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Individual particle persistence antagonizes global ordering in populations of nematically
aligning self-propelled particles
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The transition from individual to collective motion plays a significant role in many biological processes.
While the implications of different types of particle-particle interactions for the emergence of particular modes
of collective motion have been well studied, it is unclear how particular types of individual migration patterns
influence collective motion. Here, motivated by swarming bacteria Myxococcus xanthus, we investigate the
combined effects of the individual pattern of migration and particle-particle interactions on the emergence of
collective migration. We analyze the effects of a feature of individual pattern migration, the persistence of motion,
on the collective properties of the system that emerge from interactions among individuals, particularly when
nematic velocity alignment interaction mediates collective dynamics. We find, through computer simulations
and mathematical analysis, that an initially disordered migratory state can become globally ordered by increasing
either the particle-particle alignment interaction strength or the persistence of individual migration. In contrast,
we find that persistence prevents the emergence of global nematic order when both persistence and nematic
alignment are comparatively high. We conclude that behavior at the population level not only depends on
interactions between individuals but also on their own intrinsic behavior.
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I. INTRODUCTION

The emergence of collective motion, characterized by a
phase with long-range orientational order, originating from
local interactions among individuals, has been the subject of
intense research within a variety of mathematical frameworks
in different fields, from biology [1–5] to physics [6–10], and
lately, in systems of robots [11–15]. In biological systems,
pattern formation is intimately related to active matter [16],
which consists of many self-propelled, called active, particles
[17,18] that are interacting with each other. While diverse
patterns of active motion of biological organisms and arti-
ficial active particles have been observed in isolation [19],
mathematical models for the analysis of collective migration
usually assume that, in a dilute regime, individuals perform
rather simple persistent random walks [20–22]. Meanwhile,
different, more advanced models of single active particle
motion are available. All of them exhibit the fundamental
property that the particles are self-driven, in terms of breaking
fluctuation-dissipation relations, by generating different types
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of persistent motion. These models are typically formulated
by (overdamped) Langevin dynamics, hence called active
Brownian particles [17–19], where the friction coefficient is
a nonlinear function of the velocity [23], the velocity vector
exhibits rotational diffusion [24], or particles are driven by
colored (typically exponentially correlated) Gaussian noise
[25]. In addition, there is the class of run-and-tumble particles
[26] characterized by intermittent dynamics, which requires
yet another modification of Langevin dynamics by imposing
the statistics of tumble times onto the turning angle distribu-
tion [27].

Recently, the explicit effects of different types of single-
particle migration strategies on the collective behavior of
motion have been studied for particles interacting through
volume exclusion [28]. However, the role of more nontriv-
ial active single-particle migration strategies on the globally
ordered phases of collective motion is much less known,
especially when aligning particle-particle interaction is con-
sidered. This problem is of much current interest and
addressed in this paper. Some authors have already started to
consider a similar question by analyzing how self-propulsion
of run-and-tumble particles affects the separated phase in-
duced by motility (MIPS) [29]. In Ref. [30], the effects of
nematic alignment interactions on the collective behavior of
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active matter are studied. The authors found a generic mech-
anism where fluctuations enhance polar order, thus increasing
the persistence length of active motion which affects col-
lective behavior. The results exhibited the mutual influence
between nematic interaction and persistence in active matter
systems.

Self-propelled particles that align among themselves and
are subject to noise, have been the starting point for the
analysis of a set of nonequilibrium collective properties that
emerge in these systems, and have quickly become a fast-
growing subfield of active matter [31]. Authors of recent
studies on active nematics and self-propelled rods have ex-
tensively explored the emergence of complex patterns and
collective behaviors driven by intrinsic particle properties and
interaction rules. The behavior of nematically aligning par-
ticles, characterized by their elongated shapes and tendency
to align in a head-to-tail fashion, has been a focal point
of research due to its relevance in understanding biological
systems [12,22,32,33] (see Refs. [16,34,35] for a review).
Authors of previous work have demonstrated that nematic
interactions can lead to the formation of dynamic structures
such as bands, swirls, and defects, which are the hallmarks of
active nematic behavior [31–33,36–38]. However, the role of
persistence generated by realistic active particle motion, par-
ticularly how it influences the formation and stability of these
structures, has been less studied. Specifically, models dealing
with persistent, active nematic particles have not focused on
the effect of varying persistence on density pattern formation
[39–42] or have not considered persistence explicitly [43–49].
Rather, most models in active nematics focus on the dynamics
of defect creation and annihilation or the onset of buckling
instabilities [50–57].

