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Abstract. – We show that the generalized diffusion coefficient of a subdiffusive intermittent
map is a fractal function of control parameters. A modified continuous-time random-walk
theory yields its coarse functional form and correctly describes a dynamical phase transition
from normal to anomalous diffusion marked by strong suppression of diffusion. Similarly, the
probability density of moving particles is governed by a time-fractional diffusion equation on
coarse scales while exhibiting a specific fine structure. Approximations beyond stochastic theory
are derived from a generalized Taylor-Green-Kubo formula.

The notion of anomalous diffusion derives from the fact that the mean-squared displace-
ment (MSD) must not follow the law of normal diffusion, 〈x2〉 ∼ tγ with γ = 1, but may be
superdiffusive with γ > 1 or subdiffusive with γ < 1. Such anomalous dynamics has been
investigated theoretically and observed experimentally not only in amorphous semiconduc-
tors, surface diffusion, turbulence, polymers and plasmas, but also in chemical, biological and
economical problems [1–7]. For this variety of applications it is desirable to have a class of test
systems at hand which are yet easy to handle. Here periodically continued deterministic maps
provide an important basis for analytical and numerical investigations [8–16]. Both the sub-
and the superdiffusive dynamics of such models were successfully described by continuous-time
random-walk (CTRW) approaches [8, 10, 11, 16]. This stochastic theory yields non-Gaussian
probability density functions (PDF) for anomalous diffusive processes exhibiting stretched
exponential decay in case of sub- and Lévy power law decay in case of superdiffusion [10].

On the other hand, a microscopic theory of anomalous deterministic transport explaining
the origin of this behavior in terms of the theory of dynamical systems is just beginning to
evolve [12–15]. Surprises along these lines were already encountered in normal diffusive maps,
where the diffusion coefficient was found to be a fractal function of control parameters [17–19].
c© EDP Sciences
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Fig. 1 – The generalized diffusion coefficient K, eq. (2), as a function of a for z = 3. The curve in
(a) consists of 1200 points, the dash-dotted line displays the CTRW result K1, eqs. (5), (7). (b) (600
points) and (c) (200 points) show magnifications of (a) close to the onset of diffusion. The dotted
line in (b) is the CTRW approximation K2, eqs. (6), (7). The dashed line represents the first term of
the TGK formula, eq. (8). The triangles mark a specific structure appearing on finer and finer scales.
The inset depicts the model eq. (1). All quantities here and in the following figures are dimensionless.

This behavior was also reported for more complex systems like the climbing sine map [20,21],
bouncing-ball billiards [22,23] and coupled Josephson junctions [24]. The fractality can be un-
derstood as a signature of long-range dynamical correlations that, due to topological instabili-
ties, change in a complicated manner under parameter variation [25]. However, no such fractal
structures were yet identified in anomalous dynamics as modeled by the maps of refs. [8–12,16].

In this letter we focus on a subdiffusive map whose functional form on the unit interval
was introduced by Pomeau and Manneville for describing intermittency [26,27],

xn+1 ≡ Ma,z(xn) = xn + axz
n , 0 ≤ xn <

1
2

, (1)

yielding an equation of motion of a point particle at position xn for discrete time n. The
translation Ma,z(x + m) = Ma,z(x) + m, m ∈ Z, and inversion symmetries Ma,z(−x) =
−Ma,z(x) complete the definition on the real line, see the inset of fig. 1(a). The degrees of
nonlinearity z ≥ 1 and a ≥ 1 in eq. (1) hold for the two control parameters. For 1 ≤ z < 2
this model leads to normal diffusion, while for z ≥ 2 its behavior is anomalous [8, 10]. The
anomalous regime results from the existence of marginal fixed points located at all integer
values of x. Thus, a typical trajectory of the map consists of long laminar phases interrupted
by chaotic bursts. In contrast to refs. [8,10], which focused on the time dependence of the MSD
for the particular parameter value of a = 2z, here we study the behavior of the generalized
diffusion coefficient (GDC) [6]

