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Density-Dependent Diffusion in the Periodic
Lorentz Gas
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We study the deterministic diffusion coefficient of the two-dimensional periodic
Lorentz gas as a function of the density of scatterers. Based on computer
simulations, and by applying straightforward analytical arguments, we systema-
tically improve the Machta�Zwanzig random walk approximation [Phys. Rev.
Lett. 50:1959 (1983)] by including microscopic correlations. We furthermore,
show that, on a fine scale, the diffusion coefficient is a non-trivial function of the
density. On a coarse scale and for lower densities, the diffusion coefficient
exhibits a Boltzmann-like behavior, whereas for very high densities it crosses
over to a regime which can be understood qualitatively by the Machta�Zwanzig
approximation.

KEY WORDS: Deterministic diffusion; periodic Lorentz gas; computer
simulations; random walk; chaotic scattering; Boltzmann approximation.

1. INTRODUCTION

One of the central themes in the theory of chaotic transport is the problem
of deterministic diffusion. Over the past several years, deterministic diffu-
sion coefficients have been computed for a variety of low-dimensional
model systems, in particular for the periodic Lorentz gas.(1) This model
mimics classical diffusion in a crystal, but is as well isomorphic to a peri-
odic system of two hard disks per unit cell. Motivated especially by the
rigorous mathematical analysis of Bunimovich and Sinai, (2) a great deal of
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work on the dynamical and transport properties of this model has been
published.(3�6) In particular, its diffusion coefficient has been computed by
a variety of methods.(7�13)

In this paper we focus on the behavior of the diffusion coefficient in
the two-dimensional periodic Lorentz gas under variation of the density of
scatterers. In Section 2 we define the model, briefly sketch the simple
analytical approximation obtained by Machta and Zwanzig(7) and com-
pare it to detailed numerical results obtained from computer simulations.
In Section 3 we explain how the Machta�Zwanzig argument can be corrected
systematically by taking microscopic correlations into account. In Section 4
we compare our numerical diffusion coefficient to a simple Boltzmann
approximation and argue that, on a coarse scale, there is a dynamical
crossover for the diffusion coefficient as a function of the density. More
detailed computer simulations show that the diffusion coefficient exhibits a
non-trivial fine structure as a function of the density. In Section 5 we
summarize our results and relate them to analogous findings in low-dimen-
sional maps.

2. DIFFUSION AS A SIMPLE MARKOV PROCESS

The geometry of the periodic Lorentz gas is depicted in Fig. 1a:
A point particle of mass m moves with constant velocity v in an array of
circular hard scatterers of radius R arranged on a triangular lattice. Upon
collisions with the scatterers the particle is reflected elastically. In the
following we use units for which v=1, m=1, and R=1. The lattice spac-
ing of the disks is then 2+w, where w is the smallest inter disk distance.
The gap size w is related to the number density n of the disks by

n=2�[- 3 (2+w)2] (1)

The gap size w, or the number density of the disks n, respectively, is the
only control parameter. At close packing w=0 the moving particle is
trapped in a single triangular region formed between three disks, see
Fig. 1a. For 0<w<w�=4 - 3&2=0.3094, the particle can move across
the entire lattice, but it cannot move collision-free for an infinite time. For
w>w� the particle can move arbitrarily far between two collisions. Here,
w� denotes the gap size at which the particle first sees such an ``infinite
horizon.'' Bunimovich and Sinai proved that for 0<w<w� the system is
ergodic, and that the diffusion coefficient exists, while it diverges for
w>w� .(2)

In ref. 7 Machta and Zwanzig have derived a simple analytical
approximation for the diffusion coefficient D. The basic idea is that diffusion
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Fig. 1. (a) Geometry of the periodic Lorentz gas and its diffusion coefficient D as a function
of the gap size w. The dotted line in the diagram represents the Machta�Zwanzig random
walk model Eq. (2), the different symbols refer to single data points obtained in the literature
from various methods (see text). The crosses connected with lines are our results from com-
puter simulations. All of our data points in this plot have error bars smaller than the symbols.
Error bars of the other data points have been included as far as available. (b) Blowup of the
region of large w of (a) in terms of the residuals, that is, the deviations of the diffusion coef-
ficients D from a linear fit.

