2
1O~L24!→

1

3
~L→`!,

D~4!.
1

4

L2

~L11!2
1O~L24!→

1

4
~L→`!, ~32!

which gives a convergence of the diffusion coefficient w
the chain lengthL significantly below that obtained from
periodic boundary conditions. For example, for a ch
length of L5100 the convergence is about two orders
magnitude worse. It can be concluded that the transition
trix method works in principle for absorbing boundary co
ditions as well, but that here its range of application to co
pute diffusion coefficients is qualitatively and quantitative
more restricted because of long-range correlations indu
by the boundaries.

FIG. 4. Largest eigenmodes of mapL for odd integer values of
the slopea with absorbing boundary conditions and comparison
the largest eigenmode of the diffusion equation~7!. The inset is a
magnification of the region aroundx50.
-
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B. Markov partitions

In the preceding section, the choice of simple partitio
enabled the construction of transition matrices. These ma
ces provided a way to solve the Frobenius-Perron equatio
a certain limit. However, so far this method has only be
applied to very special cases of mapL, defined by integer
slopes. This raises the question whether an extension of
method to other values of the slope is possible. For this p
pose, the idea of choosing a suitable partition of the map
to be generalized. Taking a look at Fig. 2 again, one obse
that the graph of the map ‘‘crosses’’ or ‘‘touches’’ a vertic
line of the grid only at some grid points. Furthermore, t
local extrema of the map, which are here identical to
points of discontinuity, are situated on, or just ‘‘touch’’ hor
zontal lines of the grid, whereas other crossovers of horiz
tal lines occur at no specific point. The same characteris
can be verified, e.g., for the respective partition of slopea
53. These conditions ensure that it is possible to obtai
correct transition matrix from a partition, since to be mo
eled by a matrix, a density of points, which covers parts
the partition completely, has to get mapped in a way that
image again covers parts of the partition completely, and
partially. This basic property of a ‘‘suitable partition to con
struct transition matrices’’ is already the essence of wha
known as aMarkov partition.

Definition 1 (Markov partition, verbal definition). For
one-dimensional maps, a partition is a Markov partition
and only if parts of the partition get mapped againontoparts
of the partition, oronto unions of parts of the partition@87#.

A more formal definition of one-dimensional Markov pa
titions, as well as further details, can be found in Re
@83,86,107#. The next goal must be to find a general rule
how to construct Markov partitions for mapL at other, non-
trivial parameter values of the slope. Because of the per
icity of the chain of maps, it suffices to find a Markov pa
tition for a singlebox map, i.e., for the respective map in on
box without applying the modulus to restrict it onto the un
interval. Here, the fact can be used that the extrema, wh
are thecritical pointsof the box map, have to touch horizon
tal lines, as explained before, which means that to obta
Markov partition the extrema have to get mapped onto p
tition points. Since any box map of mapL is symmetric with
respect to the point (x,y)5(0.5,0.5), the problem reduces t
considering only one of the extrema in the following, e.
the maximum. Changing the height of the maximum cor
sponds to changing the slope of the map. Therefore, if
needs to find Markov partitions for parameter values of
slope, one can do it the other way around by the followi
Markov condition.

Definition 2 (Markov condition, verbal definition). For
mapL, Markov partition values of the slope are determin
by choosing the slope such that the maximum of the box m
gets mapped onto a point of the partition again.

In Fig. 5, four examples of nontrivial Markov partition
for mapL are depicted with respect to their box maps. O
may check that the conditions extracted from the inte
slope examples to motivate Definition 1 are fulfilled and e
pecially that the partitions shown in the figure obey the M
kov partition definition 1. The detailed structure of the pa
titions can be arbitrarily complex. In Figs. 5~a! and 5~b! a
special orbit has been marked by bold black lines with
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5368 PRE 59R. KLAGES AND J. R. DORFMAN
rows. It represents what will be called thegenerating orbitof
a Markov partition: For the two examples shown here,
starting point of this orbit is given by the maximum of th
preceding box map, since this maximum must also be a
tition point. The iterations of this orbit, as indicated by t
arrows in the figure, define the single partition points. T
way, the number of partition parts is related to the numbe
iterations of the generating orbit. In the case of Figs. 5~a! and
5~b! the orbit is eventually periodic, i.e., it finally get
mapped onto the fixed pointx50, however it can also be
periodic with a certain period, such as, for example, in
case of Fig. 5~d! ~period four!. Thus, the generating orbit i
the key to finding Markov partition values of the slope in
systematic way.

On this basis, a general algebraic procedure to comp
such values of the slope can be developed. One starts w
further topological reductionof the whole chain of boxes
@108#. Since mapL is old, it is possible to construct the

FIG. 5. Four examples of nontrivial Markov partitions of mapL
at different values of the slope. Diagram~a! is for the slopea
.2.057,~b! for a.2.648,~c! for a.6.158, and~d! for a57.641.
In ~a! and~b! the bold black lines with the arrows show the gen
ating orbits of the partitions, that is, the orbits which define
single partition points~see text!. The two large arrows below the
orbits indicate the respective initial positions for the generating
bits.
e
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s
f
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Markov partition for the whole chain from areduced map

M̃a~ x̃!ªMa~ x̃! mod 1 ~33!

via periodic continuation, wherex̃ªx2@x# is the fractional
part of x, x̃P(0,1#, and @x# denotes the largest integer le
than x. Therefore, it remains to find Markov partitions fo
map M̃a( x̃) of the equation above. This can be done in t
following way: Let

eªmin $M̃a~ 1
2 !,12M̃a~ 1

2 !%, e< 1
2 ~34!

be the minimal distance of a maximum of the box m
Ma( x̃) to an integer value. With respect to the Markov co
dition given by Definition 2, it is clear thate has to be a
partition point. SinceM̃a( x̃) is point symmetric, 12e also
has to be a partition point, and because of mapL beingold,
the fixed pointx50 is necessarily another partition poin
Thus, the reduced map governs its internal box dynam
according to

x̃n115M̃a~ x̃n!, x̃n5M̃a
n~ x̃!, x̃[ x̃0 . ~35!

Since 0,e and 12e have to be partition points, the Marko
condition Definition 2 can be formalized to

M̃a
n~e![ d, dP$0,e,12e%, ~36!

i.e., the generating orbit of a Markov partition is defined
the initial conditione, its end pointd, and the iteration num-
bern. According to Eq.~34!, e is determined by the slopea.
Therefore, for mapL Markov partition values of the slope
can be computed as solutions of Eq.~36!. The evaluation of
this equation can be performed numerically as well as, t
certain degree, analytically. To obtain analytical results
Markov partition values of the slope, one has to determ
the structure of the generating orbit in advance, i.e., one
to know whether it hits the left or the right branch of the b
map at the next iteration. Then one can write down an al
braic equation which remains to be solved. For example,
the Markov partition Fig. 5~c!, the generating orbit is deter
mined by

x15M̃a~e!, e< 1
2 and d[M̃a~x1!23, x1< 1

2

~37!

with a52(31e) and d50 at iteration numbern52. This
leads to

a326a22650, a>2, ~38!

for which one may verifya.6.158 as the correct solution
This way, all Markov partition values of the slope are t
roots of algebraic equations of (n11)th order. More ex-
amples with analytical solutions are discussed in the App
dix, Sec. 3. Since one usually faces the problem of solv
algebraic equations of order greater than 3, numerical s
tions of Eq.~36! are desirable, although one should take in
account that iterations of the reduced mapM̃a( x̃) contain
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many discontinuities, due to the original discontinuity
M̃a( x̃) at x̃51/2 as well as due to applying the modulus
Ma( x̃) in Eq. ~33! @109#.