K := lim
n→∞

〈x2〉
nγ

(2)

(〈. . .〉 denotes an ensemble average) for this map under variation of both control parameters.
We first focus on numerical simulations [28] of the map eq. (1) and on the interpretation of the
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Fig. 2 – K as a function of z for a = 3.14, 4, 5 consisting of 200, 250 and 300 points (bottom to
top). Bold lines represent simulation results for n = 104 iterations, the dashed line is the CTRW
solution K2, eqs. (6), (7), for n → ∞. The thin line displays the first term of the TGK formula,
eq. (8). At z = 2 there is a transition from normal to anomalous diffusion. The inset describes the
time dependence of 〈x2〉 around this value with a = 3.14. Here dashed lines correspond to z = 1.5,
1.9, 1.95 (bottom to top), dash-dotted lines to 2.5, 2.1, 2.05 (top to bottom), while the bold line
depicts z = 2. The dotted line is proportional to ln(n).

results within the CTRW approach. CTRW theory models diffusion processes by sequences
of jumps interrupted by periods of waiting. Let the PDFs of waiting times and of jump
lengths be defined by φ(t) and λ(x), respectively. Choosing these functions appropriately,
CTRW theory predicts that γ = 1 for 1 ≤ z < 2 and γ = 1/(z − 1) for 2 < z, irrespective
of the parameter a of the map [8, 10]. Indeed, for all a we find excellent agreement between
these solutions and the values for γ obtained from simulations. Consequently, the analytical
expressions for γ are used throughout our work.

Simulation results for K as a function of a for fixed z are presented in fig. 1. Magnifications
of fig. 1(a) shown in parts (b) and (c) reveal self-similar–like irregularities indicating a fractal
parameter dependence of K. Note particularly the structure marked by triangles, which is
repeated on finer and finer scales. The parameter values for these symbols correspond to
specific series of Markov partitions [17–19]. In fig. 2, K is depicted as a function of z for
different values of a, again displaying highly non-monotonic parameter dependences.

In a first step for explaining these curves we apply standard decoupled [29] CTRW the-
ory [8,10] by modifying this approach at three points: Firstly, the waiting time PDF must be
calculated according to the grid of elementary cells indicated in fig. 1 [19,30] yielding

φ(t) = a (1 + a(z − 1)t)−
z

z−1 . (3)

However, this PDF accounts for attempted jumps to another cell, since after a step the particle
may stay in the same cell with a probability of (1−p). This quantity is roughly determined by
the size of the escape region p = (1− 2xc) with xc as a solution of the equation xc + axz

c = 1.
We thus model this fact, secondly, by a jump length distribution in form of

λ(x) =
p

2
δ(|x| − l) + (1− p)δ(x). (4)
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Thirdly, we introduce two definitions of a typical jump length li, i ∈ {1, 2}. Thus,
l1 = {|Ma,z(x)− x|} (5)

corresponds to the actual mean displacement, while

l2 = {|[Ma,z(x)]|} (6)

gives the coarse-grained displacement in units of elementary cells, as is often assumed in
CTRW approaches. In these definitions {. . .} denotes both a time and ensemble average over
particles leaving a box. The modified CTRW approximation for the GDC resulting from these
three changes reads

Ki =

{
pl2i a

γ sin(πγ)/πγ1+γ , 0 < γ < 1,
pl2i a(1− 1/γ), 1 ≤ γ < ∞.

(7)

Figure 1(a) shows that K1 well describes the coarse functional form of K for large a. K2 is
depicted in fig. 1(b) by the dotted line and is asymptotically exact in the limit of a → 0.
Hence, the GDC exhibits a dynamical crossover analogous to the one found for normal
diffusion [19–21,30]. Let us now focus on the GDC at a = 12, 20, 28, . . . , which corresponds
to integer values of the height h = [Ma,z(1/2)] of the map. Simulations reproduce, within
numerical accuracy, the results for K2 by indicating that K is discontinuous at these parame-
ter values. Due to the self-similar–like structure of the GDC we arrive at the conjecture that
K exhibits infinitely many discontinuities on fine scales as a function of a, in contrast to the
continuity of the CTRW solution.

