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A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth
nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and
anomalous diffusive regions as functions of the control parameter. The measure of these self-similar
sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion
coefficient. By using a Green-Kubo formula we link these fractal structures to the nonlinear micro-
scopic dynamics in terms of fractal Takagi-like functions.
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port [19,20] and was later on detected for other transport
coefficients [21], and in more complicated models [9,10].

normal diffusion D�a� is nonzero and finite. At the
boundaries of each periodic window there is transient
One of the most fundamental questions in nonequili-
brium statistical mechanics is to understand transport
processes starting from first principles, that is, by analyz-
ing the microscopic nonlinear equations of motion of a
many-particle system. This is somewhat in contrast to
conventional methods of statistical mechanics, which
rely on the assumption of stochastic randomness in the
particle dynamics. Linking macroscopic transport to mi-
croscopic deterministic chaos thus requires one to con-
nect statistical mechanics with dynamical systems theory
[1–3]. Much was learned by applying such combined
methods to a hierarchy of simple model systems that
consists of low-dimensional chaotic maps [4–8], particle
billiards [3,9,10], and nonlinear pendulum equations
[11–13]. The latter differential equations were in turn
successfully used to describe deterministic diffusion in
experiments on dissipative systems driven by periodic
forces such as Josephson junctions in the presence of
microwave radiation [14], superionic conductors [15],
and systems exhibiting charge-density waves [16].

In this Letter we focus on the one-dimensional so-
called [17] climbing sine map [4,5], which is obtained
from a driven pendulum equation in the limit of strong
dissipation via discretization of time [18]. This map is a
typical example of a nonhyperbolic dynamical system
that exhibits a rich dynamics consisting of chaotic dif-
fusive motion, ballistic dynamics, and localized orbits.
Under parameter variation these dynamical regimes
are highly intertwined resulting in complex scenarios
related to the appearance of periodic windows [5]. It is
now interesting to relate the climbing sine map to one-
dimensional hyperbolic maps sharing the same symme-
tries. These maps are purely normal diffusive; however,
here the diffusion coefficient was found to be a fractal
function of control parameters [19,20]. This phenomenon
was conjectured to be typical for low-dimensional peri-
odic chaotic dynamical systems exhibiting normal trans-
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Up to now the fractality of transport coefficients could
be assessed for hyperbolic systems only. Hence, a crucial
question is whether the origin of normal and anomalous
diffusion in the broad class of nonhyperbolic systems is
as well of a fractal nature. In this Letter we show that
nonhyperbolic behavior not only amplifies such fractal
structures but generates even more complex fractal char-
acteristics of deterministic diffusion under parameter
variation.

The climbing sine map we study is defined as

Xn�1 � Ma�Xn�; Ma�X� :� X� a sin�2�X�; (1)

where a 2 R is a control parameter, X 2 R, and Xn is the
position of a point particle at discrete time n. Obviously,
Ma�X� possesses translation and reflection symmetry,

Ma�X� p� � Ma�X� � p; Ma��X� � �Ma�X�:

(2)

The periodicity of the map naturally splits the phase
space into different cells �p; p� 1�, p 2 Z. We focus on
parameters a > 0:732 644 for which the extrema of the
map exceed the boundaries of each cell for the first time
indicating the onset of diffusive motion.

The bifurcation diagram of the associated circle map
ma�x� :� Ma�X�mod1, x :� Xmod1 consists of infinitely
many periodic windows; see Fig. 1. Whenever there is a
window the dynamics of Eq. (1) is either ballistic or
localized [5]. Figure 1 demonstrates that this scenario
has a strong impact on the diffusion coefficient defined
by D�a� :� limn!1hX2

ni=�2n�, where the brackets denote
an ensemble average over moving particles. For localized
dynamics orbits are confined within some finite interval
in phase space implying subdiffusive behavior for which
the diffusion coefficient vanishes, whereas for ballistic
motion particles propagate superdiffusively with the
diffusion coefficient being proportional to n. Only for
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FIG. 2 (color online). (a) Sequence of correlated random
walks D1

n�a� for n � 1; . . . ; 10. The dashed lines define the
same periodic windows as in Fig. 1. Insets (b) and (c) contain
blowups of D1

10�a� in the initial region of (a). They show self-
similar behavior on smaller and smaller scales.