With respect to the three different end pointsd of the
generating orbit in the formal Markov condition Eq.~36!,
three series of Markov partitions can be distinguished.
each series one can increase the iteration numbern, and one
can vary the range of the slopea systematically. These thre
series have been used as the basis for numerical calcula
of the diffusion coefficientD(a), as will be explained below
However, there exist additional suitable end pointsd for the
generating orbit. As an example, one can choosed to be a
point on a two-periodic orbit,

M̃a
2~d!5d, a52~11e!, 0<e<

1

2
⇒d5

112e

4~11e!221

~39!

so that the generating orbit is again eventually periodic,
now being mapped on a periodic orbit which is part of t
Markov partition instead of being mapped on a simple fix
point. This way, certain periodic orbits can serve for defin
an arbitrary number of new Markov partition series with r
spect to the choice of respective new end pointsd. On the
other hand, the set of Markov partition generating orbits
not equal to the set ofall periodic orbits. For example, fo
the range 2<a<3, Eq. ~39! shows that there exists a two
periodic orbit for any slopea, but not anymaximum of the
map in this range necessarily maps onto this periodic or
as is already illustrated by Fig. 5~a! and 5~b!, or by other
simple solutions of Eq.~36!, respectively. This proves tha
Markov partition generating orbits are in fact a subset of
periodic orbits of the map.

With respect to varying the iteration numbern and the end
point d, one can expect to get an infinite number of Mark
partition values of the slope. In fact, for certain classes
maps the existence of Markov partitions can be considere
a natural property of the map@79,81,82,86#. According to the
explanations above, this does not seem to be true for maL.
Instead, there is numerical evidence for the following co
jecture@110#.

Conjecture 1 (denseness property of Markov partition.
For mapL, the Markov partition values of the slopea are
dense on the real line witha>2.

This denseness conjecture should ensure that it is pos
to obtain a representative curve for the parameter-depen
diffusion coefficientD(a) solely by computing diffusion co-
efficients at Markov partition values of the slope. Conjectu
1 may hold for all other classP maps as well. To do such
computations, one needs to construct the corresponding
sition matrices to the Markov partitions obtained, as it h
been shown for the slopesa53 anda54 of mapL. This
can be done according to the following rule: Take as
example any of the box map Markov partitions illustrated
Fig. 5, e.g., case~a!. Any dashed rectangle of this partitio
may be denoted as acell of the partition. These single cells
correspond to the single entries, or matrix elements, of
transition matrix to be obtained. The transition matrix cor
sponding to this Markov partition can now be constructed
checking where the graph of the map goes across a cell o
r
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partition, by counting the number of these occurrences
each cell, and by writing down these values as the ma
elements. For mapL, usually these matrix elements will con
sist of zeros and ones, but the way they are defined here
can also take other integer values, depending on the ch
of the partition, as, e.g., illustrated in the case ofa54, Eq.
~14!.

The construction of the box map transition matrix can
simplified by taking the point symmetry of the box map in
account. The transition matrix of the full chain of cha
length L again follows by periodic continuation. These m
trices can be denoted astopological transition matrices,
since they reflect purely the topology of the map with resp
to the Markov partitions, without involving any transitio
probabilities at this point. In Refs.@64,79,81,82,86# math-
ematically rigorous definitions of these transition matric
can be found. The property of mapL being old induces a
certain structure in the topological transition matrices. Th
are said to bebanded square block Toeplitz matrices, i.e.,
they consist of certain submatrices, calledblocks, corre-
sponding to the box map Markov partitions, and these blo
are the same along diagonals of the topological transi
matrix parallel to the main diagonal, formingbands
@99,111,112#. Applying periodic boundary conditions to th
chain of boxes defines a subclass of these Toeplitz matri
called block circulants, where each row is constructed b
cycling the previous row forward one block@97–99,111#,
see, e.g., the matricesT(4), Eq. ~14!, as an example for a
simple circulant andT(3), Eq. ~24!, for a block circulant.
According to the transition matrix method outlined in th
preceding section, it remains to solve the eigenvalue pr
lems of these matrices and to match the respective eig
modes to those of the diffusion equation for computing
corresponding diffusion coefficientsD(a). Here, periodic
boundary conditions are of great advantage. Analytically,
mentioned before and as shown in the Appendix, Sec
there exists a general procedure how to solve the eigenv
problems of simple circulants@97–99#, and in some cases i
is possible to reduce the eigenvalue problem of a block
culant to that of a simple circulant~see the Appendix, Secs
1 and 3!. If this method works, it automatically yields ‘‘nice
eigenmodes,’’ i.e., eigenvectors of the form of sines and
sines with some fine structure. These eigenmodes are sim
to the eigenmodes of the diffusion equation at this stage~see
the Appendix, Sec. 3!, i.e., before iterating the matrices a
cording to the Frobenius-Perron matrix equation~13!. The
situation is quite different for absorbing boundary con
tions, where no such general procedure exists~see the Ap-
pendix, Sec. 2!.

If analytical solutions of the eigenvalue problems are n
possible anymore, one can obtain numerical solutions. W
known software packages such asNAG and IMSL provide
subroutines to solve the eigenvalue problems of these m
ces. Unfortunately, the numerically obtained results for
full spectra turned out not to be very reliable to a certa
extent: In comparison to analytical results for period
boundaries~see the Appendix, Sec. 3!, theNAG package does
not compute all eigenvectors correctly, i.e., in the numeri
results usually some linear independent eigenvectors
missing. Moreover, both packages provide spectra of eig
values which, although partly identical to the analytical s
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lutions, differ in their full range quantitatively to those ca
culated analytically, not taking any degeneracy into acco
@113#. Such numerical problems seem to be inherent to
class of non-normal Toeplitz matrices, as has already b
pointed out by Beam and Warming@111#. However, solely
for the purpose of computing diffusion coefficients, the f
spectra of the transition matrices are not required, but o
the few largest eigenvalues and eigenvectors are of inte
With respect to eigenvectors, theIMSL package has bee
checked to be reliable in this range, and with respect to
genvalues, both packages provide exact and identical
merical results, especially for the second largest eigenva
which determines the diffusion coefficients. For compu
tions of diffusion coefficients, it is also favorable to consid
only the case of periodic boundary conditions, i.e., solv
eigenvalue problems for block circulants, respectively, si
it has already been discussed in Sec. III A that absorb
boundaries lead to a poor convergence rate of the diffus
coefficient with the chain lengthL.

Figure 6 contains two examples of second largest eig
modes for chains of boxes with periodic boundaries and n
trivial Markov partitions. Again, one gets ‘‘nice’’ secon
largest eigenmodes, i.e., functions which behave like s
and cosines on a large scale. However, the structure of t
eigenmodes is much more complex on a fine scale, as ca
seen in the magnifications of certain regions. The perio
continuation of the fine structure suggests that it is relate
the dynamics of the box map, and therefore varies w
changing the slope, whereas the general large-scale beh
of the eigenmodes seems to be a property of the chai
boxes which shows up independently from such microsco
details. These characteristics have been checked numeri
for a variety of other Markov partition values of the slop
and seem to be a universal feature of mapL, and probably of
all classP maps. One may assume that the fine structur
somehow related to the strength of the diffusion coeffici
and that, on the other hand, the universal large-scale s

FIG. 6. Second largest eigenmodes of mapL at two nontrivial
Markov partition values of the slope with periodic boundary con
tions: full modes and magnifications of their fine structures. F
both parameter values there are the two largest eigenmodes w
differ by a phase shift. Diagrams~a! and ~b! are for slopea
53.0027, chain lengthL5100;~c! and~d! are fora52.0148, chain
lengthL590.
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ture of the eigenmodes is related to the existence of diffus
coefficients for nontrivial Markov partition values of th
slope. In fact, the specific character of the eigenmodes
cussed above, which shows up in any analytical solution
~block! circulants and which is supported by numerical r
sults, forms the basis for the following conjecture.

