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3School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom

(Received 16 December 2011; accepted 6 May 2012; published online 30 May 2012)

A particle driven by deterministic chaos and moving in a spatially extended environment can

exhibit normal diffusion, with its mean square displacement growing proportional to the time.

Here, we consider the dependence of the diffusion coefficient on the size and the position of areas

of phase space linking spatial regions (‘holes’) in a class of simple one-dimensional, periodically

lifted maps. The parameter dependent diffusion coefficient can be obtained analytically via a

Taylor-Green-Kubo formula in terms of a functional recursion relation. We find that the diffusion

coefficient varies non-monotonically with the size of a hole and its position, which implies that a

diffusion coefficient can increase by making the hole smaller. We derive analytic formulas for

small holes in terms of periodic orbits covered by the holes. The asymptotic regimes that we

observe show deviations from the standard stochastic random walk approximation. The escape rate

of the corresponding open system is also calculated. The resulting parameter dependencies

are compared with the ones for the diffusion coefficient and explained in terms of periodic orbits.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4721887]

The diffusion coefficient of a physical system involves a

macroscopic measurement of the linear increase in the

mean square displacement of an ensemble of microscopic

points. The source of this increase is often modeled as the

result of many random collisions between the elements of

a system, for example caused by thermal motions. How-

ever, on a molecular level, the rules governing the colli-

sions are deterministic. In order to obtain a full

understanding of the process of diffusion, one must take

these deterministic rules into account. The discovery of

chaotic dynamical systems which exhibit diffusion has

helped facilitate this, as one can consider a relatively sim-

ple, low-dimensional setting in which diffusion can be

studied along with the deterministic rules at the heart of

diffusion. In this setting, one can consider how the diffu-

sion coefficient reacts to the variation of control parame-

ters, and hence gain understanding of more complicated

diffusion processes. Here, we consider a simple, one-

dimensional dynamical system, which consists of an inter-

val map, periodically copied over the real line with each

interval connected to its neighbors via two regions which

we call holes. We analytically derive the diffusion coeffi-

cient for this system and study the effects of the size and

position of the holes. We show that the position of a hole

has a crucial impact on the diffusion coefficient, some-

times dominating that of the size of a hole. We further

study the diffusion coefficient in the asymptotic regime of

small holes. We find analytic expressions for the diffusion

coefficient in terms of the limiting behavior of a hole, in

particular whether they contain a short periodic orbit.

This allows construction of a periodic orbit expansion for

small, but finite holes generalizing simple random walk

theory, which is based on an effectively uncorrelated dy-

namics. Finally, we compare our diffusion results with

those obtained previously for the escape rate and discuss

the similarities and differences that arise.

I. INTRODUCTION

Recently, there has been a surge of interest from mathe-

maticians and physicists on dynamical systems with holes,

that is, subsets of phase space that allow trajectories to leak

out. Varying the position of such holes in simple dynamical

systems has exposed a strong link between the average life-

time of chaotically transient orbits and the location of short

periodic orbits.1 Work on the escape properties of the dou-

bling map and related systems has revealed fundamental

results for finite times, non-monotonic dependence of escape

rates on hole sizes, and a precise slowing of escape for small

holes containing a short periodic orbit.2 The small hole

effects have been generalized,3–5 and noise effects have also

been considered;6,7 for reviews see Refs. 8–10. This work

begs the question: How do transport processes such as diffu-

sion depend upon the position and size of a hole? We answer

this question for the diffusion coefficient of an extended dy-

namical system, interpreting the holes now as the links

between spatially separate regions of phase space. Diffusion

is a fundamental transport process of many-particle systems,

the study of which cross-links transport theory in statistical

mechanics with dynamical systems theory.11–14 The linear

increase in time of the mean square displacement of an en-

semble of points in a chaotic, deterministic dynamical
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system is a process known as ‘chaotic diffusion’ or ‘deter-