can be treated as a Markovian hopping process between the triangular
trapping regions indicated in Fig. 1a. For this purpose, they have
calculated the average rate {&1 at which a particle leaves such a trap.
According to a simple phase space argument, this rate is determined by the
fraction of phase space available for leaving the trap divided by the total
phase space volume of the trap. Furthermore, for random walks on two-
dimensional isotropic lattices the diffusion coefficient is D=l 2�(4{), where
l=(2+w)�- 3 is the distance between the centers of the traps. This leads
to the Machta�Zwanzig random walk approximation of the diffusion coef-
ficient

DMZ=
w(2+w)2

?[- 3 (2+w)2&2?]
(2)

which is shown as the dotted line in the diagram of Fig. 1a. Included in this
figure are single data points for the diffusion coefficient obtained by various
authors using different methods: The filled circles are numerical results of
ref. 7, the stars are from ref. 8. These data points have been obtained by
employing the Green�Kubo formula, where D is determined from an
integral over the velocity autocorrelation function. The squares have been
computed in ref. 11 by periodic orbit expansions, the empty circles and tri-
angles are from ref. 13, where they have been computed by applying the
escape rate formalism, and via the fractal dimension of the repeller of the
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Lorentz gas, respectively. The crosses connected with lines represent our
new data which we have obtained from computer simulations by means of
the Einstein formula

D= lim
t � �

(2r2(t))
4t

, (3)

where the brackets indicate an ensemble average after time t. We calculated
(2r2(t)) by averaging over long trajectories. Depending on the density n
each trajectory contained from 6_108 to 3_109 collisions. After a short
transient (2r2(t)) grows linearly with a slope of 4D. We determined the
diffusion coefficient D by fitting a straight line to (2r2(t)) in the linear
regime. Though in principle equivalent with the Green�Kubo formalism,
the Einstein approach is numerically more efficient in the Lorentz gas.

Figure 1(a) demonstrates that the Machta�Zwanzig approximation
Eq. (2) is only valid in the limit of small gap sizes w � 0, where according
to Eq. (2) the diffusion coefficient should go linearly in w, as has been
pointed out already in ref. 7, and as has been proven rigorously in ref. 14.
For larger values of w and up to approximately w<0.1 Eq. (2) then over-
estimates the exact diffusion coefficient, whereas for w>0.1 it clearly
underestimates diffusion. In the following section, we will discuss the physi-
cal reason for these deviations of the Machta�Zwanzig approximation from
the numerically exact values over the entire density regime, and how it can
be corrected.4 Note that for w � w� there is no evidence for any singularity
in the diffusion coefficient reminiscent of critical behavior. In ref. 9, this
feature has been understood based on the analysis of velocity autocorrela-
tion functions.

To learn more about the detailed dependence of D on the gap size w,
we performed further computer simulations in the region of large w. The
results are presented in Fig. 1b. Here, the respective residuals of D have
been plotted, that is, the deviations of the diffusion coefficients from a
linear fit in w over the whole region as shown in the figure. At each value
of w ten independent runs of more than 2_109 collisions each have been
carried out yielding the diffusion coefficients depicted by the dots. The
squares correspond to the averages over the ten runs, where the size of the
squares indicates the size of the numerical error. The numerical results
clearly demonstrate that, on a fine scale, the diffusion coefficient is a very
non-trivial function of w as a parameter. We will come back to these
irregularities and discuss their possible microscopic origin in Section 4.
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3. CORRECTION OF THE MACHTA�ZWANZIG
APPROXIMATION