Conjecture 2 (existence of diffusion coefficients). Let
Ma(x) be a classP map. If for given value of the slope th
map is uniquely ergodic and if there exists a Markov pa
tion, then the map is diffusive.

To our knowledge, so far no proof has been given in
literature for the existence of diffusion coefficients in classP
maps for a general value of the slope. However, dealing w
a rigorous foundation of the transition matrix method tur
out to be intimately connected to proving the existence
diffusion coefficients in this class of dynamical system
Without going into too much detail here, some remarks
in order to provide at least a motivation for this conjectu
The existence of Markov partitions guarantees that ex
transition matrices can be used. The restriction to clasP
maps ensures that topological transition matrices can be
structed in the simple way outlined before, and theold prop-
erty included in the definition of classP determines the glo-
bal structure of the topological transition matrices such t
the eigenmodes are ‘‘nice,’’ at least for periodic bounda
conditions. The requirement to be uniquely ergodic est
lishes the possibility of diffusion in the chain of boxes a
confirms also the uniqueness of the diffusion coefficient
be obtained~a simple counterexample shows that not a
chain of boxes with escape out of one box is automatica
diffusive!. Finally, the term diffusive shall be understood
the sense that a diffusion coefficient exists as defined by
statistical diffusion equation~7!, which has been introduce
to the dynamical system by successfully performing
matching eigenmodes procedure outlined in the preced
section. Therefore, the main proposition of this conjecture
that the matching eigenmodes procedure required by the
passage method works for any value of the slope, if the
spective conditions are fulfilled. A corollary to this conje
ture is that in the limit of timen and chain lengthL to
infinity, the Frobenius-Perron equation of the respect
classP dynamical systems always provides ‘‘nice,’’ i.e., co
rect diffusive eigenmodes. As another corollary, it follow
that there is no anomalous diffusion in classP maps, i.e.,
that normal diffusion is ‘‘typical’’ for such piecewise linea
maps. A rigorous mathematical proof of Conjecture 2 see
to be possible along the lines of first passage and the tra
tion matrix method@114#.

Results based on this method shall be presented in
next section. They have been verified by another numer
method@58,71,114#, by another analytical method which ha
been implemented numerically@58,115#, as well as, to a cer-
tain degree, by straightforward computer simulatio
@58,114#. Meanwhile, the same results have been obtained
Groeneveld with a different method@116#, and they have
also partly been reproduced by cycle expansion techniq
@6#.

IV. FRACTAL DIFFUSION COEFFICIENTS: RESULTS

Based on the methods presented in the preceding sec
the parameter-dependent diffusion coefficientD(a) has been
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computed numerically for mapL for a broad range of value
of the slope. The main results are shown in Fig. 7. The
merical precision obtained depends on the convergenc
the diffusion coefficient with the chain length, cf. Eq.~32!,
and is better than 1024 for eachD(a) so that error bars do
not appear in the diagrams. It should be emphasized tha
numerical method employed here was the first one by wh
these curves ofD(a) have been obtained. It is by far not th
most efficient one of the procedures developed up to n
such as matrix iteration methods, to compute determini
diffusion coefficients@58,71,114–116#. However, it turns out
to be very useful as well to compute other determinis
transport coefficients, e.g., chemical reaction rates@38#,
where more efficient methods fail.

Figure 7~a! shows the diffusion coefficient of mapL for
values of the slope in the range 2<a<8. The strength of
diffusion clearly increases globally by increasing the slo
from a52 to a58. This might be expected intuitively, sinc
the probability for a particle to escape out of a box, as wel
the mean distance a particle travels by performing a jum
increase with the value of the slope@58,71#. However, the
increase of the diffusion coefficient is not monotonic a
consists of oscillations not only at integer values of the slo
as has already been mentioned in Sec. II, but also on m
finer scales between integer values. In fact, Fig. 7~a! shows a
certain regularity in the appearance of local maxima a
minima. If one denotes the local maxima at odd integ
slopesa as peaks of 0th order and, systematically accord

FIG. 7. Parameter-dependent diffusion coefficientD(a) of map
L with some enlargements. In~b!–~e!, the dots are connected wit
lines. The number of data points is 7908 for~a!, 1078 for~b!, 476
for ~c!, 1674 for~d!, 530 for ~e!, and 1375 for~f!.
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to their strength, the smaller local maxima as respec
peaks of higher order, one can find one maximum of fi
order belowa53, three maxima of first order in the rang
3<a<5, five maxima of first order in the range 5<a
<7, . . . . This regularity even persists to a certain extent
finer scales, although according to a slightly different rule,
can be seen, e.g., in the magnification Fig. 7~f!, 6<a<7,
where exactly six peaks of second order appear between
respective peaks of first order. In the same way, six peak
third order can be observed in this region in further mag
fications, and similar structures show up in the region o
<a<5 with four peaks of second and four peaks of th
order. The region of 2<a<3 is somewhat special and wi
be discussed separately. Thus, while the number of peak
first order increases by a step of two with increasing
slope, the number of peaks of higher order remains cons
in the region between two respective peaks of first ord
even by increasing the order of the peaks to be conside
On the other hand, magnifications of other regions of
slope show that the structure of the curve is not that sim
everywhere. For example, blowups of the regions 3<a<4,
Fig. 7~b!, and 5<a<6, Fig. 7~d!, do not enable a clear dis
tinction between ‘‘peaks of different orders’’ anymore. In
stead, they provide more complex structures that furt
magnifications, such as, e.g., Figs. 7~c! and 7~e!, reveal to be
self-similar.

It can be summarized at this stage that different region
the curve exhibit different kinds of self-similarity, partly be
ing fairly simple, but partly also being highly nontrivia
Thus, the results of Fig. 7 suggest that the parame
dependent diffusion coefficientD(a) for map L is fractal
@117#. More evidence for the fractality of the curve can b
obtained in three different ways:~i! Qualitative and quanti-
tative explanations for the peaks in certain regions of
slope can be provided, which demonstrate that these reg
exhibit nontrivial self-similar behavior. This will be demon
strated below.~ii ! It is striking to observe that especiall
diagrams~c!, ~e!, and ~f! resemble graphs of certain fract
functions, which have been obtained in Refs.@33,34,118# by
working on dynamical systems related to the one conside
here. The fractal dimensions computed for these functi
turned out to be close to one@118#. In fact, in Refs.@58,115#
it is shown howD(a) of mapL can be calculated on th
basis of such functions. Moreover, analytical and numer
approximations ofD(a) in terms of these functions can b
constructed that reproduce the fractal fine structure of Fig
at least in certain regions of the parametera. ~iii ! Numerical
computations of the box counting dimension~or capacity!
@60# of the curve have been performed. The resultsindicate
that the curves shown in Figs. 7~a! – 7~f! have fractal dimen-
sions d very close to, but not equal to, 1 in a range ofd
511Dd,0,Dd<1022. However, a dimension ofd51
cannot be excluded on the basis of these computations, s
the numerical error is approximately of the same order
magnitude asDd. Because of the limited data set, bett
values are difficult to get, especially since the fractal dime
sion is expected to be close to 1 in this case. With respec
the magnifications in Fig. 7, it appears that the fullD(a)
curve has locally different values of fractal dimensions.