ministic diffusion.’11–18 Chaotic diffusion provides a setting

where the interaction between different holes can be studied,

an area that has yielded interesting results regarding escape

rates from circular19 and diamond20 billiards with two holes,

and very recently regarding transmission and reflection rates

in stadium billiards21 and the bouncer model.22 A general

relation between escape and diffusion has been established

by the escape rate theory of chaotic diffusion, which pro-

vides exact formulas expressing transport coefficients in

terms of escape rates in spatially extended systems with

absorbing boundary conditions.11–13,18,23

Much research has gone into studying the parameter de-

pendence of the diffusion coefficient in simple one-

dimensional maps.15–17 For low-dimensional, spatially peri-

odic chaotic dynamical systems, the diffusion coefficient is of-

ten found to be a fractal function of control parameters,

exhibiting non-trivial fine scale structure even in apparently

simple examples.13,24,25 The source of this fractality is typi-

cally explained in terms of topological instability under pa-

rameter variation of the underlying dynamics.14,26 However,

there exist systems that display these hallmarks of fractality,

but nevertheless have a linear diffusion coefficient.27 There-

fore, there is still work to be done explaining the phenomenon

of fractal diffusion coefficients in one dimension, let alone

attempting to answer questions about higher dimensional,

more physical systems like sawtooth maps,28 standard maps,29

or particle billiards30,31 where analytical results are lacking, as

are answers to basic questions about the structure of the diffu-

sion coefficient. Previous work has focused on deriving and

understanding the diffusion coefficient under smooth variation

of control parameters of the dynamics.13 In this setting, the

reduced, modulo one dynamics of a system will change with

parameter variation.14 Here, we switch focus and study a sys-

tem where the reduced dynamics does not change.25,27,32 The

main aim of this paper is to see how the diffusion coefficient

varies with the size and position of a hole in a paradigmatic

‘toy model.’ In the process, we find new relations between dif-

fusion and escape rates, between diffusion and periodic orbits,

and we extend the small hole theory of Refs. 2 and 3 to diffu-

sion. What we learn here can hopefully be transferred to more

physically realistic dynamical systems such as particle

billiards.11–13

In Sec. II, we define the dynamical system that will be

the main object of our study. It is a simple piecewise-linear

chaotic map of the real line, which is a deterministic realiza-

tion of a random walk. It is constructed by copying and peri-

odically lifting the ‘Bernoulli shift’ or ‘doubling map

modulo one’ over the whole real line.25,27,32 Modeling a coin

tossing process in terms of deterministic chaos, the doubling

map modulo one is one of the simplest dynamical systems

displaying stochastic-like properties making it an indispensa-

ble tool for studying statistical mechanics in the setting of

dynamical systems.11,33 In addition, we choose the doubling

map, so that we can compare with the results on escape rates

from Refs. 2 and 3 where the doubling map modulo one was

also focused upon. Furthermore, the invariant measure of the

doubling map modulo one is simply Lebesgue, which helps

make it amenable to analysis with the method we will

employ. The process of copying and periodically lifting a

map is the classical way to study chaotic diffusion in one

dimension.15–17 However, we do not introduce diffusion into

the system through variation of a control parameter such as a

shift or by varying the slope. Rather we ‘dig holes’ into the

map that serve as intervals where points can be iterated to a

neighboring interval in analogy with the work in Ref. 2.

We then analytically derive the diffusion coefficient as a

function of the size and position of a hole in this system via

the Taylor-Green-Kubo formula,11,13 in terms of a functional

recursion relation. There are various methods for analytically

deriving diffusion coefficients,13,14,26 but the method we use,

developed in Refs. 18, 25, 27, and 32, is the best suited to this

setting. In Sec. III, we look at the analytical formulas derived

in Sec. II and find that the diffusion coefficient varies as the

position of a hole is varied, in analogy with results on the

escape rate. We also find that the diffusion coefficient

decreases non-monotonically as the size of a hole decreases, a

result that is different to the escape rate. We explain this result

in terms of the complicated forward and back scattering rules

associated with even simple dynamical systems.13,18,24,27

By using the same approach, similar results are obtained

for the diffusion coefficient of maps where the holes are not

placed symmetrically, and where the map generating the mi-

croscopic dynamics is non-symmetric. Following this, we

consider the case of small hole size by deriving analytical

expressions for the diffusion coefficient, which capture the

asymptotic regime. We find that the asymptotic regime is de-

pendent upon the orbit structure of the limiting point in an

escape region, a result which goes beyond a simple random

walk approximation.15,17,18,34 We explain the results on posi-

tion dependence, non-monotonicity, and asymptotic regimes

by looking at the periodic orbit structure of the map. More-

over, we build a periodic orbit expansion for small but finite

holes giving a more intuitive insight of the above. In Sec. IV,

we numerically calculate the escape rate for the correspond-

ing open system in order to compare with the structure of the

diffusion coefficient. We summarize our findings and con-

clude our work in Sec. V.

II. DERIVING THE DIFFUSION COEFFICIENT
OF A DETERMINISTIC DYNAMICAL SYSTEM

The dynamical system that we will study is based on the

doubling map modulo one, whose phase space is simply the

unit interval,

~MðxÞ ¼
2x 0 � x <

1

2

2x� 1
1

2
� x < 1

:

8><
>: (1)

The tilde in Eq. (1) will be used throughout to signify a self-

map. We turn Eq. (1) into a dynamical system that exhibits

diffusion in two steps. First, we dig two symmetric

holes into ~MðxÞ. Let 0 � a1 < a2 � 1=2 � a3 < a4 � 1,

with a4 ¼ 1� a1 and a3 ¼ 1� a2. For simplicity, we let

h ¼ a2 � a1, which is the size of a hole. We lift the map dy-

namics by 1 for x 2 ½a1; a2� and we lower the dynamics by

1 for x 2 ½a3; a4� to create a map MðxÞ : ½0; 1� ! ½�1; 2�,
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MðxÞ ¼

2x 0 � x < a1

2xþ 1 a1 � x < a2

2x a2 � x <
1

2

2x� 1
1

2
� x < a3

2x� 2 a3 � x < a4

2x� 1 a4 � x � 1

:

8>>>>>>>><
>>>>>>>>:

(2)

We label the intervals IL ¼ ½a1; a2� and IR ¼ ½a3; a4� for con-

venience. We call IL and IR holes as they allow points to

escape from the unit interval to a neighboring interval.

Second, we periodically copy M(x) over the entire real

line with a lift of degree one such that

Mðxþ bÞ ¼ MðxÞ þ b; b 2 Z; (3)

so that MðxÞ : R! R. A uniform distribution of points on

the unit interval will spread out when iterated under Eqs. (2)

and (3). The diffusion coefficient D is defined as the linear

increase in the mean square displacement of a distribution of

points and is given by the Einstein formula in one dimension

as

D ¼ lim
n!1

hðxn � x0Þ2i
2n

; (4)

where xn is the position of a point x0 at time n, which is given

by Mn (x0) in the system we consider. The angular brackets

represent an average over a distribution of points. In the set-

ting we consider, this distribution is the invariant density of

the system q�ðxÞ ¼ 1, and the average we interpret as an

integral,

h:::i ¼
ð1

0

:::q�ðxÞdx: (5)

Equation (4) can be rewritten in terms of the velocity auto-

correlation function of the system as the Taylor-Green-Kubo

formula,11,13

D ¼ lim
n!1

Xn

k¼0

hv0ðxÞvkðxÞi
 !