3.1. Collisionless Flights across a Trap

As Machta and Zwanzig remarked themselves, for larger w there is a
non-vanishing probability pcf for the particle to move collision-free across
a trap. In Fig. 2a, we have calculated this probability from computer
simulations as well as in a simple analytical approximation, which is based
on straightforward applying the Machta�Zwanzig phase space argument
described in Section 2.(16) Note that collisionless flights occur only for w>
2(sin(?�3)+1)�- 3&2&0.1547. If we rely on the Machta�Zwanzig picture
of diffusion as a hopping process with frequency {&1 over distances l, we
can correct Eq. (2) in the following way: If a particle moves collision-free
across a trap, it travels within the time { over a larger distance than
assumed in Eq. (2). For this larger distance we take the distance between
a center of a trap and the center of its next nearest neighbor which is
l2=- 3l. These processes would thus yield a larger diffusion coefficient
Dl2

=l2
2 �(4{)=3DMZ , where DMZ is the diffusion coefficient of Eq. (2). We

now define the corrected Machta�Zwanzig diffusion coefficient Dcf by
weighting the contribution of collisionless flights via the probability pcf of
Fig. 2a,

Dcf=[1& pcf] DMZ+ pcf3DMZ

=[1+2pcf] DMZ (4)

Fig. 2. Correction of the Machta�Zwanzig approximation by collisionless flights: (a) prob-
ability pcf of collisionless flights across a trap, numerical results (dotted line with crosses), and
a straightforward analytical approximation (bold line) (b) diffusion coefficient D, numerical
results (bold line with crosses) in comparison to the Machta�Zwanzig approximation Eq. (2)
(dotted line), and compared to the correction of Eq. (4) by including pcf (dashed line).
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The result is plotted in Fig. 2b. For w>0.1547, the revised formula Eq. (4)
improves the original Machta�Zwanzig approximation considerably,
however, it is still much smaller than the numerically exact results.

3.2. Probability of Backscattering

A second significant contribution to the correction of Eq. (2) is deter-
mined by the backscattering probability pbs , which is the probability of the
moving particle to leave the trap through the same gap where it entered.
We computed pbs numerically by repeatedly injecting the particle through
a specific gap and observing through which gap it left the trap. The particles
are initially situated at one entrance of a trap, and they are uniformly dis-
tributed in the respective phase space of this entrance, which consists of the
position of a particle on the entrance line, &1�2x�w�1, and of the sine
of the angle between the velocity direction and an axis perpendicular to the
entrance, &1�sin :�1. Alternatively, pbs can be determined from a single
long trajectory. The backscattering probability obtained from our simula-
tions is shown in Fig. 3a.

The Markovian approximation of Machta and Zwanzig Eq. (2)
corresponds to a backscattering probability of 1�3. However, for small
values of w the numerically computed probability is significantly larger
than 1�3, whereas for larger w it is considerably smaller. The reduced
probability for backward scattering at larger w is in part due to colli-
sionless flights across the trap. It is remarkable that the backscattering
probability is different from 1�3 even for gap sizes where the average
number of collisions between inter-trap hops is large: At w=0.055, where
the backscattering probability reaches its maximum value of pbs=0.38,
more than 17 collisions occur before the particle hops to the next trap, and
for w=0.02, where pbs is still close to 0.36, the number of collisions is
greater than 50. These collision rates are indeed in good agreement with
the Machta�Zwanzig approach yielding 19 for w=0.055 and 52 for w=
0.02. However, based on a lower bound of about three collisions per trap
residence time for all w below the infinite horizon Machta and Zwanzig
concluded that the diffusion coefficient approximation Eq. (2) should be
accurate for all these w. This appeared to be confirmed in respective
computer simulations.(7) Figure 3a demonstrates that even 50 collisions
are not sufficient to obtain randomization. This accounts for the deviations
between our numerical results and the Machta-Zwanzig approximation
visible in Fig. 1. Based on the work in ref. 2, related conclusions on the
validity of the Machta�Zwanzig approximation have been drawn in ref. 14.