Figure 8 illustrates the principles of a first qualitative a
proach to understand the occurrence of peaks of 0th and
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FIG. 8. First qualitative approach to unde
stand the structure of the parameter-depend
diffusion coefficientD(a), denoted as the plus
minus method~see text!. The variation of the mi-
croscopic scattering process via changing t
slopea by Da is heuristically related to variations
in the strength of the diffusion coefficient. Th
plus ~minus! signs refer to subintervals wher
forward ~backward! scattering occurs at the nex
iteration of the map~particle moves to the right
or left, respectively!. The qualitative argument is
that the sequence of dominant forward or bac
ward scattering by varying the parameter induc
oscillations in the strength of the diffusion coe
ficient. ~a! and ~b! are for one iteration,~c! and
~d! for two.
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order. It will be called theplus-minus approach. The basic
idea is to establish a connection between the appearanc
peaks in theD(a) graphs and the occurrence of certain d
namical correlations in the chain of boxes. These correlati
are a main feature of transport of particles from one box
another, and they show up and disappear by varying
slope of the map. In the following, particles will be referre
to solely by their positions, i.e., by points on the real lin
Figures 8~a! and 8~b! sketch correlations of 0th order: As
starting point, the escape of particles out of one box in o
direction, i.e., to the right, will be considered for varying th
slope in the range 2<a<4. Such an escape of points
related to a certain subinterval of the box which will b
called theescape region, as is shown in the figure. If point
get mapped to the right at the next iteration, the respec
subinterval will be denoted with a plus sign. In the sam
way, subintervals will be denoted with a minus if points g
mapped to the left. Therefore, the escape region marke
Fig. 8 is part of a plus region, and for small enough slo
after only one iteration points of it get mapped directly in
another plus region. This enhances diffusion, since parti
can move continuously in one direction, i.e., here to
right. The behavior persists for increasing the slope up ta
53. For slopes above this value, an increasing numbe
points of the escape region is now mapped into the mi
region of the next box. This way, one obtains a ‘‘plu
minus’’ correlation, which means that particles either g
slowed down or even get scattered back into the previ
box at the next iteration, which tends to decrease the di
sion coefficient. Thus, by gradually increasing the value
the slope, one is led to the qualitative ‘‘curve’’ in Fig. 8~b!,
which explains the oscillations at integer slopes and
peaks of 0th order, respectively. The sequences which m
of
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the extrema in this graph give the symbolic dynamics
orbits close to, but less than,x51/2 after one iteration with
respect to the reduced map Eq.~33!, where the region 0,x
<1/2 has been labeled with a plus and 1/2,x<1 with a
minus.

In Fig. 8~c! the number of iterations has been increased
two. The method is the same as explained before, howev
further distinction has been made after the first iteration: n
subintervals have been defined, which refer to points of
escape region being mapped to another plus or minus re
at the second iteration. One can see that increasing the s
corresponds to creating different plus-minus sequences
orbits close to, but less than,x51/2. This leads to the par
ticles being in a good or bad position for going further in o
direction with respect to the next iteration, depending on
value of the slope. TheD(a) graph in Fig. 8~d! again gives
the qualitative behavior ofD(a) to be expected with respec
to the dynamical correlations after two iterations, up toa
55. This result corresponds well to the number of peaks
first order estimated in the respective regions of the slo
Again, the plus-minus sequences give the symbolic dyna
ics of points close to, but less than,x51/2 after two itera-
tions.

The plus-minus method works on this level as well f
any higher values of the slope and leads to a qualita
explanation of the number of peaks of first order for a
region of the slope. To a certain degree, it can even exp
additional features of the structure of theD(a) curves: For
example, in Fig. 7~b! one observes that the local maximum
not precisely ata53, although this could be expected fro
the results of the plus-minus method of 0th order. Actua
particles of the escape region close tox51/2 can still reach a
good position for further movement in one direction, ev
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for slopes slightly abovea53. This is due to the fact that
although such points first get scattered back into the prev
box after two iterations, here they are now in an excell
position for further jumps to the right again. This way, the
orbits perform a kind of ‘‘spiral’’ and seem to be responsib
for the surprising fact that the odd integer slope values
D(a) arenot precisely identical to the local extrema of th
curve, but that there is always a kind of overhang, i.e.
further increase of the diffusion coefficient right above o
integer slopes, as, e.g., is shown in detail in Fig. 7~c!.

Although the plus-minus method can be applied
achieve a qualitative understanding of the peaks of 0th
first order, further refinements of this method to obtain pe
of higher order generally turned out not to be very prom
ing. The main reason is that in the case of more iteration
points of the escape region, the dynamics is getting q
complicated and it is not easy to capture the qualitative f
tures illustrated in Fig. 8. However, the basic idea of t
method can be made more quantitative by a procedure w
shall be calledturnstile dynamics. The principle of turnstile
dynamics is to investigate the appearance and disappea
of long-range dynamical correlations by iterating points w
respect to varying the slope, but now the analysis is restric
solely to the regions of the boxes where transport of partic
from one box to another occurs in form of jumps. The
regions are calledturnstiles:

Definition 3 (turnstile). Turnstiles are the ‘‘coupling re
gions’’ of the single boxes of a chain of classP, where
points of one unit interval get mapped outside that particu
interval into another unit interval.

This notation has been adapted from the theory of tra
port of two-dimensional twist maps, such as sawtooth ma
where turnstiles are crucial for understanding large-scale
fusion@119–122#. The escape region introduced above in t
context of the plus-minus method represents precisely o
half of such a turnstile. The main idea is to study theinter-
action of turnstiles, i.e., by varying the slope it shall be i
vestigated whether one obtains ‘‘good’’ or ‘‘bad’’ condition
for particles to get from one turnstile into another, or perha
to get mapped successively through a series of turnstiles
before in the case of the plus-minus method, such dynam
correlations are expected to show up in the curve for
parameter-dependent diffusion coefficientD(a). The advan-
tage of turnstile dynamics is that it can be made quantita
by exemplifying all turnstiles with certain points of thes
regions. For instance, the extremum of the turnstile one s
with is represented by the critical point,x51/2. Now, one
can try to compute the slopes for which this point maps i
other turnstiles again, being exemplified by certain poin
after certain numbers of iterations.

This has been done in detail for the region 2<a<3, as
shown in Fig. 9. The dashed line in the figure represents
prediction ofD(a) for a simple random-walk model as su
gested in Ref.@46#, which is discussed in detail in Refs
@58,71,72#. Note that, on a large scale, the model correc
accounts for the behavior ofD(a) neara52, but does not
provide any reasonable explanation of the fine structu
There are clearly three distinct series of values ofa in the
figure. To understand the nature of these series, one sh
consider the orbit of the critical point. The first iterate ofx
51/2 is in the second interval (1,2). Theseriesa values of
us
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a are defined by the condition that the second iterate ox
51/2 is at the leftmost point of the upward turnstile in th
second interval (1,2) (a52.732), or that the third iterate i
at the corresponding point in the third interval (a52.920),
etc. The numbers on theD(a) curve refer to the number o
intervals that the image ofx51/2 has traveled before it get
to the appropriate point on the turnstiles.Seriesb points are
defined in a similar way, but they have two or more intern
reflections within an interval before reaching the left edge
a turnstile.Seriesg points are defined by the condition th
some image ofx51/2 has reached the rightmost edge of
upward turnstile, i.e., some pointx5k11/2, wherek is an
integer. One observes that each series produces a casca
apparently self-similar regions of decreasing size, as the
its a→2 or a→3 are approached. These cascades provid
basis for a physical understanding of the features ofD(a) in
this region: Particles leave a particular unit interval throug
turnstile and undergo a number of iterations before they
within another turnstile. Whether they continue to move
the same or in the reverse direction at the next and l
turnstiles is a sensitive function of the slope of the ma
Thus, the fractal structure of theD(a) curve is due to the
effects of long-range correlations among turnstiles, and th
correlations lead to changes ofD(a) on an infinitely fine
scale. We note that another way to understand this fra
structure is in terms of so-called ‘‘pruning’’ of the micro
scopic deterministic dynamics. That is, by varying the p
rametera, certain types of orbits may suddenly disappe
This means that with respect to a given symbolic dynam
of the map certain symbol sequences, which identify the
bits, do not exist anymore. This can be related to the irre
larities of the diffusion coefficient@6,50#.