We now switch back to the z-dependence of K, where CTRW theory predicts a dynamical
phase transition from normal to anomalous diffusion at z = 2 [8, 10]. At the transition point
one has 〈x2〉 ∼ n/ log(n). According to eq. (2), eq. (7) yields a continuous transition in z, see
K2 in fig. 2. However, this coarse functional form is obscured not only by fractal irregularities
but also by an ultra-slow convergence of the MSD in our simulations. Using CTRW theory,
we verified that around z = 2 the MSD is determined by a series of logarithmic corrections in
time, where the lowest-order term is proportional to nγ/ log n and dominates at time scales
controlled by n � ñ ∼ exp[1/(1 − γ)]. Hence, for γ �= 1 and n � ñ simple power laws
are recovered, while for γ = 1 this logarithmic term survives in the infinite time limit. The
inset of fig. 2 exemplifies this behavior explaining deviations between CTRW theory and the
simulation results in the main figure. In other words, around z = 2 both normal and anomalous
diffusion are suppressed due to logarithmic corrections in time leading to a vanishing K. We
strongly suspect that such a behavior of the GDC is typical for dynamical phase transitions in
anomalous dynamics altogether [11]. This ultra-slow convergence of the numerical results is
connected with the aging phenomenon for z > 2 studied in [16]. It indicates some dependence
on initial conditions for large transient times while disappearing in the limit of t → ∞.

The stochastic CTRW theory presented above describes only the coarse parameter depen-
dence of the GDC. This motivates us to develop an approach that incorporates dynamical
correlations. For this purpose we generalize the Taylor-Green-Kubo formula (TGK) [31] for
maps to anomalous diffusion. We start by expressing eq. (2) via sums over the integer ve-
locities vm = [xm+1] − [xm] [25]. However, in contrast to normal diffusion, the anomalous
dynamics generated by eq. (1) is not stationary for z ≥ 2 [11,32]. Consequently, the resulting
expression cannot be simplified using time-translational invariance, and we get

K = lim
n→∞

1
nγ

[〈
n−1∑
k=0

v2
k

〉
+ 2

〈
n−1∑
k=0

n−1∑
l=1

vkvk+l

〉]
. (8)
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Focusing on the first term only, simulations confirm that it is proportional to nγ . For z < 2,
the dynamics is ergodic, hence this term is equal to n〈v2

0〉, and we recover the random-walk
formula for normal diffusion [19, 30]. For z ≥ 2, only generalized ergodic theorems may
hold [33, 34], and whether the CTRW result, eq. (7), can be derived from the first term is a
non-trivial question. Considering this term as an approximation of K for all z, the numerical
results are depicted in figs. 1(b) and 2. The comparison of this data with the simulation values
based on eq. (2) indeed shows that this term already provides a first step beyond the modified
CTRW model: In the a-dependence it reproduces the major irregularities of K and even
appears to follow the discontinuities discussed above. However, we cannot say yet whether it
yields exact values for K at integer heights.

Equation (8) thus provides a suitable starting point for a systematic understanding of the
fractal GDC beyond CTRW theory. We remark that already the first term can be related
to de-Rham–type fractal functions, which explains why it features irregularities [35]. Since
the series expansion in eq. (8) is exact, working out further terms one must recover more and
more structure in the GDC [19–21,25]. Note that the correlation function in the second term
depends on two times, which enables to express K in terms of aged [16] de-Rham–type fractal
functions summing up to the exact value.