� 1

2
hv0ðxÞ2i; (6)

where vkðxÞ ¼ bxkþ1c � bxkc gives the integer value of the

displacement of a point x0 at time k. Considering Eq. (2),

vkðxÞ takes the form

vkðxÞ ¼

0 0 � xk < a1

1 a1 � xk < a2

0 a2 � xk < a3

�1 a3 � xk < a4

0 a4 � xk � 1

:

8>>>><
>>>>:

(7)

The leading order term of Eq. (6), Drw, is simply equal to

Drw ¼
1

2

ð1

0

v0ðxÞ2dx;

¼ ða4 � a3Þ þ ða2 � a1Þ
2

¼ h: (8)

Equation (8) is the simple random walk result for diffusion that

one obtains if higher order correlations are neglected.15,17,18,34

In order to fully evaluate Eq. (6), we define a recursive function

JnðxÞ : ½0; 1� ! Z,18,25,27,32

JnðxÞ ¼
Xn

k¼0

vkðxÞ ¼ v0ðxÞ þ
Xn�1

k¼0

vkð ~MðxÞÞ

¼ v0ðxÞ þ Jn�1ð ~MðxÞÞ: (9)

We then define a cumulative function, which integrates over

Eq. (9) as in Eq. (6),

TðxÞ ¼ lim
n!1

TnðxÞ ¼
ðx

0

JnðyÞdy: (10)

Due to the chaotic nature of the map M(x), JnðxÞ will be a

very complicated step function for high values of n; hence in

the limit n!1, T(x) will be a fractal function exhibiting

non-trivial fine scale structure.11,13,18,27 By combining Eqs.

(9) and (10), we can solve T(x) as a functional recursion rela-

tion. We use the conditions that T(0) ¼ T(1) ¼ 0 and that the

function T(x) is continuous to obtain

TðxÞ ¼

1

2
Tð2xÞ 0 � x < a1

1

2
Tð2xÞ þ x� a1 a1 � x < a2

1

2
Tð2xÞ þ a2 � a1 a2 � x <

1

2
1

2
Tð2x� 1Þ þ a2 � a1

1

2
� x < a3

1

2
Tð2x� 1Þ þ 1� x� a1 a3 � x < a4

1

2
Tð2x� 1Þ a4 � x � 1

:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(11)

Repeated application of the recurrence relation means we

can solve Eq. (11) as an infinite sum,

TðxÞ ¼ lim
n!1

Xn

k¼0

1

2k
tð ~M

kðxÞÞ; (12)

where

tðxÞ ¼

0 0 � x < a1

x� a1 a1 � x < a2

a2 � a1 a2 � x < a3

1� x� a1 a3 � x < a4

0 a4 � x � 1

:

8>>>><
>>>>:

(13)

Equation (6) can now be evaluated in terms of the functional

recursion relation of Eq. (11) as

D ¼ lim
n!1

ð1

0

v0ðxÞ
Xn

k¼0

vkðxÞdx

 !
� 1

2

ð1

0

v2
0ðxÞdx

¼ lim
n!1

ða2

a1

JnðxÞdx�
ða4

a3

JnðxÞdx

� �
� h

¼ Tða2Þ � Tða1Þ � Tða4Þ þ Tða3Þ � h: (14)
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Finally, due to the condition that IL and IR are symmetrically

positioned, T(x) is a symmetric function. We can use this to

simplify Eq. (14) to

D ¼ 2Tða2Þ � 2Tða1Þ � h: (15)

Equations (12) and (15) provide us with a very efficient way

to evaluate the diffusion coefficient for any choice of posi-

tion or size of IL and IR. For a more detailed discussion of

this method, see Refs. 13, 18, 25, 27, and 32. We will evalu-

ate Eq. (15) for a series of choices in Sec. III.

III. ANALYZING THE DIFFUSION COEFFICIENT

In this section, we look at how the diffusion coefficient

varies with the position of the holes and the asymptotic

behavior as the hole size goes to zero.

A. Position dependence

We evaluate Eq. (15) in a specialized setting where we

restrict IL and IR to Markov intervals. That is, we choose the

points ai; ði 2 f1; 2; 3; 4gÞ to be dyadic rationals, i.e., for

some fixed integer s > 0 the points ai are of the form r=2s

with r 2 Z and 0 � r � 2s. The points ai will then be pre-

images of 1=2 under the map ~MðxÞ. As Tð1=2Þ ¼ a2 � a1;
TðaiÞ can be evaluated with a finite sum rather than the infi-

nite sum of Eq. (12). For each value of s, there are 2s�1 pla-

ces to position an interval IL of size 2�s, with IR being

determined by the symmetry condition. We can evaluate the

diffusion coefficient at each of these choices via Eq. (15)

and compare the results as the choices vary. For example,

when s ¼ 1, there is only one choice for IL, namely a1 ¼ 0

and a2 ¼ 1=2, exactly corresponding to a simple random

walk, with 1=2 probability of moving left or right at each

step. The diffusion coefficient for this system is well known

to be 1=2, in agreement with the more general expressions

given here, Eq. (8) for h ¼ 1=2 and Eq. (15), as

D ¼ 2Tð1=2Þ � 2Tð0Þ � ð1=2Þ ¼ 1=2: (16)

For higher values of s, the diffusion coefficient varies with

the position of the holes, see Fig. 1. We see a step function

that behaves increasingly erratically as the partition is refined

and s is increased. We further note that the average of this

step function can be calculated to be hDsi ¼ 2�s ¼ h for a

given s, which is the simple random walk solution of Eq. (8).

The structure of the step functions in Fig. 1 can be

explained in terms of the periodic orbits of the map ~MðxÞ,
which correspond to standing or running orbits of M(x).13,14,35

For example, if an image of IL overlaps IR, one will find a lot

of backscattering in the system, i.e., points that escape the unit

interval via IL find themselves getting sent back via IR (and

vice versa). This has the result of decreasing the diffusion

coefficient relative to the random walk solution derived in

Eq. (8). In order to find intervals where this overlap occurs,

we look for standing orbits by solving the simple equation
~M

pðxÞ ¼ x where ~M
qðxÞ ¼ 1� x for q < p. Due to the sym-

metry of the holes, the image of IL containing the solution of

this equation will, after q iterations, overlap with IR, and back-

scattering will occur. The smaller values of p will correspond

to values of x which give the most overlap and hence the most

backscattering. For example,

~MðxÞ ¼ 1� x; x 2 ½0; 1=2�; ) x ¼ 1

3
: (17)

Therefore, if one places IL so that x ¼ 1=3 is in its interior,

one will find the system has a relatively small diffusion coef-

ficient due to the backscattering. This phenomenon caused

by standing orbits13,35 is highlighted in Fig. 1.