Due to such memory effects, the detailed functional form of pbs

appears to be quite intricate as well: Below the maximum at w=0.055
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there are at least three regions where pbs decreases approximately linearly
in w with different values of the slope. As the numerical results indicate, the
function must eventually drop extremely sharply to pbs(0)=1�3. Details of
these regions are shown in the magnification included in the figure. The
vertical lines separating different regions correspond to the respective lines
separating regions of different slope in the main figure. A very close look
reveals that the fine structure of all these different regions appears to be
quite similar, however, we note that this structure is essentially within the
range of our numerical errors.

We furthermore remark that a plot of the initial conditions in the
(x, sin :)-plane leading to backscattering for a given gap size w yields a
fractal set of these coordinates.(16) The modifications of such a fractal struc-
ture by varying w must be related to the changes seen in the function pbs

of Fig. 3a. This may explain why, even on the coarse scale of Fig. 3a, pbs

is not a simple function of w. Moreover, the detailed changes of such a
fractal set may be reflected in the respective detailed changes of pbs on the
fine scale, as illustrated in the magnification.

Having the probability of backscattering pbs we can now perform a
second correction of the original Machta�Zwanzig diffusion coefficient
Eq. (2). For this purpose, we again assume that diffusion can be treated as
a hopping process with a frequency {&1 over distances l. We now inquire
to which traps the particle can move by performing two jumps within a
total time interval of 2{. There are only two possibilities: either the particle
suffers backscattering, that is, it goes back to its original trap and does not
contribute to any actual displacement within 2{, or it moves over a dis-
tance l2 to the left or to the right of its original trap. Thus, the corre-
sponding diffusion coefficient reads

Dbs=
[1& pbs] l2

2

8{

=[1& pbs] 3�2DMZ (5)

Dbs is plotted in comparison to our Einstein formula results, and to the
original Machta�Zwanzig Eq. (2), in Fig. 3b. For smaller w, the corrected
diffusion coefficient approximates the numerically exact values quite well.
Thus, we conclude that the existence of backscattering is basically respon-
sible for the Machta�Zwanzig argument overestimating diffusion for small
values of w. For larger w Eq. (5) again improves the original Machta�
Zwanzig approximation, like the previous approximation Eq. (4), however,
like this it yields much smaller results than the correct values.
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Fig. 3. Correction of the Machta�Zwanzig approximation by backscattering: (a) backscat-
tering probability pbs as a function of the gap size w. For larger w the single data points are
plotted by symbols and are connected with lines, for smaller w only the lines are shown. The
dotted line corresponds to the value of 1�3 of equal probability for any gap, as it is assumed
in the Machta�Zwanzig approximation. The inset is a half-logarithmic blowup of the initial
region for small w. The bars included in the figure refer approximately to the regions of dif-
ferent slope in the main figure. (b) numerical results for the diffusion coefficient (bold line with
crosses) in comparison to the Machta�Zwanzig approximation Eq. (2) (dotted line), and the
correction via pbs Eq. (4) (dashed line).
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3.3. Combining Collisionless Flights, Backscattering, and
a Symbolic Dynamics

So far we have identified two microscopic scattering mechanisms
leading to deviations from the Machta�Zwanzig approximation: colli-
sionless flights across the trap and backscattering. One might think of
combining these two processes to obtain a single expression for the diffu-
sion coefficient. This can be performed by simply replacing the Machta�
Zwanzig diffusion coefficient DMZ in Eq. (5) by Dcf of Eq. (4) yielding

D1=3�2[1& pbs][1+2pcf] DMZ (6)

This function, denoted as a first order approximation, is shown in Fig. 4a
in comparison to the numerically exact results and to the Machta�Zwanzig
Eq. (2). For larger w, this combined approximation is much closer to the
numerical results than the original Machta�Zwanzig formulation, however,
there still remains a notable quantitative difference.