FIG. 1 (color online). Upper panel: bifurcation diagram for
the climbing sine map. Lower panel: diffusion coefficient from
simulations as a function of the control parameter a in com-
parison with the correlated random walk approximation
D1

10�a� (dots). The dashed vertical lines connect regions of
anomalous diffusion, D�a� ! 1 or D�a� ! 0, with ballistic
and localized dynamics in respective windows of the bifurca-
tion diagram. All quantities here and in the following figures
are without units.
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intermittentlike behavior eventually resulting in normal
diffusion with D�a� � a�1=2� [4,5]. Here we are inter-
ested in the complete parameter-dependent diffusion co-
efficient. For this purpose we compute D�a� from
numerical simulations by using the Green-Kubo formula
for maps [3,10,19,21],

Dn�a� � hja�x�Jna�x�i �
1
2hj

2
a�x�i; (3)

where the angular brackets denote an average over the
invariant density of the circle map, h� � �i :�

R
dx��x� . . . .

The jump velocity ja is defined by ja�xn� :� �Xn�1� �
�Xn� � �Ma�xn��, where the square brackets denote the
largest integer less than the argument. The sum Jna�x� :�P

n
k�0 ja�xk� gives the integer value of the displacement of

a particle after n time steps that started at some initial
position x � x0 called jump velocity function. Equa-
tion (3) defines a time-dependent diffusion coefficient
which, in case of normal diffusion, converges to D�a� �
limn!1Dn�a�. In our simulations we truncated Jna�x� after
having obtained enough convergence for D�a�, that is,
after 20 time steps. The invariant density was obtained
by solving the continuity equation for ��x� with the
histogram method of Ref. [1].

The highly nontrivial behavior of the diffusion coef-
ficient in Fig. 1 can qualitatively be understood as follows:
The Green-Kubo formula Eq. (3) splits the dynamics into
an intercell dynamics, in terms of integer jumps, and into
an intracell dynamics, as represented by the invariant
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density. We first approximate the invariant density in
Eq. (3) to ��x� ’ 1 irrespective of the fact that it is a
complicated function of x and a [5]. This approximate
diffusion coefficient we denote with a superscript in
Eq. (3), D1

n�a�. The term for n � 0 is well known as the
stochastic random walk approximation for maps, which
excludes any higher-order correlations [4,5,20]. The gen-
eralization D1

n�a�, n > 0 was called correlated random
walk approximation [10]. We now use this systematic
expansion to analyze the diffusion coefficient of the
climbing sine map in terms of higher-order correlations.

In Fig. 2(a) we depict results for Dn�a� at n � 1; . . . ; 10.
One clearly observes convergence of this approximation
in parameter regions with normal diffusion. Indeed, a
comparison of D1

10�a� with D�a�, as shown in Fig. 1,
demonstrates that there is qualitative agreement on large
scales. On the other hand, for parameters corresponding
to ballistic motion the sequence of D1

n�a� diverges, in
agreement with D�a� ! 1, whereas for localized dynam-
ics it alternates between two solutions. This oscillation is
reminiscent of the dynamical origin of localization in
terms of certain period-two orbits. That these solutions
are nonzero is due to the fact that the invariant density
was approximated. In regions of normal diffusion this
approximation nicely reproduces the irregularities in the
diffusion coefficient. Even more importantly, the magni-
fications in Fig. 2 give clear evidence for a self-similar
structure of the diffusion coefficient.

We now further analyze the dynamical origin of these
different structures. According to its definition, the time-
dependent jump velocity function Jna�x� fulfills the recur-
sion relation

Jna�x� � ja�x� � Jn�1
a �ma�x��: (4)

Jna�x� is getting extremely complicated after some time
steps; thus we introduce the more well-behaved function
214102-2



VOLUME 89, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 18 NOVEMBER 2002
Tn
a�x� :�

Z x

0
Jna�z�dz; Tn

a �0� � Tn
a�1� � 0: (5)

Integration of Eq. (4) then yields the recursive functional
equation

Tn
a�x� � ta�x� �

1

m0
a�x�

Tn�1
a �ma�x��� I�x� (6)

containing the integral term

I�x� :�
Z ma�x�

0
dzg00�z�Tn�1

a �z�; (7)

where ta�x� :�
R
dzja�z�, m0

a�x� :� dma�x�=dx, and g00�z�
is the second derivative of the inverse function of ma�x�
[22]. For piecewise linear hyperbolic maps I�x� simply
disappears and the derivative in front of the second term
reduces to the local slope of the map thus recovering
ordinary de Rham–type equations [3,20,21]. It is not
known to us how to directly solve this generalized
de Rham equation for the climbing sine map; however,
solutions can alternatively be constructed from Eq. (5) on
the basis of simulations. Results are shown in Fig. 3.
For normal diffusive parameters the limit Ta�x� �
limn!1 Tn

a�x� exists, and the respective curve is fractal
over the whole unit interval somewhat resembling (gen-
eralized) fractal Takagi functions [3,20,21]. However, in
the case of periodic windows Tn

a�x� either diverges due to
ballistic flights or it oscillates indicating localization.
Interestingly, in these functions the corresponding at-
tracting sets appear in the form of smooth, nonfractal
regions on fine scales, whereas the other regions look
fractal.

