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Dynamical crossover in deterministic diffusion
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We study diffusion in a one-dimensional periodic array of scatterers modeled by a simple map. The chaotic
scattering process of the map can be changed by a control parameter and exhibits a dynamics analogous to a
crisis in chaotic scattering. We show that the associated strong backscattering induces a crossover between
different asymptotic laws for the parameter-dependent diffusion coefficient. These laws are obtained from
exact diffusion coefficient results and are supported by simple random walk models. We conjecture that the
main physical feature of this crossover is present in many other dynamical systems exhibiting nonequilibrium
transport.@S1063-651X~97!50502-2#
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One of the basic mechanisms in the theory of chao
dynamical systems are crisis events, where the asymp
dynamics of the system change dramatically with respec
the variation of a control parameter@1–3#. Recently, it was
found that related events occur in simple chaotic scatte
systems when the scattering rules are varied. This phen
enon has been called a crisis in chaotic scattering@4#. On the
other hand, considerable literature has developed in wh
the origin of transport in nonequilibrium statistical mecha
ics has been connected to the characteristics of chaotic
tering processes@5#. One problem studied was determinist
diffusion in simple one-dimensional maps@6–9#, where
parameter-dependent diffusion coefficients have been c
puted by taking the complete equations of motion of
dynamical systems into account@10,11#. Related one-
dimensional maps have been proposed in Ref.@4# as simple
models that exhibit a crisis in chaotic scattering. Thus,
question arises whether features of a crisis in chaotic sca
ing have an impact on deterministic diffusion. We study
periodic continuation of the map of Ref.@4# on the real line
so that it exhibits diffusive behavior. We find that the diff
sion coefficient has a global structure with a crossover fr
linear to quadratic dependence on the slope. These alge
laws have already been noticed by previous authors for s
lar maps, either obtained from simple approximations,
based upon calculations for special values of the sl
@6,7,12#. We show that their suggestive arguments are qu
titatively supported by the accurate parameter-dependent
fusion coefficient of the map and qualitatively by two simp
random walk models. More detailed studies of the diffus
coefficient, and of the microscopic scattering process in
model, reveal that the specific shape of the crossover re
depends on whether the map exhibits the dynamics of a c
in chaotic scattering or not. However, generically this cro
over is due to backscattering, and it should be encounte
in many dynamical systems with nonequilibrium transpor

In the following, we consider discrete one-dimension
piecewise linear chaotic maps with uniform slop
xn115Mh(xn), whereh is a control parameter, andxn is the
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position of a point particle at discrete timen. Mh(x) is con-
tinued periodically beyond the interval@0,1) onto the real
line by a lift of degree one,Mh(x11)5Mh(x)11. We as-
sume thatMh(x) is antisymmetric with respect tox50,
Mh(x)52Mh(2x), i.e., that there is no drift imposed on
point particle@13#. As an example, we consider the sawtoo
map sketched in Fig. 1. It was chosen as a periodic cont
ation of the map studied in Ref.@4#, which exhibits a crisis in
chaotic scattering. The control parameter is here the he
h of the map, which is related to the absolute value of
slopea by h5(a23)/4. The diffusive properties of simila
maps have been studied in Refs.@6,7,9#. For this sawtooth
map the parameter-dependent diffusion coefficient has b
computed by solving the Frobenius-Perron equation of
dynamical system@2#,

rn11~x!5E dy rn~y! d„x2Mh~y!…, ~1!

wherern(x) is the probability density for points on the re
line, andMh(y) is the map under consideration. There exi

FIG. 1. Double logarithmic plot of the diffusion coefficien
D(h) with respect to the heighth for the sawtooth map shown in
the figure. The graph is based on 38 889 single data points.
random walk solutions~dotted lines! and two curves, which ap-
proximately give the boundaries of the oscillations ofD(h) for
values ofh above the backscattering pointhb ~dashed lines!, are
included.
R1247 © 1997 The American Physical Society
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a dense set of parameter valuesh for which one can con-
struct Markov partitions for the map, and for each of the
parameter values Eq.~1! can be written as a matrix equatio
@10,11#,

rn115~1/uau! T rn . ~2!

rn represents a column vector of the probability densities
each part of the Markov partition at timen, andT is a topo-
logical transition matrix, which can be obtained from t
Markov partition. However, instead of solving the eige
value problem ofT @10#, here solutions for the probability
density vectorrn have been obtained by iterating Eq.~2!,

rn115~1/uaun!Tnr0 . ~3!

Starting with any probability density vectorr0 this iteration
method enables us to compute the exact time-depen
probability densityrn at any time stepn and all other dy-
namical quantities based on probability density averages
maps of the type ofMh(x) @11,14,15#. In particular, it pro-
vides an efficient way to calculate diffusion coefficients
employing an Einstein formula@6,8,9,12#,

D~h!5 lim
n→`

1

2nE dx rn~x!x2, ~4!

where the integral is the second moment of the tim
dependent probability density@16#.