One should note that seriesg points completely label the
maxima of higher order introduced before, and seriesb
points mark the respective minima. This way, in the reg
of the slopea<3 the picture of quantitative turnstile dynam
ics is in full agreement with the results obtained by the qu
tative plus-minus method outlined above~the agreement ha

FIG. 9. Enlargement of the region of slopea<3 for mapL with
the solution for a simple random walk model~dashed line! and
labels for parameter values which are significant for ‘‘turnstile d
namics’’ ~see text!. Turnstile dynamics establishes a quantitati
relation between the local maxima and minima of the parame
dependent diffusion coefficient and the underlying microscopic c
otic scattering process. For some parameter values, the turn
coupling is shown by pairs of boxes. The graph consists of 9
single data points.
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been checked to persist at least up to a level of extrem
second order!. However, the application of turnstile dynam
ics has its limits. First, this method is of no use anymore
any higher value of the slope abovea53. Thus, there is no
other understanding of the structure in this range than
one provided qualitatively by the plus-minus approach. A
second, even for values belowa53, turnstile dynamics is
quantitatively not completely correct: Apart from the lack
explaining the existence of the overhang abovea53, a de-
tailed analysis reveals further ‘‘tiny overhangs’’ at maxim
of higher order, such as, e.g., right above the maximum
first order in the region 2<a<3 ata52.414@123#. In other
words, the ‘‘turnstile values’’ marked in Fig. 9 by seriesg
points represent not the exact local maxima of higher or
of the curve. The true local maxima are in fact shift
slightly to the right from these points, as in the case oa
53. The phenomenon of overhangs is further elucidated
Refs.@58,115#. However, apart from the qualitative remar
in the context of the plus-minus approach and the additio
insight provided by the approach in Refs.@58,115#, a detailed
explanation of these overhang effects is still missing.

At this point, it should be stressed that the region bel
a53 is special, compared to any other region of the slo
First, the structure of the curve is remarkably simple,
shown in Fig. 9. Second, the number of peaks of higher or
is not constant with increasing order, but grows according
the structure described by the turnstile dynamics perform
above. This is in contrast to the behavior ofD(a) in the
ranges 4<a<5 and 6<a<7, where one may have expecte
similar generalities. Third, the region belowa53 is the only
one which is simple enough such that turnstile dynamics
successfully be applied at all, and this region seems to
vide some simple scaling laws@58#. All this nice behavior
suddenly breaks down at the valuea53, which is marked by
the largest overhang of the whole curve. Therefore, it mi
be assumed that the point ata53 separates regions of fun
damental different dynamical behavior of the map, i.e.,
dynamics seems to be sufficiently simple below, but s
denly gets quite complicated above this value. In fact, th
is further evidence that such a transition exists, as is
cussed in detail in Refs.@58,71#.

V. SUMMARY

A. Conclusions

~i! A simple model for deterministic diffusion has bee
discussed where the microscopic scattering rules can
changed by varying a single control parameter, the slope
uniformly hyperbolic, piecewise linear map. The diffusio
coefficient of this model shows a fractal structure as a fu
tion of the slope of the map. This result appears to be the
example of a dynamical system whose diffusion coeffici
has an unambiguously fractal structure.

~ii ! A general method to compute parameter-depend
diffusion coefficients for a whole class of piecewise line
maps has been developed. It is based on the first pas
method, which provides the definition of the diffusion coe
ficient for the dynamical system, in combination with the u
of Markov partitions and transition matrices, which ha
been employed to solve the Frobenius-Perron equation o
dynamical system. For periodic boundary conditions,
of
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parameter-dependent diffusion coefficient could be relate
the second largest eigenvalue of the topological transi
matrix. This method provides analytical solutions in simp
cases and is also accessible to numerical implementatio

~iii ! The method described above has also been applie
absorbing boundary conditions. Long-range correlations
duced by the boundaries have been found in the eigenm
of the deterministic dynamical system. They also show up
quantitative calculations of the diffusion coefficient.

~iv! Certain limits of the first passage method in com
nation with the use of transition matrices have been d
cussed: Drawbacks are especially the restriction to cer
initial probability densities suitable for the application
transition matrices, as well as the ‘‘external’’ definition o
the diffusion coefficient by the ‘‘matching eigenmodes’’ pr
cedure of first passage. This procedure is not well-defined
other eigenmodes of the dynamical system, but these mo
may have a limited physical meaning.

~v! A systematical way to find Markov partitions for th
class of maps under consideration has been developed.
method has been used as the basis for computing
parameter-dependent diffusion coefficient for the dynam
system mentioned above. For this map, as well as for
whole class of maps under consideration, Markov partitio
are conjectured to be dense in the set of parameter valu

~vi! A large number of eigenvalue problems of topolog
cal transition matrices, based on Markov partitions, ha
been solved numerically to compute the parame
dependent diffusion coefficient for the model. In the cou
of these calculations, the reliability of well-known standa
software routines for computing eigenvalue spectra has b
checked critically, and numerical uncertainties have be
pointed out.

~vii ! Certain large- and small-scale structures in the eig
modes of the topological transition matrices have be
found. The large-scale structures support the existence
statistical diffusion in the dynamical system, whereas
small-scale structures refer to the specific microscopic de
ministic dynamics of the model system. These results s
gest that the strength of the fractal diffusion coefficient
related to the fine-scale structure of the eigenmodes.

~viii ! A conjecture about the existence of diffusion coe
ficients for a broad class of one-dimensional maps has b
made. This conjecture may shed more light on the origin
diffusion generated by a simple deterministic dynamical s
tem and may show a way how to put the theory outlined
this paper onto more solid mathematical grounds.

~ix! Qualitative explanations for the structure of th
parameter-dependent diffusion coefficient over the full ran
of parameter values have, to a certain extent, been prov
by simple heuristic considerations.

~x! A more refined ‘‘turnstile dynamics’’ has been deve
oped as a more quantitative approach to explain the struc
of the parameter-dependent diffusion coefficient. It works
certain regions of the parameter values and provides a s
ing point for a scaling of certain self-similar structures.

~xi! By employing these qualitative and quantitativ
methods, certain interesting features of the diffusion coe
cient have been discussed, i.e., the phenomenon of ‘‘o
hangs’’ at local extrema, and the special simple characte
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an ‘‘initial region’’ for small parameter values, where diffu
sion sets in.

B. Outlook

The class of one-dimensional piecewise linear maps
have studied here by analyzing an example appears to b
most simple type of deterministic diffusive systems one c
think of. Nevertheless, we have shown that the diffusion
efficient of such a map changes in a fractal way by varyin
control parameter. Starting from this fundamental res
there are at least two directions in which our research ca
pursued: One way is to study whether other transport qu
tities, like electric conductivities, chemical reaction rates,
magnetoresistances can exhibit such an irregular behavio
well. Another way is to investigate whether fractal transp
coefficients exist in more complicated, and thus more rea
tic, dynamical systems.

The first steps in these directions have already been ta
For example, a bias has been added to the simple map
cussed in this paper. This generates an average curre
particles which again exhibits fractal structures by vary
the bias as a parameter@114,116#. Moreover, for small
enough bias the current can run opposite to the b
@114,116#, and for other parameter values the diffusion co
ficient is zero with nonzero current@114#. Deterministic dif-
fusion coefficients and deterministic currents which chan
irregularly by varying respective parameters have also b
found in parameter-dependent two-dimensional multi-Ba
models @38,39#. In their transport properties, these mode
are closely related to the class of one-dimensional maps
cussed here. However, in addition they provide more ph
cal features such as being time-reversible@39,114# and being
area-preserving or dissipative in a well-defined sense. Ne
tive currents have been observed in these systems as
and a parameter-dependent diffusive-reactive multi-Ba
yields chemical reaction rates which are also fractal in
parameter@38#.