In the same figure, corrections of higher order based on the idea of
Eq. (6) are depicted. In the following we just outline the basic concept. The
higher-order corrections of the diffusion coefficient are obtained by numeri-
cally computing the probabilities of higher-order backscattering, and by
building them into a respectively generalized version of Eq. (5). This
generalized expression of the backscattering diffusion coefficient Dbs is then
combined with the respective collisionless flight-diffusion coefficient Dcf of
Eq. (4) in the same way as before. The probabilities of higher-order back-
scattering have been computed on the basis of a simple symbolic dynamics,
as it can be defined in case of simple backscattering: We followed a long
trajectory of a particle in the Lorentz gas. For each visited trap we labeled
the entrances through which the particle entered with z, the exit to the left
of this entrance with l, and the one to the right with r. Thus, a trajectory
in the Lorentz gas can be mapped to a sequence of symbols z, l, and r.
Note that the symbolic dynamics we are using here is different to the one
applied in other work in that we are labeling the three gaps of a trap,
whereas in previous work the single disks accessible after a collision have
been chosen, which required an alphabet of 12 symbols. (17, 3) p(z)= pbs is
then the backscattering probability depicted in Fig. 3a, whereas, due to
symmetry, p(l )= p(r)=(1& p(z))�2 corresponds to forward scattering.
Combining these probabilities with the correction by collisionless flights
yields Eq. (6) as a first order approximation.

Higher-order correlations can be calculated by taking into account the
probabilities of longer symbol sequences.(16) For example, the second order
approximation involves probabilities corresponding to nine symbol sequen-
ces each consisting of two symbols, p(zz), p(zl ), p(zr), p(lz), p(ll ), p(lr),
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p(rz), p(rl ), p(rr). In complete analogy to Eq. (6), a respective second-order
approximation of the diffusion coefficient is then computed on the basis of
these numerical probabilities, and by associating to them the respective dis-
tances traveled within a time interval of 3{. In the third-order approxima-
tion the probabilities correspond to sequences of three symbols, for exam-
ple, three times backscattering within a time interval of 4{ corresponding
to p(zzz), etc., and lead to a respective third order diffusion coefficient. In
general, the k th order approximation involves the probability of sequences
of k symbols. Figure 4a shows that by including such correlations the
respective higher-order approximations of the diffusion coefficient con-
verge, and globally move closer to the numerical exact results.

We therefore studied the effect of increased (or decreased) backscatter-
ing with the help of a lattice gas computer simulation. In such a simulation
the Lorentz gas is mapped to a honeycomb lattice where the sites of the
lattice represent the traps. The moving particle hops from site to site with
frequency {&1, which is identical to the exact hopping frequency used in
Machta�Zwanzig theory. We first describe the first order approximation:
At each step the particle hops back to the site where it came from with
probability pbs or to one of the other sites with probability (1& pbs)�2. The
backscattering probability pbs used in the lattice gas simulations is the one
numerically obtained from simulations in the Lorentz gas. Also in the lat-
tice gas simulations we determine the diffusion coefficient from the Einstein

Fig. 4. Systematic approximations of the exact diffusion coefficient in higher order: (a)
combined approach of employing the numerical probabilities of collisionless flights and of
backscattering within a hierarchy of analytical expressions of the diffusion coefficient. The
first-order approximation is given by Eq. (6) by using the probabilities pcf and pbs of Figs. 2a
and 3a. The second and third order are computed as described in the text and include higher-
order backscattering events. (b) diffusion coefficients obtained from lattice gas simulation by
using probabilities of correlated hopping sequences as calculated in Lorentz gas simulations
(see text).
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formula Eq. (3). The results of these simulations are shown in Fig. 4b by a
dotted line. Taking into account these first order correlations brings the dif-
fusion coefficient closer to the correct value, but there still is a considerable
deviation. This indicates the importance of higher order correlations, which
can be obtained by correlating more than two hops between neighboring
traps. To determine the diffusion coefficient for such multiple hopping
events by lattice gas simulations we used the probabilities p(lrz) calculated
up to fourth order from long trajectories in the Lorentz gas. The results of
these calculations are shown in Fig. 4b. As can be seen in the figure, the dif-
fusion coefficient obtained from this scheme converges very quickly to the
numerically exact results, in particular for small w. For larger w, the con-
vergence is somewhat slower, however, the fourth order approximation can
be hardly distinguished from the numerically exact results on the scale of
Fig. 4b. For growing order the diffusion coefficient converges to the correct
results exactly.