We now turn to the PDFs generated by the map eq. (1). The great success of CTRW
theory derives from the fact that it correctly predicts both the power γ and the form of the
coarse-grained PDF P (x, t) of displacements for a large class of models [10]. Correspondingly,
the diffusion process generated by eq. (1) is not described by an ordinary diffusion equation
but by a fractional generalization of it. Starting from the CTRW model for the map eq. (1)
discussed above, one can derive the time-fractional diffusion equation

∂γP (x, t)
∂tγ

≡ 1
Γ(1− γ)

∫ t

0

dt
′(

t − t
′)−γ ∂P

∂t′
= D

∂2P

∂x2
(9)

describing the long-time limit of the PDF of the coarse-grained dynamics with initial condition
P (x, 0) = δ(x) and D = KΓ(1 + γ)/2, 0 < γ < 1. The fractional derivative is understood in
the Caputo sense [36]. Time-fractional equations of such a form have already been extensively
studied by mathematicians [37]. We remark that the two other fractional diffusion equations
proposed in refs. [6, 16], which are based on a Riemann-Liouville fractional derivative, are
equivalent to eq. (9) under rather weak assumptions [38]. The solution of eq. (9) expressed in
terms of an M -function of Wright type [36,37] reads

P (x, t) =
1

2
√

Dtγ/2
M

(
ξ,

γ

2

)
(10)

giving exactly the same asymptotics that was obtained in ref. [10] for small and large values
of ξ = |x|/√Dtγ/2,

P (x, t) � t−γ/2

{
1− a1ξ + a2ξ

2, ξ � 1,

ξ
γ−1
2−γ e−b1ξ

2
2−γ , ξ � 1,

(11)

where a1, a2, b1 are some constants. By using a series representation of M , it can be demon-
strated [38] that eq. (10) is equivalent to those expressed via H-functions [6] or one-sided
extremal Lévy stable distributions [16]. Figure 3 demonstrates an excellent agreement be-
tween the analytical solution, eq. (10), and the PDF obtained from simulations for the map
eq. (1) if the PDF is coarse-grained over unit intervals. However, it also shows that the coarse
graining eliminates a periodic fine structure that is not captured by eq. (10) [19]. This fine
structure derives from the “microscopic” PDF of an elementary cell (with periodic bound-
aries), as represented in the inset of fig. 3. The singularities are due to the marginal fixed
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Fig. 3 – Comparison of the PDF obtained from simulations of the map eq. (1) (oscillatory structure)
with the analytical solution, eq. (10), of the fractional diffusion equation, eq. (9) (continuous line in
the middle), for z = 3 and a = 8. The PDF was computed from 107 particles after n = 103 iterations.
For the GDC in eq. (10), the simulation result was used. The crosses (×) represent the numerical
results coarse-grained over unit intervals. The upper and the lower curves correspond to fits with a
stretched exponential and a Gaussian distribution, respectively. The inset depicts the PDF for the
map on the unit interval with periodic boundaries.

points of the map, where particles are trapped for long times. Remarkably, that way the mi-
croscopic origin of the intermittent dynamics is reflected in the shape of the PDF on the whole
real line: From fig. 3 it is seen that the oscillations in the PDF are bounded by two functions,
the upper curve being of a stretched exponential type while the lower is Gaussian. These two
envelopes correspond to the laminar and chaotic parts of the motion, respectively [39].

In conclusion, we have shown that the anomalous dynamics generated by a paradigmatic
subdiffusive one-dimensional map exhibits a fractal GDC under variation of control parame-
ters. The coarse dependence of this GDC and a non-trivial phase transition from normal to
anomalous diffusion are captured by a modified CTRW theory. Near the phase transition point
the GDC is strongly suppressed by logarithmic corrections in time. A more detailed under-
standing of the GDC is provided by an anomalous TGK formula suggesting intimate relations
to aging, fractal functions and ergodic theory. The coarse-grained PDF of this anomalous
dynamics is in excellent agreement with the solution of a suitable fractional diffusion equa-
tion, while on fine scales it reflects the microscopic details of the intermittent dynamics. Here
we have only treated a subdiffusive map; however, we expect these findings to be typical for
spatially extended, low-dimensional, anomalous deterministic dynamical systems altogether.
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