Motivated by experiments on nematically interacting rod-
shaped particles and Myxococcus xanthus bacteria, with both
persistent and nonpersistent phenotypes [58], and interested
in defining a minimal model which captures the essential
dynamics of such biological systems, we present in this paper
a study of the effects of persistent active motion on the global
orientational order of a population of aligning particles. Such
a population is modeled mathematically by a specifically de-
signed lattice gas cellular automaton (LGCA) [59], which here
consists of a system of nematically interacting overdamped
active Brownian particles driven by exponentially correlated
Gaussian noise leading to an exponentially decaying velocity
autocorrelation function as observed, e.g., in cell migration
experiments [60,61].

While polar or nematic global order can emerge either
by increasing the intensity of the particle-particle interaction
or by increasing the persistence of active motion, here, we
find that global nematic order is only possible in populations
of weakly persistent particles. High persistence of the active
motion hinders the appearance of global order while allowing
local nematic order. This effect agrees with the emergence
of different patterns, such as stacks, sheets, and streams in
wild-type and mutant strains of M. xanthus [58].

The structure of the paper is as follows. In Sec. II, we
define the mathematical model. In Sec. III, we characterize
the behavior of the model by performing computer sim-
ulations and calculating order parameters. In Sec. IV, we
perform a mathematical analysis of the model to gain deeper

understanding of its dynamics. In Sec. V, we discuss our
results and propose potential extensions and improvements to
our methodology.

II. LATTICE GAS CELLULAR AUTOMATA MODEL

In this paper, we consider a discrete model in space and
time for studying the dynamics of nematically interacting
active Brownian particles in the form of a LGCA [59,62,63].
Here, the system microstates are specified by the occupation
numbers of the six velocity channels (possible directions of
motion) on each site (node) of a two-dimensional regular
triangular lattice L. This tessellation is preferred since it
provides the maximum number of neighboring nodes on the
Euclidean plane, while maintaining translational invariance,
which coincidentally is close to the number of interacting
agents estimated experimentally in some natural systems ex-
hibiting collective motion [64]. On each node �r of L, the
occupancy s j

�r ( j = 1, . . . , 6) of the velocity channel �c j =
(cos θ j, sin θ j ), with θ j = π

3 j, is either empty s j
�r = 0 (no par-

ticle on node �r is moving along such direction) or occupied
by at most one particle s j

�r = 1. In this paper, we only con-
sider cases where the number of particles is smaller than the
number of sites in the system; thus, the channel occupancy is
Boolean by definition, and so s j

�r ∈ {0, 1}. The occupation of
the jth velocity channel occupation constitutes the jth entry
of the occupation vector �s�r . Consequently, the state space of
the automaton is the set E = {0, 1}6. The particle density at
node �r, ρ(�r), is defined as the fraction of occupied velocity
channels with respect to the total number of channels, i.e.,
ρ(�r) := 1

6

∑6
j=1 s j

�r := n(�s�r )/6, with n(�s�r ) being the number of
occupied channels of state �s�r .