4. BOLTZMANN APPROXIMATION FOR THE DIFFUSION
COEFFICIENT

In the previous section, we have discussed how the Machta�Zwanzig
theory can be improved systematically. In case when the scatterers are dis-
tributed randomly in the plane without overlap, an alternative approach
for understanding diffusion is provided by kinetic theory. In refs. 18 and 19,
for low densities the diffusion coefficient has been computed from the
Boltzmann equation to

DBo(n)= 3
8 lc(n) v (7)

where lc=1�(2Rn) is the collision length of the moving particle. At higher
number densities n the excluded volume of the scatterers becomes impor-
tant, and the revised shorter collision length, which can also be obtained
exactly from the Machta�Zwanzig argument, (7) yields

DBo(n)=
3

16 \
1
n

&?+ (8)

where we have changed to units with v=1 and R=1. We now investigate
whether this Boltzmann approximation is somewhat helpful to understand
diffusion in the periodic case. Here, n is related to the gap size w by Eq. (1).
Note that for w=0, where the particle is trapped, the corresponding
density is n<� and the collision length is still finite. Thus, Eq. (8) implies
a diffusion coefficient of DBo(w=0)>0, that is, this approximation inevitably
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leads to an offset between DBo(w=0) and the exact result of D(w=0)=0.
Therefore, it can immediately be concluded that DBo is not correct at the
highest densities.

In Fig. 5, Eq. (8) is shown in comparison to the numerically exact
results and to the Machta�Zwanzig approximation Eq. (2). For this pur-
pose, the diffusion coefficient has been plotted as a function of 1�n, and an
offset of 2D=0.025 has been subtracted from Eq. (8). According to this
equation, DBo(n) should go linearly in 1�n with a slope of 3�16, and the
offset 2D is the only fit parameter. Indeed, in Fig. 5 we observe that, on a
sufficiently coarse scale and over a wide range of smaller densities, D
matches surprisingly well to this functional form. In particular, the value of
the slope appears to be almost exact. Only for larger densities D deviates
from a linearity in 1�n, where the Machta�Zwanzig approximation seems
to describe the functional form at least qualitatively quite well.

We remark that for the random Lorentz gas the Boltzmann equation
has been rigorously derived in ref. 20. However, for the periodic Lorentz
gas it is not at all obvious that a Boltzmann approximation can be used,
since here a diffusion coefficient exists only in the regime of very high den-
sities. On the other hand, there stands our observation that Eq. (8) yields
the correct linearity of the diffusion coefficient in 1�n for smaller densities
with even the almost exact value of the slope. In trying to understand this
usefulness of the Boltzmann equation for the periodic case we first remark
that, except excluded volume effects, there are no further Enskog density
corrections in a Lorentz gas as related to screening of particles, or to
many-particle collisions.(21) On the other hand, the existence of an offset at
large densities may be related to the fact that the Boltzmann approxima-
tion represents only the first term in a series expansion in n, which is
known as the density expansion of kinetic theory. For the random Lorentz
gas, such a density expansion has been carried out explicitly in refs. 18 and
19. It has been found that there exist higher-order terms being logarithmic
in the density corresponding to so-called ring collisions, which diminish the
Boltzmann diffusion coefficient quantitatively. However, these logarithmic
corrections are difficult to see in the functional form of the diffusion
coefficient. It is not known to us whether a density expansion has been
performed for the periodic Lorentz gas. But the offset we find might be
associated to the existence of such higher-order corrections in the density,
and the apparent Boltzmann-like linear behavior may be related to the
observation that in similar systems higher-order corrections do not change
the functional form of the diffusion coefficient in a drastic way.