The diffusion coefficient can now be formulated in
terms of these fractal functions by integrating Eq. (3).
For a 2 �0:732 644; 1:742 726� we get

D�a� � 2�Ta�x2���x2� � Ta�x1���x1�� �D�
0 �a�; (8)
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FIG. 3 (color online). Functions Tn
a �x� for the climbing sine

map as defined by Eqs. (4)–(7). (a) Diffusive dynamics at
a � 1:2397 (upper curve) and at a � 1:7427 (lower curve),
(b) ballistic dynamics at a � 1:0, and (c) localized dynamics
at a � 1:5. In (a) the limiting case n ! 1 is shown; in (b) and
(c) it was n � 5; 6; 7.

214102-3
where xi, i � 1; 2 is defined by �Ma�xi�� :� 1 and
D�

0 �a� :�
R
x2
x1
dx��x�. Our previous approximation D1

n�a�
is recovered from this equation as a special case.

The intimate relation between periodic windows and
the irregular behavior of the diffusion coefficient moti-
vates us to investigate the structure of the periodic win-
dows in the climbing sine map in more detail. The
appearance of windows was analyzed quite extensively
for nondiffusive unimodal maps [23], whereas for diffu-
sive maps on the line, apart from the preliminary studies
of Ref. [5], nothing appears to be known. The windows are
generated by certain periodic orbits; consequently there
are infinitely many of them, and they are believed to be
dense in the parameter set [2]. Windows with ballistic
dynamics are born through tangent bifurcations, further
undergo Feigenbaum-type scenarios, and eventually ter-
minate at crisis points. Windows with localized orbits
occur only at even periods. They start with tangent bifur-
cations and exhibit a symmetry breaking at slope-type
bifurcation points.

In order to analyze the structure of the regions of
anomalous diffusion, we sum up the number of period-
six windows as a function of the parameter; that is, the
total number is increased by one for any parameter value
at which a new period-six window appears. This sum
forms a devil’s staircase-like structure in parameter space
indicating an underlying Cantor set-like distribution for
the corresponding anomalous diffusive region; see Fig. 4.
The (Lebesque) measure of periodic windows is obvi-
ously positive; hence this set must be a fat fractal [24]. Its
self-similar structure can quantitatively be assessed by
computing the so-called fatness exponent [25]. We are
furthermore interested in the parameter dependence of
this fractal structure; therefore we divide the parameter
line into subsets labeled by the integer value of the map
maximum on the unit interval, �Ma�Xmax�� � j, j 2 Z.
For j � 1; 2; 3 we obtain a fatness exponent of 0.45
with errors of 0.03, 0.04, and 0.05 for the different j.
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FIG. 4. Devil’s staircase-like structure formed by the distri-
bution of periodic windows as a function of the control pa-
rameter. N is the integrated number of period-six windows. The
inset shows a blowup of the initial region.
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We mention that this value was conjectured to be univer-
sal and was also obtained for nondiffusive unimodal
maps [25].

We now study the measure of the windows as a function
of the parameter. For this purpose we computed all
windows up to period six for the first subset, up to period
five for j � 2; 3, and we summed up their measures in the
respective subsets. We find that the total measure decays
exponentially as a function of j while oscillating with
odd and even values of j on a finer scale [26]. This
oscillation can be traced back to windows generated by
localized dynamics that appear only at even periods thus
contributing only periodically to the total measure.
However, different measures of ‘‘ballistic’’ and ‘‘local-
ized’’ windows decay with the same rate. We have fur-
thermore computed the complementary measure Cj of
diffusive dynamics in the jth subset of parameters. We
find that C1 � 0:783, C2 � 0:898, and C3 � 0:932 with
an error of 0:002, so the measure of the diffusive
regions is always nonzero and seems to approach one
with increasing parameter values.

We conclude with a few remarks: (i) It would be desir-
able to perform a spectral analysis of the Frobenius-
Perron operator governing the probability density of
this map [27]. Combining such an analysis with the
Takagi function approach outlined here may lead to a
general theory of nonhyperbolic transport. (ii) It might
furthermore be interesting to link our work more closely
to the stochastic modeling approach of Ref. [6]. (iii) We
hope that these results provide some guidelines for study-
ing fractal transport coefficients in more complex models
such as the ones in Refs. [8,12,13]. (iv) We finally empha-
size the importance to look for possibly fractal transport
coefficients in experiments. A promising candidate ap-
pears to be the phase dynamics in SQUID’s as very
recently analyzed theoretically [13] and studied experi-
mentally [28].
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