Figure 1 shows a log-log plot of the diffusion coefficie
as a function ofh up toh53.5. Included are four curves tha
describe the coarse-grained behavior of the exact res
There exist several methods to compute the diffusion coe
cient for maps of this type for integer values of the heig
analytically @6,7,9–11#. By applying the eigenvalue metho
of Ref. @10# we get

D~h!5
2h313h21h

12h19
→

h2

6
~h→`!, hPN. ~5!

The two dashed curves give approximate limits for the os
lations of the exact diffusion coefficient in the rang
h.hb . They are obtained by fitting the diffusion coefficie
with the functional form of Eq.~5! at h5(2k11)/2 and
h5(4k13)/4 , k PN0, for the upper and lower curve, re
spectively. The twodottedcurves show two simple random
walk approximations, where it is assumed that the proba
ity density of a scatterer is uniform. For large heights t
distance a point particle travels at one time step by mov
from one unit interval to another is taken into account e
actly @2#, and we get

Drw1~h!5E
0

1/2

dx@Mh~x!2x#2→
h2

6
~h→`!, ~6!

which gives the dotted line plotted forh.hb . For small
heights the absolute value of the distance is approximate
either zero or one, depending on whether the particle rem
on a unit interval or leaves it@6,8,12#. This leads to

Drw2~h!5
2h

4h13
→

2

3
h ~h→0!. ~7!
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These approximations indicate three different regions
coarse-grained behavior for the exact diffusion coefficie
The first one is a simple initial region, where the diffusio
coefficient behaves linearly for small heights. Forh>hb it
decreases slightly on increasing the height. Finally,
h>0.5 it starts to grow quadratically in the height, but wi
strong oscillations on a fine scale. The transition between
two different types of asymptotic coarse-grained behav
which occurs in the crossover region ofhb<h<0.5, can be
understood by referring to the action of certain microsco
scattering mechanisms. They are introduced in Fig. 2, wh
certain regions of the map have been distinguished by sha
squares and triangles: The triangles refer to parts wh
points of one unit interval get mapped from that interval in
another unit interval. Additionally, if points enter a squa
they preferably move into the triangular escape region ab
or below the respective square after some iterations. Th
squares are identical to the squares of an analogous sc
ing model, where they provide the basic mechanism fo
crisis in chaotic scattering@4#. The abbreviationsf ~‘‘for-
ward’’! and b ~‘‘ backward’’! in these scattering region
refer to the dynamics of the critical point of the map, whi
is indicated by a small circle. Its first iteration is show
by the dashed line with the arrows. At its second iterati
and by increasing the heighth continuously up from
zero, the orbit of the critical point, denoted as thecritical
orbit in the following, travels along the graph of the ma
in the next right box from the upper left to the lower righ
as indicated by bold black arrows. This way, the critic
orbit explores all the different scattering regions of the m
ash is increased from zero. If the orbit hits a region label
by ab it is in a position to getbackscatteredinto the box to
the left.Vice versa, if the orbit enters anf region it is in a
preferable position to move furtherforward to the next box
to the right. The critical point indicated in Fig. 2 is part of
forward scattering region. Note that there is a dense se
points around the critical point that exhibits the same dyna
ics, at least for the first few iterations. An event dynamica
analogous to the one that occurs at a crisis in chaotic s

FIG. 2. Chaotic scattering in the sawtooth map and its conn
tion to the behavior of the diffusion coefficientD(h). Certain mi-
croscopic scattering mechanisms of the map are identified
shaded squares and triangles. The same symbols are shown
the D(h) curve, where they indicate the impact of the respect
scattering regions on the diffusion coefficient. The graph consist
10 268 single data points.
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tering now occurs at thepoint of strong backscattering,
defined by the parameter value of the heighthb for which
the critical orbit of the forward scattering region hits th
boundary of a backward scattering region in the next ri
box after one iteration for the first time. This case is illu
trated in Fig. 2 and, for the map shown, is determined
hb5(A1723)/8.0.1404. We emphasize that this process
topologically not identical to a crisis, or a crisis in chaot
scattering, since it is not generated by the merging of t
formerly isolated invariant sets in the phase space. Never
less, we argue thatdynamically this process provides th
same characteristics as a crisis in chaotic scattering, e
cially the onset of strong backscattering@4,11#. The squares
and the triangles along the diffusion coefficient curve n
refer to parameter regions where the critical orbit g
mapped into the respective scattering regions. The diffe
symbols on the curve denote boundary points where the c
cal orbit enters, or leaves, these regions. The diffusion c
ficient clearly decreases globally if the critical orbit enters
backscattering region, and it increases globally if it exhib
forward scattering. Hence, the different microscopic scat
ing mechanisms defined above are connected to region
the macroscopic diffusion coefficient which exhibit differe
parameter-dependent behavior. We remark that the pa
eter region of backscattering corresponding to the br
crossover region in Fig. 1 is precisely identical to the resp
tive parameter region in the model of Ref.@4# where en-
hancement of chaotic scattering, triggered by a crisis, occ
Moreover, the backscattering pointhb indicates the first
strong local maximum of the curve, as shown in Fig. 2. Ma
nifications reveal that the fine structure of the curve chan
dramatically from quite regular belowhb to much more ir-
regular just above, and that the curve is fractal@10#. These
features can be understood in detail by refining the proced
explained above and reflect a drastic change in the mi
scopic dynamics of the model, which at the backscatter
point hb develops from rather simple to more complex m
tion @11,14#.