Based on this, we may come back to the non-trivial fine structure of
the diffusion coefficient depicted in Fig. 1b. We believe that these fluctua-
tions can be understood as a signature of long-range correlations in
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Fig. 5. Diffusion coefficient in the periodic Lorentz gas with respect to the inverse of the
number density of the scatterers n. The Boltzmann approximation Eq. (8) is shown after sub-
tracting an offset of 2D=0.025 (thin bold line). It is compared to the numerically exact
results (thick bold line with crosses), and to the Machta�Zwanzig approximation Eq. (2).

microscopic scattering events. A certain subclass of such processes are the
ring collisions mentioned above leading to a series of logarithmic correc-
tions, and divergences, in the density expansion of the diffusion coefficient.
It might be conjectured that the existence of these divergences in the den-
sity expansion of kinetic theory is due to the problem of approximating a
diffusion coefficient, which is in fact a function as complicated as the one
shown in the inset of Fig. 1b, in form of a simple series expansion, as has
already been remarked in ref. 3.

5. CONCLUSIONS

We have performed a detailed comparison between computer simula-
tion results and the analytical approximation of Machta and Zwanzig for
the density-dependent diffusion coefficient in the two-dimensional periodic
Lorentz gas. In particular, we have discussed how their approximation can
be corrected systematically over the full diffusive regime by including
correlations in the hopping mechanism. Our corrections are conceptually
very simple. Nevertheless, the physical mechanisms of free flights and
backscattering, on which they rely, show up in other transport processes
like diffusion-controlled chemical reaction,(22) and also in more com-
plicated models (see the discussion in refs. 23 and 24). We furthermore
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found that on a coarse scale there exists a dynamical crossover from a func-
tion linear in 1�n for lower densities, as qualitatively described by the
Boltzmann diffusion coefficient, to a behavior at high densities, which can
qualitatively be understood by the Machta�Zwanzig argument. We remark
that these two approaches to understand the diffusion coefficient, that is,
improving the Machta�Zwanzig argument, and applying a Boltzmann
approximation, rather complement than contradict each other: The com-
plicated microscopic scattering processes responsible for the limited validity
of the Machta�Zwanzig approximation apparently just superpose in a way
such that the resulting diffusion coefficient is approximately linearly in 1�n
on a coarse scale. A similar relation between nonlinear corrections and a
linear response has been discussed in refs. 25 and 26 with respect to the
existence of Ohm's law in a periodic Lorentz gas with an external field.
That this picture is in detail too simple is demonstrated by our finding of
deviations from such a linear behavior on a very fine scale.

As has been discussed explicitly in ref. 3, fundamental physical and
mathematical properties of the Lorentz gas are shared by simple one- and
two-dimensional chaotic maps. In this respect, we remark that a dynamical
crossover between different asymptotic laws for a parameter-dependent dif-
fusion coefficient has already been found in periodic one-dimensional
chaotic maps.(23, 24) As in our discussion above, for these maps two dif-
ferent random walk models have been used to describe the corresponding
asymptotic behavior: For small parameters, the respective random walk
basically depends on the hopping probability of a particle leaving a cell,
thus corresponding to the Machta�Zwanzig approximation, whereas for
larger parameters the respective random walk scales with the distance a
particle travels per time step, thus corresponding to the Boltzmann
approximation, where diffusion is proportional to the collision length of
the moving particle. We furthermore note that the diffusion coefficients in
this kind of maps have been found to be fractal with respect to variation
of the control parameter, and that specific correlated microscopic scattering
events could be identified as being responsible for this fractal struc-
ture.(27, 23, 28) The same phenomena have been encountered in related two-
dimensional multi-baker maps.(29) Whether the diffusion coefficient of the
periodic Lorentz gas is as well such a non-differentiable function of the
density remains an open question.
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