Alternatively, if the image of IL overlaps with itself con-

sistently, then one will find a higher diffusion coefficient.

This is due to the presence of running orbits or accelerator

modes13,14,35 in such a system. In order to find such

orbits, we solve the simple equation ~M
pðxÞ ¼ x where ~M

qðxÞ
6¼ 1� x for q < p. For example, p ¼ 1 gives

~MðxÞ ¼ x; x 2 ½0; 1=2�; ) x ¼ 0; (18)

and we can see in Fig. 1 that when the hole contains the point

x ¼ 0, one has a high diffusion coefficient relative to the sim-

ple random walk result. When p ¼ 2,

~M
2ðxÞ ¼ x; ) x ¼ 0;

1

3
: (19)

We can immediately throw the solution x ¼ 1=3 away as this

result corresponds to ~MðxÞ ¼ 1� x. However, for p ¼ 3,

~M
3ðxÞ ¼ x; ) x ¼ 0;

1

7
;
2

7
;
3

7
; (20)

and again we see in Fig. 1 that these values correspond to rel-

atively high diffusion coefficients when they are in the inte-

rior of IL. This process of pinpointing standing and running

periodic orbits can be continued for higher iterations with

relative ease as we are dealing with a full shift map and there

is no need to prune any solutions. This technique helps

explain the increasingly complicated step function that one

obtains as s is increased.

At first sight, the step functions illustrated in Fig. 1 do

not appear to contain much interesting structure. However,

upon closer inspection, we notice that every ‘parent’ hole of

size 2�s and associated diffusion coefficient Ds splits into

two ‘child’ holes of size 2�ðsþ1Þ and associated diffusion

coefficients D0
sþ1 and D1

sþ1 respectively, such that

Ds ¼ 2D0
sþ1 þ 2D1

sþ1 � 2�s; (21)

where superscripts 0, 1 correspond to left and right child

hole, respectively. To see this, one first needs to define cu-

mulative functions T0ðxÞ and T1ðxÞ for the respective left

and right child holes. Now, since the cumulative functions

are additive with respect to the holes, we have that TðaiÞ
¼ T0ðaiÞ þ T1ðaiÞ for i ¼ 1;…; 4. Moreover, since the iterate

of the parent hole endpoint ai always avoids both parent and

child holes then T0ðaiÞ ¼ T1ðaiÞ. Finally, considering the
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midpoint am ¼ ða2 þ a1Þ=2 of the parent hole, which is also

the right and left endpoint of the left and right child holes,

respectively, it follows from Eq. (11) that T0ðamÞ � T1ðamÞ
¼ ða2 � a1Þ=2. Equation (21) follows after expanding in

terms of T0 and T1 and substituting the above relations.

Notice that recursive iteration of Eq. (21) n times gives an

expression for Ds in terms of the 2n child diffusion

coefficients

FIG. 1. The diffusion coefficients: In these figures, the diffusion coefficient D is illustrated for the doubling map M(x) as a function of the position of the hole

IL of size 1=2s. In (a)–(f), it is s ¼ 2, 3, 4, 5, 6, and 12, respectively. D is given by the thick black lines whilst the holes are highlighted by the thin vertical lines.

The thin horizontal lines are a guide to show the average value 1=2s. The symbols in (f) refer to specific periodic orbits as discussed in the text.
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Ds ¼ ð1� 2nÞ2�s þ 2n
X

j2f0;1gn

Dj
sþn; (22)

where the sum runs over all 2n binary permutations of length

n. Rearranging this, we find

Ds � 2�s

2�s ¼
X

j2f0;1gn

Dj
sþn � 2�s�n

2�s�n ; (23)

that is, the relative deviation of each diffusion coefficient

from its mean is exactly additive.

The above scaling and self-similarity structure (often

considered to be properties of fractal structures) of the step

functions illustrated in Fig. 1 can be further investigated by

defining a set of continuous, cumulative functions, which

integrate over the step function; in the same way that T(x)

integrates over the step function JnðxÞ. In order to define

such a function, UsðxÞ, for a given s, we first subtract the av-

erage diffusion coefficient hDsi ¼ 1=2s, and integrate over

the resulting step function. We then normalize this integral

by multiplying it with 2sþ1, so that it can be easily compared

with other values of s. Let

UsðxÞ ¼ 2sþ1

ðx

0

ðDðyÞ � 2�sÞdy; (24)

where D(y) refers to the diffusion coefficient of the dyadic

interval IL containing y. The solution to Eq. (24) is illustrated

for several examples of s in Fig. 2. We see that as s increases,

Eq. (24) becomes a fractal function exhibiting non-trivial fine

scale structure and regions of scaling and self-similarity. This

structure is symptomatic of the dense set of periodic orbits,

which exists in ~MðxÞ. In the limit of s going to infinity, each

periodic orbit makes the diffusion coefficient deviate from

the average hence one obtains a dense step function. When

this function is integrated over one sees a function that con-

tains a dense set of maxima and minima, hence a fractal.

Another interesting feature that we find in this system is

that reducing the size of the holes can sometimes have no

effect on the diffusion coefficient. As we calculated in Eq.

(16), if the holes are IL ¼ ½0; 0:5� and IR ¼ ½0:5; 1�, the diffu-

sion coefficient is equal to 0.5. However, we can reduce the

hole, so that IL ¼ ½0; 0:25� and IR ¼ ½0:75; 1�, and the diffu-

sion coefficient remains equal to 0.5 as illustrated in Fig.