Thus, the onset of strong backscattering affects the di
sion coefficient of the sawtooth map not only on a fine sca
but also on a coarse-grained scale. This phenomenon ma
understood as abackscattering-induced dynamical crossov
in deterministic diffusion. The extension and specific shap
of the crossover region are due to the sawtooth map ex
iting the dynamics of a crisis in chaotic scattering. On t
other hand, an onset of strong backscattering must eventu
occur in any map of the type ofMh(x) at a certain paramete
value, independently of its special functional form. Th
can be checked by identifying the forward and backw
scattering regions of a map and applying the definition of
backscattering point given above. As an example, the pie
wise linear, discontinuous, nonsawtooth map studied in R
@10# has been analyzed. We find that the respective ba
scattering point of the map again corresponds to the
strong local maximum of the diffusion coefficient curve, a
that again this point is related to a change between two
ferent laws for the asymptotic diffusion coefficient. Sin
this map does not mimic the dynamics of a crisis in chao
scattering, it lacks a broad crossover region right above
backscattering point. However, again the diffusion coe
cient grows linearly for small values of the height, only t
t
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slope being different from that of the sawtooth map, a
in the limit of large heights, the diffusion coefficient in
creases quadratically with a factor of 1/6, as in the case
the sawtooth map. Analogous results for asymptotic dif
sion coefficients have been reported in Refs.@6,7# for many
other maps of the type ofMh(x), although in this previous
work diffusion coefficients could be computed exactly on
for special values of the height, and the asymptotic regim
could not be verified rigorously with respect to the fu
parameter-dependent diffusion coefficient. These results
dicate that a backscattering-induced dynamical crosso
should be typical for diffusive maps of the type ofMh(x). In
the limit of small heights, the asymptotic diffusion coeffi
cient must always decrease linearly, as can be understoo
a simple geometrical argument@6,12#. In the limit of large
heights, we expect that it always increases quadratically w
a factor of 1/6. Similar results may be obtained for certa
classes of two-dimensional maps@2,17#.

We conjecture that the main physical feature of this cro
over, i.e., a connection between the onset of strong mic
scopic backscattering and a change in the behavior of m
roscopic parameter-dependent transport coefficients, is q
common as well in more realistic Hamiltonian systems: F
example, in Ref.@18# diffusion in two-dimensional periodic
Coulombic potentials has been studied, and an energy thr
old has been proved to exist above which the diffusion
efficient increases with a power law in the particle ener
whereas below this threshold no diffusion coefficient exis
In Ref. @4# it has been found that related models exhibit
crisis in chaotic scattering. The existence of this ene
threshold might thus be linked to the dynamics of a crisis
chaotic scattering as in case of the dynamical crossover
cussed above. Furthermore, for a crisis in chaotic scatte
the significance of orbiting collisions has been pointed o
indicating the onset of strong backscattering@4#. However,
orbiting collisions have already been studied in the fram
work of the kinetic theory of gases for Lennard-Jones flu
at low densities, and at low temperatures a qualitative c
nection between the onset of these collisions and a sm
change in the temperature-dependent behavior of trans
coefficients has been noted@19#. Thus, physically one may
connect the occurrence of certain microscopic chaotic s
tering processes, or in special cases even crisis events,
specific behavior of transport coefficients. These events m
be linked to macroscopic dynamical crossover phenom
or, in certain cases, possibly even to dynamical phase t
sitions @20,21#.

In summary,~a! the sawtooth map under consideratio
here was chosen as a diffusive version of a one-dimensi
dynamical system exhibiting a crisis in chaotic scattering
crossover in the parameter-dependent diffusion coefficien
this map has been found, linked to the dynamical mechan
of this crisis event. This suggests that the dynamics o
crisis in chaotic scattering can trigger a dramatic effect
nonequilibrium transport.~b! The dynamical crossover foun
here affects the diffusion coefficient of the model not only
a fine scale, but also on a coarse-grained scale, and indu
transition between two different algebraic laws for the a
ymptotic diffusion coefficient.~c! The crossover is under
stood physically by relating the onset of strong microsco
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backscattering to a change in the behavior of the ma
scopic parameter-dependent transport coefficient. This m
physical feature is conjectured to be quite common in
namical systems exhibiting non-equilibrium transport.
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