In the periodic Lorentz gas, however, there is as yet
clear indication about a fractal behavior of transport coe
cients. First results of computer simulations for the diffusi
coefficient with respect to varying the density of scatter
show a very smooth curve, which indicates that if there
fractal fluctuations in the parameter at all they must occur
a very fine scale@124#. On the other hand, for the thermo
stated periodic Lorentz gas with an electric field compu
simulations of several groups show clearly a very irregu
behavior of the conductivity by varying the field streng
@20,28,29,31#. In one case, the numerical results could ev
be confirmed by calculations based on cycle expansions@31#.

Whether deterministic phenomena of this kind play a r
in real statistical, experimentally accessible systems is a v
open question. Following the chaotic hypothesis of G
lavotti and Cohen@125,126#, one may believe that these ph
nomena are rather due to the simplicity of the models
should eventually disappear if the systems are getting m
complex. Respectively, we would expect that certain nec
sary conditions must be fulfilled for systems to exhibit ch
acteristics of fractal transport coefficients which may cont
dict the spirit of the chaotic hypothesis, such as be
spatially periodic, low-dimensional, and such that partic
e
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particle interactions are not of primary importance. Physi
systems of this kind could — to a certain extent — alrea
be realized experimentally in the form of so-called antid
lattices. Here, magnetoresistances which fluctuate irregul
by varying the field strength have already been observed
perimentally in a classical limit@127,128#, and to a certain
extent they have been explained theoretically by identify
special orbits in the microscopic dynamics@129,130#. An-
other candidate of a system where certain irregularities
transport could be of a deterministic origin are so-cal
ratchets, where negative currents have already been fo
experimentally, as well as in theoretical models~see, e.g.,
Refs.@131,132# and further references therein!. In fact, it can
be argued that there exists a relation between certain type
ratchets and the class of one-dimensional maps~supple-
mented by a bias! studied here@114,133#.

Fractal transport coefficients in one-dimensional maps
tually appear to be stable with respect to imposing differ
kinds of random perturbations on the system@114#. This
means that the fractal structure gradually smoothes ou
increasing the perturbation strength and thus survives in
form of irregular oscillations on finer scales if the perturb
tion is small enough. Although there are exceptions to t
behavior@134#, we believe this to be the typical scenario
how a possible fractality of parameter-dependent trans
coefficients may appear if the system is not completely
terministic.
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E. Schöll for their interest in this work and for their continu
ous support. J. R. D. thanks the National Science Founda
for Support under Grant No. PHY-96-00428.

APPENDIX: TRANSITION MATRIX METHOD
FOR CALCULATING DIFFUSION COEFFICIENTS

In this appendix, we present the analytical solution for t
eigenstates of the topological transition matricesT(a) for-
mally introduced in Sec. III A. These transition matrices a
the main ingredients for our solution of the Frobenius-Per
matrix equation, Eq.~13!, and their eigenmodes and eige
values determine the deterministic diffusive dynamics of
map at the respective parameter value of the slope, as
lined in Sec. II. Two simple examples of such transiti
matrices have already been given by Eq.~14! and Eq.~24!;
the problem of transition matrices for more complicat
Markov partitions has been discussed in Sec. III B.
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In the first subsection of this appendix, we will consid
integer slope, and periodic boundary conditions. We so
the eigenvalue problems of these transition matrices by s
dard methods and compute the parameter-dependent d
sion coefficients as defined by the first passage method
the second subsection, we solve the eigenvalue problem
the respective transition matrices for two integer slopesa
53,4, and absorbing boundary conditions. In the third s
section, we describe some nontrivial Markov partitions
noninteger slopes.

1. Integer slopes with periodic boundary conditions

As discussed in Sec. III, for periodic boundary conditio
all topological transition matrices corresponding to Mark
partitions are block circulants. For certain values of the slo
it is possible to reduce these block circulants to simple
culants with known solutions for the eigenstates@97–99#.
We employ here the approach of Berlin and Kac as descr
in Appendix A of Ref.@97#.

Let T be a cyclic matrix of the type

TªS t1 t2 t3 ••• tL21 tL

tL t1 t2 ••• tL22 tL21

tL21 tL t1 ••• tL23 tL22

A A A A

t2 t3 t4 ••• tL t1

D . ~A1!

We want to calculate the eigenvaluesxm and the eigenvec
tors ufm& associated withT, that is,

T ufm&5xm ufm&, m50, . . . ,L21. ~A2!

According to Ref.@97#, the eigenvalues are given by

xm5(
s51

L

tsr m
s21 ~A3!

with

r m5expS i
2pm

L D , ~A4!

and the corresponding eigenvectors are

ufm&5~fm
1 ,fm

2 , . . . ,fm
k , . . . ,fm

L !* ,

fm
k 5ãmfm,1

k 1b̃mfm,2
k , fm,1

k
ªcos†um~k21!‡,

fm,2
k

ªsin@um~k21!#, k51, . . . ,L, umª
2pm

L
~A5!

with ãm and b̃m to be fixed by suitable normalization cond
tions.

We now compute the diffusion coefficient for all eve
integer slopesa52k,kPN, of mapL by solving the eigen-
value problem of the respective general transition ma
T(a) of the system. This transition matrix can be construc
as discussed in Sec. III A by using the same Markov pa
tion for all slopes, that is, the one which is depicted in Fig.
r
e
n-
fu-
In
of

-
r

e
-

d

x
d
i-
.

We find that the matrix corresponding to this Markov par
tion is a simple circulant with matrix elements of

t152,t251, . . . ,ta/251,ta/21150, . . . ,tL2a/211

50,tL2a/21251, . . . ,tL51. ~A6!

The (s1a/221)th row, 1<s<L2a/2, of the corresponding
eigenvalue problem defined by Eq.~A2! is thus determined
by

fm
s 1•••1fm

s1a/22212fm
s1a/2211fm

s1a/21•••1fm
s1a22

5xmfm
s1a/221 . ~A7!

According to Eq.~A3!, the eigenvalues are

xm521r m1•••1r m
(a22)/21r m

L2(a22)/21•••1r m
L21 ,

~A8!

and by using Eq.~A4! we obtain explicitly

xm5212 (
s51

(a22)/2

cos~ums!.a2um
2 a~a21!~a22!

24

~L→`!. ~A9!

The corresponding eigenvectors are given by Eq.~A5!. Note
that the largest eigenvaluex0 is equal to the slope of the
map. This is a consequence of the fact that the topolog
transition matrices discussed here can be mapped onto
chastic transition matrices and that the Perron-Froben
theorem for non-negative matrices applies@32,135#. It can be
proven that this property holds for any topological transiti
matrix of mapL which is defined on the basis of Marko
partitions with periodic boundary conditions@114#. Accord-
ing to the matrix Frobenius-Perron equation, Eq.~13!, the
corresponding largest eigenmode determines the equilibr
state of the system, which is here simply uniform. In analo
to Eq. ~21!, the second largest eigenvalue gives the de
rate, and the respective second largest eigenmode gov
the diffusive transport in the map. For slopea52k we thus
obtain a decay rate of

gdec~a!5 ln
a

x1~a!
.

4p2

L2

~a21!~a22!

24
~L→`!.

~A10!

With Eq. ~9!, this gives a diffusion coeficient of

D~a!5
L2

4p2
gdec~a!5

~a21!~a22!

24
. ~A11!

We now want to do the same calculation for all odd integ
slopesa52k21,kPN, again by employing periodic bound
ary conditions. As a Markov partition for all these slopes w
use the same partitioning underlying the transition matrix
given by Eq.~24!, that is, its parts are all of length 1/2. Her
the correspondinga-dependent transition matrix is a bloc
circulant where the single blocks consist of 232 matrices.
To illustrate the general structure of this matrix, we give t
first rows and columns of the special casea55, which is
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T~5!51
1 1 0 1 0 0 0 0 0 0 •••

1 1 0 1 0 1 0 0 0 0 •••

1 0 1 1 0 1 0 0 0 0 •••

1 0 1 1 0 1 0 1 0 0 •••

1 0 1 0 1 1 0 1 0 0 •••

0 0 1 0 1 1 0 1 0 1 •••

0 0 1 0 1 0 1 1 0 1 •••

A A A

2 .