1(a). We also see that if the holes are IL ¼ ½0:25; 0:5� and

IR ¼ ½0:5; 0:75�, the diffusion coefficient is equal to 0. This is

due to a simple trapping mechanism in which no diffusion

occurs. In addition, reducing the size of the holes can result

in an increase of the diffusion coefficient, i.e., the diffusion

coefficient decreases non-monotonically in some regions as

the size of the holes is decreased. One can check this by com-

paring the figures in Fig. 1. This feature is due to the fact that

increasing the size of the hole can in some cases introduce

more backscattering into the system thereby reducing the dif-

fusion coefficient: Consider the case where IL ¼ ½0:125; 0:25�
with diffusion coefficient equal to 1=16, Fig. 1(b), and com-

pare with the case with smaller holes, IL ¼ ½0:125; 0:1875�,
but larger diffusion coefficient 5=64, Fig. 1(c). The dominant

periodic orbit (the one with the lowest period) in the interval

[0.125,0.1875] is the orbit of the point 1=7, which corre-

sponds to a running orbit as can be seen in Fig. 1(f). The

dominant periodic orbit in [0.1875,0.25] meanwhile is the

orbit of the point 1=5, which corresponds to a standing orbit

as can be seen in Fig. 1(f). The effect of decreasing the hole

from [0.125,0.25] to [0.125, 0.1875] is to remove the standing

orbit of 1=5 and the backscattering associated with it.

One can also observe this phenomenon by looking at the

fractal structure illustrated in Fig. 4(b). While a1 ¼ 1=3 is

fixed, the various maxima and minima that we see can be

explained by looking at the orbit of the point a2. We see that

when a2 ¼ 5=12 (corresponding to h ¼ 1=12), the orbit of a2

is a standing orbit and hence we see a striking minimum in

the diffusion coefficient. If we reduce h, so that h ¼ 1=15

with a2 ¼ 2=5, the orbit of a2 is now a running orbit and we

observe a maximum in the diffusion coefficient. These points

FIG. 2. Cumulative integral function UsðxÞ: In this figure, the self similarity and scaling that one sees by integrating over the position dependent diffusion

coefficient for the doubling map is illustrated. In (a), the structure is seen emerging as the hole size 1=2s is decreased. From (0.1,0) upwards, s ¼ 2 (grey), s ¼
5 (red), s ¼ 8 (blue), and s ¼ 20 (black). In (b), the region highlighted in (a) is blown up whilst the inset shows the highlighted region in (b) blown up in order

to illustrate the self similarity and non-trivial fine-scale structure of the diffusion coefficient.
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are highlighted in Fig. 4(b). This explanation in terms of top-

ological instability under parameter variation is discussed

further in Refs. 13, 18, 24, and 27.

B. Non-symmetric models

One can also consider the case where the holes are not

placed symmetrically. One way of doing this is by setting

a1 ¼ 0 in Eq. (2) and letting IR vary independently such that

0 ¼ a1 � a2 � 1=2 � a3 � a4 � 1 and a4 � a3 ¼ a2 ¼ h
¼ 1=2s. As before we assume Markov holes, i.e., a3 ¼ 1=2

þði� 1Þh with i ¼ 1;…; ð2hÞ�1
. The cumulative function in

this setting is given by

TnsðxÞ ¼

1

2
Tnsð2xÞ þ x 0 � x < a2

1

2
Tnsð2xÞ þ a2 a2 � x <

1

2
1

2
Tnsð2x� 1Þ þ a2

1

2
� x < a3

1

2
Tnsð2x� 1Þ � xþ a4 a3 � x < a4

1

2
Tnsð2x� 1Þ a4 � x � 1

;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(25)

where the superscript ns refers to the non-symmetrically

placed holes. The diffusion coefficient is then given by

D ¼ Tnsða2Þ � Tnsða4Þ þ Tnsða3Þ � h; (26)

cf. Eqs. (14) and (15). The consequence of using non-

symmetrically placed holes can be seen in Figs. 3(a)–3(c), in

which the analytical Eq. (26) is evaluated for s ¼ 4, 5, and

12, respectively, and illustrated as a function of the position

of IR. We see that the step function structure is changed rela-

tive to Figs. 1(c), 1(d), and 1(f). In particular, in Fig. 3(c), we

observe a very evenly distributed set of minima, these being

the dyadic rationals, which are in this case all the preimages

of x ¼ 0 in IL and hence indicative of increased backscatter-

ing. In addition, the average value for the diffusion coeffi-

cient is hDsi ¼ 2ðh� h2Þ rather than h due to the constant

presence of the running orbit at x ¼ 0. This follows from

noticing that Tiða4Þ � Tiþ1ða3Þ ¼ �h, where Ti corresponds

to a cumulative function defined by a3 ¼ 1=2þ ði� 1Þh
with i ¼ 1;…; ð2hÞ�1

. Here, the a4 for i is the same as a3 for

iþ 1, and so their itinerary is the same except for the very

first point where tiða4Þ � tiþ1ða3Þ ¼ �h. So we have that the

average over all i’s is also equal to �h leaving hDsi ¼ Tða2Þ,
which can be calculated directly to be Tða2Þ ¼ 2ðh� h2Þ.

Accordingly, one can now consider non-symmetric mi-

croscopic dynamics. One possibility for this is to replace the

doubling map modulo one in Eq. (1) by the tent map

~KðxÞ : ½0; 1� ! ½0; 1�; ~KðxÞ ¼
2x 0 � x <

1

2

2� 2x
1

2
� x � 1

:

8><
>: (27)

Now the dynamics no longer commutes with the symmetry

x! 1� x. We again dig two holes with 0 � a1 < a2 � 1=2

� a3 < a4 � 1 into Eq. (27) as before and periodically copy

the resulting map over the real line with a lift of degree one.

The cumulative function is given by

FIG. 3. Non-symmetric holes for a symmetric map and a non-symmetric map: In this figure, the analytically derived diffusion coefficient D is illustrated for

two different dynamical systems as a function of the position of the hole IR, of size 1=2s (cf. Fig. 1) with IL fixed at 0. We display the diffusion coefficient Eq.