~A12!

By using the notationum
k for thekth odd component ofufm&

and vm
k for the kth even component we obtain fork odd, 1

<k<L23,0<m<L21,

um
k 1um

k111vm
k111vm

k121vm
k135xmvm

k11 ,

um
k 1um

k111um
k121vm

k121vm
k135xmum

k12 , ~A13!

supplemented by periodic boundary conditions for the
spective first and last rows of the matrix. This leads tovm

k

5um
k11 , yielding an equation forum

k which reads

um
k 1um

k111um
k121um

k131um
k145xmum

k12 , ~A14!

again by providing respective periodic boundary conditio
Thus, we have reduced the eigenvalue problem for the in
block circulant of Eq.~A12! to the eigenvalue problem of
simple circulant as given by Eq.~A14!. The same reduction
procedure can be carried out for a general odd integer v
of the slope. The reduced eigenvalue equation then read

um
k 1•••1um

k1a215xmum
k1(a21)/2, ~A15!

supplemented by respective periodic boundary conditio
With the Berlin-Kac method we obtain for the eigenvalue

xm5112 (
s51

(a21)/2

cos~ums!.a2
4p2m2

L2

a~a221!

24

~L→`!, 0<m<L21. ~A16!

The eigenvectors are given here by

ufm&5~um
1 ,vm

1 , . . . ,um
k ,vm

k , . . . ,um
L ,vm

L !* ,

um
k 5ãmum,1

k 1b̃mum,2
k , vm

k 5um
k11 ,

um,1
k

ªcos†um~k21!‡, um,2
k

ªsin†um~k21!‡,

k51, . . . ,L, umª
2p

L
m ~A17!

with ãm and b̃m to be fixed by suitable normalization cond
tions. For the decay rate we obtain

gdec~a!.
4p2

L2

~a221!

24
~L→`!, ~A18!

which leads to a diffusion coefficient of
-

.
al

ue

s.

D~a!5
a221

24
. ~A19!

2. Integer slopes with absorbing boundary conditions

For absorbing boundary conditions, the correspond
transition matrices are not block circulants, but they belo
to the broader class of banded square block Toeplitz ma
ces, as pointed out in Sec. III A. For these matrices no g
eral methods are known for solving their eigenvalue pro
lems analytically. However, in certain cases analyti
solutions can still be obtained by straightforward calcu
tions, as we will show for the two integer values of slopea
53 anda54.

We first consider the casea54. The transition matrix for
this parameter value is identical to the one given by Eq.~14!
except that the upper right and the lower left corners
filled with zeros because of absorbing boundaries. The eig
value problem of this matrix can now be solved in analogy
the calculations performed by Gaspard in Ref.@32#. The ei-
genvalue equation, Eq.~A2!, reads here

fm
k 12fm

k111fm
k125xmfm

k11 , 0<k<L21,
~A20!

supplemented by the absorbing boundary conditionsfm
0

5fm
L1150. Since this equation is of the form of a dis

cretized ordinary differential equation of degree 2, we ma
the ansatz

fm
k 5a cos~ku!1b sin~ku!, 0<k<L11. ~A21!

The two boundary conditions then lead to

a50 and sin†~L11!u‡50 ~A22!

yielding

um5
mp

L11
, 1<m<L. ~A23!

The eigenvectors are then determined by

fm
k 5b sin~kum! ~A24!

with b as the normalization constant. Putting this equat
into Eq. ~A20! gives as the eigenvalues

xm5212 cosum . ~A25!

Note that in the case of absorbing boundary conditions
largest eigenvalue is not equal to the slope of the map,
determines the escape rate of the system. Correspondi
the largest eigenmode is the diffusive mode of the m
However, forL→` the largest eigenvalue goes to the exa
value of the slope, which therefore serves as an upper l
of the eigenvalue spectrum. This is conjectured to be true
any topological transition matrix of mapL which is defined
on the basis of Markov partitions by employing absorbi
boundary conditions@114#. In the limit of chain lengthL
→` these results lead to the escape rate and diffusion c
ficient presented in Sec. III A, Eqs.~30! – ~32!.
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5378 PRE 59R. KLAGES AND J. R. DORFMAN
We now treat analogously the case of slopea53 for ab-
sorbing boundary conditions. We know from the preced
subsection that for odd integer slopes the Markov partitio
and thus the respective transition matrices, are a bit m
complicated. The transition matrix fora53 is identical to
the one given by Eq.~24! except that the upper right an
lower left corners are filled with zeros because of absorb
boundaries, as before.

To write down the eigenvalue equation, Eq.~A2!, for this
matrix we use the same notation as in the preceding sub
tion for odd integer slopes. Withum

k being thekth odd com-
ponent ofufm& and vm

k being thekth even component we
obtain fork odd, 0<k<L,

um
k 1vm

k 1vm
k115xmvm

k , um
k 1um

k111vm
k115xmum

k11 ,

~A26!

supplemented by the absorbing boundary conditionsum
0

5vm
L1150. This again leads tovm

k 5um
k11 , yielding an equa-

tion for um
k which reads

um
k 1um

k111um
k125xmum

k11 , 0<k<L, ~A27!

with the respective absorbing boundary conditions. We ag
use Eq.~A21! as an ansatz to solve this equation. The t
boundary conditions then lead to

a50 and sin@~L12!u#50 ~A28!

yielding

um5
mp

L12
, 1<m<L11. ~A29!

The eigenvectors are then determined by

um
k 5b sin~kum!, vm

k 5b sin@~k11!um# ~A30!

with b as the normalization constant. Putting this equat
into Eq. ~A27! gives as eigenvalues

xm5112 cosum . ~A31!

In the limit of chain lengthL→` this leads to the results fo
escape rate and diffusion coefficient presented in Sec. II
Eqs.~30! – ~32!.

We remark that we do not have analytical solutions of
eigenvalue problems for integer values of the slope ab
a54 with absorbing boundary conditions. Here, the ans
of Eq. ~A21! does not seem to be sufficient because of lo
range correlations which are induced by the absorb
boundary conditions, see also the remarks in Sec. III A
this problem.

3. Nontrivial Markov partitions with periodic boundary
conditions

In this subsection, we discuss some examples of n
trivial Markov partitions where analytical solutions of th
respective eigenvalue problems of the transition matrices
still be obtained analytically. This can be done by reduc
block circulants onto simple circulants in the way illustrat
in the preceding subsections for odd integer slopes. In
g
s,
re

g

c-

in
o

n

,

e
e

tz
-
g
o

n-

an
g

e

following, we will only consider periodic boundary cond
tions, because then the general method of Berlin and Ka
solve the respective eigenvalue problems can be applied

We discuss two different series of Markov partitions. F
the simplest case of the first series we briefly outline how
perform the calculations, and we give the results for the
genvalues and the diffusion coefficient. For the next para
eter value of this series we give only the main results, bef
writing down the respective general formulas for the who
series. For the second series we only deal with the first
parameter values by giving the main results.

In each case we proceed by first depicting a box map
the full chain of boxes with its Markov partition in a figure
We indicate how the respective Markov partition has be
computed and give the exact value of the slope by which
defined. On this basis, we sketch the corresponding trans
matrix for the full chain of boxes and give the main resu
for eigenvalues and diffusion coefficient.

a. Series 1

As has been pointed out in Sec. III B, a Markov partitio
is defined via a generating orbit which obeys Eq.~36!. By
using the notation of this equation, the first series of Mark
partitions discussed here is characterized byd50 with the
number of iterations of the reduced map beingn51. The
first case of this series is obtained from the solution of t
equation for the slopea being restricted between 2 and
The second case refers to 4,a,6; the general case is fo
solutions 2k,a,2(k11),kPN.