(26) of the doubling map Eq. (2) with s ¼ 4, 5, and 12 in (a)–(c), respectively, and the diffusion coefficient Eq. (29) of the tent map Eq. (27) with s ¼ 4, 5, and

12 in (d)–(f), respectively. The horizontal lines give the average value hDsi ¼ 2ðh� h2Þ.
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TKðxÞ ¼

1

2
TKð2xÞ 0 � x < a1

1

2
TKð2xÞ þ x� a1 a1 � x < a2

1

2
TKð2xÞ þ a2 � a1 a2 � x <

1

2

� 1

2
TKð2� 2xÞ þ a2 � a1

1

2
� x < a3

� 1

2
TKð2� 2xÞ � xþ a4 a3 � x < a4

� 1

2
TKð2� 2xÞ a4 � x � 1

;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(28)

where the subscript K indicates we are considering the cu-

mulative function for the tent map. The diffusion coefficient

is similarly given by

D ¼ TKða2Þ � TKða1Þ � TKða4Þ þ TKða3Þ � h: (29)

cf. Eq. (14). We cannot use the symmetry condition to sim-

plify Eq. (29) further as the cumulative function Eq. (28) is

not a symmetric function.

Interestingly, if the holes are placed symmetrically such

that a4 ¼ 1� a1 and a3 ¼ 1� a2, then D ¼ h and is inde-

pendent of the hole position. This follows by noticing that

TKða3Þ ¼ �1=2TKð2a2Þ þ h and TKða4Þ ¼ �1=2TKð2a1Þ.
If the holes are placed in a non-symmetric way such that

0 ¼ a1 < a2 � 1=2 � a3 < a4 � 1 and a4 � a3 ¼ a2 ¼ h
¼ 1=2s, then the periodic orbit dependent structure of the dif-

fusion coefficient is re-established. This is illustrated as a

function of IR in Figs. 3(a)–3(f) for s ¼ 4, 5, and 12, respec-

tively. As before, hDsi ¼ TKða2Þ ¼ 2ðh� h2Þ.
A recursive relation of the type of Eq. (21) can also be

established for both doubling and tent maps with holes

placed non-symmetrically, as described above. We find that

Ds ¼ 2D0
sþ1 þ 2D1

sþ1 � 2�sþ1; (30)

where the difference in the last term’s exponent is indicative

of the constant running orbit at x ¼ 0, so that the average

rescaled fluctuations of the child diffusion coefficients are

intensified by a factor of two.

C. Asymptotic behavior

In this subsection, we focus our discussion on the

first case of symmetric holes in the symmetric map M(x)

and comment on its generalizations to the non-symmetric

cases towards the end. We will analyze the behavior of the

diffusion coefficient for the Bernoulli shift as the hole size

h ¼ a2 � a1 goes to zero. By doing this, the hole will con-

verge to a point which could be a running orbit, a standing

orbit, or a non-periodic orbit. We derive equations which

give the asymptotic behavior in all three cases and use them

to obtain the diffusion coefficient in terms of all periodic

orbits in a hole of small, but finite size. In order to do this,

we first rewrite the ðTða2Þ � Tða1ÞÞ term from Eq. (15) with

Eq. (12) to

Tða2Þ � Tða1Þ ¼ lim
n!1

Xn

k¼0

1

2k

�
t
�

~M
kða2Þ

�
� t
�

~M
kða1Þ

��
:

(31)

First consider the case that IL converges to a running orbit,

that is, a periodic point xp of period p, which does not enter

IR under forward iteration. In this case, from Eq. (13), we

see that the only contributions to Eq. (31) come when

k ¼ lp; l 2N

Tða2Þ � Tða1Þ � lim
n!1

h
Xn

l¼0

1

2lp

 !
ðh! 0Þ

¼ h
1

1� 2�p

� �
ðh! 0Þ: (32)

Evaluating Eq. (15) with Eq. (32), we get

DðxpÞ � hJr
p ¼ h

1þ 2�p

1� 2�p

� �
ðh! 0Þ; (33)

where the superscript r denotes a running orbit. Now con-

sider the case where IL converges to a standing orbit, that is,

a periodic point xp of period p, which enters IR under forward

iteration. Note that due to the symmetry of the holes, this

will always occur at time p=2 and hence standing orbits

always have even periods. In this case, we get a positive con-

tribution to Eq. (31) when k ¼ lp, and a negative contribu-

tion when k ¼ lp=2,

Tða2Þ � Tða1Þ ¼ lim
n!1

h
Xn

l¼0

ð�1Þl

2
lp
2

 !
ðh! 0Þ

� h
1

1þ 2�
p
2

� �
ðh! 0Þ: (34)

In this case Eq. (15) evaluates as

DðxpÞ � hJs
p ¼ h

1� 2�
p
2

1þ 2�
p
2

 !
ðh! 0Þ: (35)

The final case to consider is where IL converges to a point,

which is non-periodic. In this setting, the only contribution

to Eq. (31) comes from the k ¼ 0 term and, therefore,

D � Jn
ph ¼ h ðh! 0Þ; (36)

which reproduces the simple random walk result. In sum-

mary, we have

D � J}p h ¼

h
1þ 2�p

1� 2�p } ¼ r

h
1� 2�p=2

1þ 2�p=2
} ¼ s

h } ¼ n

:

8>>>><
>>>>:

(37)

Equation (37) gives us a good explanation for the structure

that we see in Fig. 1 with improved agreement for small

holes (large s). As s is increased, the different asymptotic
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regimes can be seen in the step function. For example, when

IL is placed on a running orbit such as x ¼ 0 where p ¼ 1,

Eq. (33) tells us that D ¼ 3h for small h. When IL is placed

on a standing orbit like x ¼ 1=3 with p ¼ 2, Eq. (35) tells us

that D ¼ h=3 for small h. These deviations from the average

value of h are observed in Fig. 1.

A further consequence of Eq. (37) is the intriguing result

that for small hole size, one cannot rely on the simple ran-

dom walk approximation for an accurate description of the

diffusion coefficient.15,17,18,34 Rather, one must go beyond

this theory and take into account the periodic orbit structure

of the system, and in particular, the periodic orbits contained

in the holes. The asymptotic regime that one obtains for

small h will be dependent upon the type of point that the

holes converge to. The authors are aware of only one other

published result on a one-dimensional system in which the

random walk approximation theory is violated.27 In this

case, the phenomenon was explained in terms of ergodicity

breaking, which is not the case here.

We can now go beyond the small hole limit by combin-

ing the above results with the parent-child hole relation of

Eq. (21). For large n, we have that

Dsþn ¼ 2�s�nJ}p ðn!1Þ; (38)

with } 2 fr; s; ng depending on the limiting point of the hole

as in Eq. (37). Hence, we may now express Ds in terms of all

periodic orbits of period p, which intersect the holes,

Ds ¼ 2�s 1þ
X

p

ðJ}p � 1Þ
 !

ðn!1Þ: (39)

Note that a periodic orbit that intersects the parent hole more

than once just gets added each time. Also, as discussed

below, all periodic orbits are counted as running, if they

occur at the end of the interval. Equation (39) suggests that

the observed fluctuations of Ds from its average hDsi ¼ 2�s

are due to the individual fluctuations of the infinitely many

periodic orbits, which intersect the holes.

As expected from periodic orbit theory,14 a very large

number of periodic orbits is needed to trace the hole accurately.

However, if the periodic orbits are ordered appropriately, the

sum may be truncated to produce good approximations to Ds.
36

Note that the optimal ordering (for fast convergence) of peri-

odic orbits is by a modified version of the length of the orbit;

Jr
p1
� Js

p2
for 2p1 � p2. In other words, backscattering is much

more dominant for orbits of equal period (see Fig. 4).

We can further study the asymptotic behavior for the

three different cases derived above and the finite hole size

result by reducing IL continuously. Fig. 4(a) illustrates these

different regimes.

When using Eq. (37), care needs to be taken when IL con-

verges to a point from the left or the right, i.e., it is not cen-

tered on a point and reduced in size. In this case, a boundary

point of the hole, a1 or a2, is kept fixed. If the boundary point

is periodic, points near it in the interior of IL miss IR, and so it

is always a running orbit. For example, as illustrated in Figs.

1 and 4(a), x ¼ 1=3 is a period two standing orbit when 1=3

is in the interior of IL and the asymptotic regime for small h
when IL converges to 1=3 is given by Eq. (35) as h=3. How-

ever, if a1 ¼ 1=3 is fixed and h goes to zero, we must use Eq.

(33) to evaluate the asymptotic regime as in this case 1=3 is a

running orbit. Equation (33) tells us that the asymptotic re-

gime is in fact 5h=3. This additional topological subtlety that

must be considered is illustrated in Fig. 4(b).

We close this subsection by considering small hole

approximations to the non-symmetric models considered in

Sec. III B. In analogy to Eq. (37) for the doubling map with

non-symmetric holes as in Eqs. (25) and (26), we find

through similar arguments that

FIG. 4. The asymptotic regimes: In (a), the diffusion coefficient D(h) for holes centered on three different classes of points in M(x) is illustrated as a function

of the hole size h (from top to bottom); x ¼ 1=3 a standing orbit (red), x ¼
ffiffiffi
5
p

=2� 17=25 a non-periodic orbit (blue), and x ¼ 1=7 a running orbit (green)

along with the different asymptotic regimes h=3, h, and 9h=7, respectively, shown by dashed lines. These asymptotic regimes correspond to the result of Eq.

(37). In (b), the position of the left boundary of the hole a1 ¼ 1=3 is fixed and h is again decreased continuously. We observe that x ¼ 1=3 becomes a running

orbit when a critical point and the asymptotic regime of 5h=3 (black dashed, top) illustrates this. The line h=3 (grey dashed, bottom) is what one would expect

if x ¼ 1=3 was contained in IL yielding a standing orbit, and the random walk solution is given by the blue dashed line (middle). The two symbols (squares)

identify parameter values where the right boundary point a2 of the hole generates a standing orbit, respectively, a running orbit.
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Jr
p ¼ 1þ 1

1� 2�p ; (40)

if IR is converging onto a running periodic orbit of period p
(since Tða2Þ ¼ 2h as a2 ! 0). In contrast with the symmetric

holes, here all backscattering is due to dyadic rationals. This

is evident in Fig. 3. Hence we find

Js
p ¼ 2� 21�n; (41)

if IR is converging onto a dyadic rational of the form i=2n

where i is some positive integer. A non-periodic point gives

Jn
p ¼ 2: (42)

For the tent map with non-symmetric holes as consid-

ered in Sec. III B, Eqs. (40) and (42) carry over, while

Js
p ¼ 2� 2�n; (43)

since dyadic rationals need one more forward iteration of the

tent map to enter IL. Finally, the periodic orbit sum of Eq.

(39) modified by a factor of 2 also holds for the non-

symmetric models considered here.

IV. THE ESCAPE RATE

It is interesting to note that an analytical relationship

between the escape rate of a spatially extended diffusive dy-

namical system with absorbing regions and its diffusion

coefficient has been established by the escape rate theory of

diffusion.11–13,18,23 Motivated by Ref. 2 where the compli-

cated dependence of the escape rate on position and size of a

hole has been studied, here we focus on the relationship

between the open map ~MðxÞ on the unit interval with the

symmetric holes IL and IR serving as absorbing regions and

the diffusion coefficient of the corresponding coupled, spa-

tially extended system. That is, for calculating the escape

rate, any orbit that enters either of these intervals is removed

from the system, and in this way points from an initial den-

sity escape, while for calculating the diffusion coefficient all

points remain within the system by performing ‘jumps’

when hitting these intervals, as defined by the lift Eq. (3). An

interesting question is to which extent the coupled diffusive

‘jump dynamics’ of the spatially extended system is already

captured by the escape rate of the interval map that defines

the unit cell of this lattice.