Case 1. This is the simplest case and corresponds to
smallest slope of this series, as illustrated in Fig. 10~a!. As
one can infer from the figure, the precise value of the slo
can be computed from the equation

152~11e!e 0<e<1/2, ~A32!

wherea52(11e), which leads to the solution

a5~A321!/2.2.732 05. ~A33!

The partition of the full chain of boxes can be constructed
continuing the box map of Fig. 10~a! periodically. The cor-
responding transition matrix can then be obtained from t
partition as described in Sec. III B and reads

FIG. 10. Markov partitions for mapL at values of the slope
where the diffusion coefficients are computed analytically.~a! is for
slopea.2.732 05,~b! for a.4.828 43,~c! for a.2.561 55, and~d!
for a.4.701 56.
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T~2.732 05!

51
1 0 1 0 0 0 0 0 0 0 •••

1 0 1 0 0 0 0 0 0 0 •••

1 0 1 0 1 0 0 0 0 0 •••

0 1 0 1 0 1 0 0 0 0 •••

0 0 0 1 0 1 0 0 0 0 •••

0 0 0 1 0 1 0 1 0 0 •••

0 0 0 0 1 0 1 0 1 0 •••

A A A

2 ,

~A34!

where the first, second, third,. . . , three rows correspond t
the first, second, third,. . . , box of thechain. We now re-
duce this block circulant to a simple circulant. Since t
Markov partition of each box consists of three parts, we
three different symbolsum

k ,vm
k ,wm

k as components of the
eigenvectors to write down the eigenvalue equation,
~A2!, of this matrix,

um
k 1wm

k 5xmvm
k , um

k 1wm
k 1vm

k115xmwm
k ,

vm
k 1um

k111wm
k115xmum

k11 , 1,k,L, ~A35!

supplemented by respective periodic boundary conditions
the first and the last row of the matrix. From these equati
it is immediately obtained that

wm
k 5

vm
k111xmvm

k

xm
, um

k115
vm

k 1xmvm
k11

xm
, ~A36!

which leads to

vm
k1112vm

k 1vm
k215xm

2 vm
k ~A37!

with respective periodic boundary conditions. This again
fines the eigenvalue problem of a simple circulant which
can solve by the methods used before. For the eigenva
we obtain

xm516A112 cosum.16A3S 12
um

2

6 D ~L→`!,

um5
2pm

L
, 0<m<L21, ~A38!

where the second largest eigenvalue yields a diffusion c
ficient of

D~2.732 05!5
A3

6~11A3!
.0.105 66. ~A39!

As pointed out above, the largest eigenvalue is again ide
cal to the slope of the map. It is related to an equilibriu
eigenmode which is here a periodically continued piecew
constant function, based on the single parts of the Mar
partition.

Case 2. The second case of this series is the Mark
partition defined by the respective value of the slope betw
e

.

or
s

-
e
es

f-

ti-

e
v

v
n

4 and 6. Its box map partition is illustrated in Fig. 10~b! and
corresponds toa521A8.4.828 43. The transition matrix
reads

T~4.8284!

51
1 0 1 0 0 1 0 0 0 0 •••

1 0 1 0 0 1 0 0 0 0 •••

1 0 1 0 0 1 0 1 0 0 •••

1 0 0 1 0 1 0 0 1 0 •••

1 0 0 1 0 1 0 0 1 0 •••

1 0 0 1 0 1 0 0 1 0 •••

0 1 0 1 0 0 1 0 1 0 •••

0 0 0 1 0 0 1 0 1 0 •••

0 0 0 1 0 0 1 0 1 0 •••

0 0 0 0 1 0 1 0 0 1 •••

A A A

2 .

~A40!

Again, this block circulant can be reduced to a simple circ
lant. By some calculations which are quite analogous to
ones of the previous example, we obtain as eigenvalues

xm511cosum6A~11cosum!212 cos~2um!12 cos~3um!

.22
um

2

2
6A8S 12

15

16
um

2 D ~L→`!, ~A41!

um andm as before, with a diffusion coefficient of

D~4.8284!5

11
15

4
A2

4~11A2!
.0.652 73. ~A42!

General case of this series. We now give the general so
lution for eigenvalues and diffusion coefficients of all cas
of this series of Markov partitions. Let

a~p!52~p111e! with e5
1

2
@2p21

1A2p121~p11!2#, pPN0 , ~A43!

be the slope of mapL. Thena(0) is the value of the slope o
case 1 anda(1) is the value of the slope of case 2. An
higher value ofa(p),p.1, defines a Markov partition which
is of the same type as in the two previous examples, tha
it fulfills the general definition of this series given at th
beginning. For this series of Markov partitions the gene
eigenvalue problem of the corresponding transition matri
can be solved by generalizing the calculations above. T
yields for the eigenvalues
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xm511 (
k51

p

cos~kum!

6AS 11 (
k51

p

cos~kum!D 2

12(
k51

p11

cos@~p1k!um#,

0<m<L21. ~A44!

In the limit of L→`, this leads to a diffusion coefficient o

D~p!5
~2p21p!A~11p!~31p!12p3117p2120p16

12@A~11p!~31p!131p#
.

~A45!

b. Series 2

By again referring to Eq.~36!, and using the notation o
Sec. III B, a second series of Markov partitions is defined
d512e with the number of iterations of the reduced m
being n51. In the following we give the main results fo
only the first two cases of this series, which are based on
solution of this equation for the slopea being 2,a,4 and
4,a,6, respectively.

Case 1. The partition illustrated in Fig. 10~c! corresponds
to the slope

a5
11A17

2
.2.561 55 ~A46!

and defines, periodically continued, a transition matrix of

T~2.561 55!

51
1 1 0 0 0 0 0 0 0 0 •••

1 0 1 0 0 0 0 0 0 0 •••

0 1 1 0 1 0 0 0 0 0 •••

0 1 0 1 1 0 0 0 0 0 •••

0 0 0 1 0 1 0 0 0 0 •••

0 0 0 0 1 1 0 1 0 0 •••

0 0 0 0 1 0 1 1 0 0 •••

0 0 0 0 0 0 1 0 1 0 •••

0 0 0 0 0 0 0 1 1 0 •••

0 0 0 0 0 0 0 1 0 1 •••

A A A

2 .

~A47!
y

he

The eigenvalues are

xm5
1

2
6A9

4
12 cosum, um5

2pm

L
, 0<m<L21,

~A48!

and the diffusion coefficient is

D~2.561 55!5
2

A1711A17
.0.094 68. ~A49!

Case 2. The partition illustrated in Fig. 10~d! corresponds
to the slope

a5
31A41

2
.4.701 56 ~A50!

and defines, periodically continued, a transition matrix of

T~4.701 56!

51
1 0 1 0 1 0 0 0 0 0 •••

1 0 1 0 0 1 0 0 0 0 •••

1 0 1 0 0 1 0 1 0 0 •••

1 0 0 1 0 1 0 1 0 0 •••

1 0 0 1 0 1 0 0 1 0 •••

0 1 0 1 0 1 0 0 1 0 •••

0 1 0 1 0 0 1 0 1 0 •••

0 0 0 1 0 0 1 0 1 0 •••

A A A

2 .

~A51!

The eigenvalues are
xm5
112 cosum

2
6A1

4
~112 cosum!21212 cosum12 cos~2um!12 cos~3um!, ~A52!

um andm as before, and the diffusion coefficient is
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11
31

A41

31A41
.0.621 22. ~A53!
i-

e
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We finally remark that analytical calculations whic
are similar to the ones performed here have been car
out in Refs.@6,50,51#. These calculations are based on cyc
expansions, and the diffusion coefficient has been compu
for different piecewise linear maps.
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