The main result from Ref. 2 concerning the escape rate

is that escape will occur fastest through a hole whose mini-

mal period is highest, or equivalently, the escape rate will be

slowest through the hole, which has the smallest minimal pe-

riod. By minimal period, we mean the smallest period of all

the periodic points in a hole.

In order to calculate the escape rate of our system, we

look at the transition matrix induced by the dynamics. The

escape rate c can be evaluated via the largest eigenvalue � of

this transfer matrix12,13,18,24,25

c ¼ �ln�: (44)

In Fig. 5, solutions to Eq. (44) are illustrated for s ¼ 9 and

compared with the diffusion coefficient in the corresponding

extended system. Here, we see that similar structures arise

with deviations from the average occurring for both phenom-

ena on the same intervals. In order to quantify these devia-

tions, we can compare Eq. (37) with Theorem 4:6:1 from

Ref. 2, which generalized to Theorem 2.1 from Ref. 3. It

gives the escape rate for small hole size in the doubling map

with one hole and can easily be generalized to escape

through two holes as is the case here. This theorem states

that the escape rate for small h with a running orbit (no iter-

ate of the orbit reaches the second hole) is given by

cðxpÞ
h
! 2 1� 1

2p

� �
ðh! 0Þ; (45)

where xp is the lowest period point in the hole with period p.

For a standing orbit (the periodic orbit is in both holes), the

period is effectively halved and we get

cðxpÞ
h
! 2 1� 1

2p=2

� �
ðh! 0Þ: (46)

When the hole converges to a non-periodic point, the theo-

rem states that the escape rate is given by

cðxÞ
h
! 2 ðh! 0Þ: (47)

From Eq. (45), the relative deviation from the average escape

rate hci ¼ 2h is given by

cðxpÞ � hci ¼ �
2h

2p (48)

FIG. 5. Comparing the diffusion coefficient with the escape rate: In this fig-

ure, the diffusion coefficient for the doubling map is illustrated in black (bot-

tom) alongside the escape rate of the corresponding open system in red (top)

as a function of the hole IL. The thin horizontal lines illustrate the average

value to aid visual comparison of the fluctuations: hDi ¼ 1=29 and

hci ’ 0:00393ð3sfÞ ’ 1=28. There is a clear relationship between the struc-

ture of these functions although intervals which give relatively high diffu-

sion coefficients will give relatively low escape rates. The calculation has

been performed for intervals IL of size 1=29.
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for a running orbit and

cðxpÞ � hci ¼ �
2h

2p=2
(49)

for a standing orbit. Similarly, the relative deviation from the

average diffusion coefficient hDi ¼ h, for a running orbit,

can be obtained from Eq. (33) as

DðxpÞ � hDi ¼
2h

2p � 1
; (50)

whilst for standing orbits, via Eq. (35), the relative deviation

is given by

DðxpÞ � hDi ¼ �
2h

2p=2 þ 1
: (51)

Equations (48)–(51) help us explore the relationship between

the diffusion coefficient of the extended system with the

escape rate of the open system. An obvious difference is the

absence of backscattering in the escape rate. However, a

more striking one is that the average escape rate does not

equal the algebraic mean of all escape rates as for diffusion

coefficients. That is hci 6¼ 1
2s�1

P2s�1

j¼1 cj
s, which is obvious

from Fig. 5, but is also suggested by Eq. (45). The two sym-

metric holes are coupled differently for the escape problem

and in a much more complicated way than as in Eq. (21) by

involving the eigenvalues of 2s�1 � 2s�1 transfer matrices.

However, for small holes, this coupling decays rapidly

revealing the similarities, which are seen in Fig. 5. We

remark that while for non-symmetric holes as the ones con-

sidered in Sec. III B, the diffusion coefficients may display

qualitative differences (e.g., no position dependence), the

corresponding escape rates differ only quantitatively.

V. CONCLUSION

The aim of this paper was to study the ‘dependence of

chaotic diffusion on the size and position of holes.’ The an-

swer was provided by analytically deriving the diffusion

coefficient for both a symmetric and a non-symmetric one-

dimensional piecewise linear map as a function of the size

and position of a hole. We showed that for both maps, the

diffusion coefficient is a complicated function of the position

and a non-monotonic function of the size of the holes, de-

spite the fact that the underlying reduced dynamics is not

changed, as is the case in previously studied mod-

els.13,24,25,27 This finding implies that, surprisingly, making a

hole smaller can increase the diffusion coefficient. These

results we explained via the periodic orbit structure of the

map and the ideas of running and standing periodic orbits.

We furthermore found that the asymptotic regime that

one obtains for small hole size is a function of the type of

periodic orbit that the holes converge to. This is another im-

portant result, since it generalizes the standard uncorrelated

random walk approximation of simple stochastic processes.

It implies that this random walk approximation may not

always give accurate estimates for the diffusion coefficient

of a chaotic dynamical system. We have also obtained a new

expansion for the diffusion coefficient of finite size holes in

terms of periodic orbits and discussed their relative impor-

tance for the dynamics. In our setting, a periodic orbit can ei-

ther be a running or a standing orbit. The presence of a

standing orbit has the effect of reducing the diffusion coeffi-

cient relative to the average value whilst the presence of a

running orbit has the effect of increasing it relative to the av-

erage value.

We finally numerically calculated the escape rate of the

corresponding open system and compared it with the diffu-

sion coefficient thus relating diffusion and escape in a new

manner. We found that the diffusion coefficient and escape

rate are both dependent upon the underlying periodic orbit

structure of the map, although differences arise which we

explain as a difference in the coupling between holes.

An interesting open question is whether there exists a

parent-child scaling relation for the escape rate that is similar

to the scaling relation for the diffusion coefficients Eqs. (21)

and (30). Another interesting open question is to which

extent the above effects can be observed in computer simula-

tions of diffusion in higher dimensional, more physically re-

alistic systems such as suitably adapted periodic Lorentz

gases12,13 and related particle billiards.30,31 This should pave

the way to design experiments where these effects might be

observable, such as modified cold atom experiments on

atom-optics billiards.37,38
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