The dynamics of the system is given by a LGCA, which
consists of synchronous updating rules at each time step. The
updating process is carried out in two steps: a stochastic reori-
entation of the direction of motion of the agent that updates the
occupation of the velocity channels followed by the translo-
cation of the agent to the neighboring node in the direction
of the velocity channel. During the reorientation step, the
occupation configuration of each node at time step τ , �s�r (τ ) =
[s1

�r (τ ), . . . , s6
�r (τ )], is updated to a virtual state �sI�r (τ ) =

[sI
1
�r (τ ), . . . , sI

6
�r (τ )] according to the transition probability

P(�s�r → �sI�r ), which considers the particle-conserving interac-
tion with neighboring nodes, as explained later. Afterward,
the information of the occupied channels �c j , given by the
virtual occupancy state �sI�r , is used to update the system state
�s�r (τ + 1) = [s1

�r (τ + 1), . . . , s6
�r (τ + 1)] by translocating each

occupancy s j
�r at �r to the corresponding neighboring node

�r + �c j (see Fig. 1). Thus, the dynamics can be summarized
by the stochastic difference equation

s j
�r+�c j (τ + 1) = sI�r

j
(τ ). (1)

The transition probability P(�s�r → �sI�r ) between node state
�s�r and �sI�r defines the system dynamics which depends only
on the initial and final states, as occurs in the description
of the stochastic dynamics of systems that satisfy detailed
balance. Thus, the transition probability is proportional
to exp{−H (�s�r, �sI�r )}, where H (�s�r, �sI�r ) is reminiscent of the
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FIG. 1. Schematic description of the updating process of the system configuration. Each hexagonal lattice site contains six velocity channels
(circles) that define the possible direction of motion. Each channel can be occupied by only one agent (occupied channels are depicted as
colored circles), the occupation of each channel defining the state of the lattice site. The first step of the updating process involves the selection
of a new channel with a transition probability given by Eq. (3). In the second step, particles are translocated to the neighboring cell in the
direction of the velocity channel chosen in the previous step. Both steps are applied to every single lattice site in parallel at every time step.

relative dimensionless energy between the two states. In
this paper, we consider two independent processes that rule
the transitions from one state to another, i.e., H (�s�r, �sI�r ) =
Hpers(�s�r, �sI�r ) + Halig(�s�r, �sI �r ). The first term involves only the
on-site occupancy states �sr , �sI�r , and models persistent dynam-
ics. For this, we choose time- and space-discrete overdamped
Langevin dynamics with exponentially correlated Gaussian
noise, corresponding to the type of active motion introduced
in Ref. [24], given by [61]

Hpers
(
�s�r, �sI�r

) = −α

[
6∑

�=1

6∑
j=1

(
sI�
�r �c� · s j

�r �c j
)]

, (2a)

where α > 0 is a parameter that characterizes the persistence
of motion. For a given occupation state �s�r and finite α, the
probability of the transition �s�r → �sI �r is maximum for �sI�r =
�s�r , i.e., the state �s�r persists. In the limit α → 0, the transitions
among velocity channels are equally probable, and thus, per-
sistent motion is not observed.

The second process involves the occupancy states of the
neighboring cells and defines a nematic velocity alignment
interaction [65] among the particles in node �r and the particles
in nearest-neighboring nodes, namely,

Halig
(
�s�r, �sI�r

) = −β

[ ∑
�rI∈N�r

6∑
�=1

6∑
j=1

(�c� · �c j )2sI�
�r s j

�rI

]
, (2b)

where β > 0 controls the sensitivity toward the nematic inter-
action, and N�r refers to the set of nearest-neighboring nodes
�rI of node �r. Thus,

P
(
�s�r → �sI�r

) = 1

Z
exp

{ − H
(
�s�r, �sI�r

)}
δn(�s�r ),n(�sI�r ), (3)

with δn(�s�r ),n(�sI�r ) guaranteeing particle conservation during the
transition process at each node, and Z being the normalization
constant, reminiscent of a partition function

Z =
∑
�sI�r ∈E

exp
{ − H

(
�s�r, �sI�r

)}
δn(�s�r ),n(�sI�r ).

Notice that, since the sum is over all sextuples with val-
ues either 0 or 1 (i.e., all elements of E), velocity channels
can never be occupied by more than one particle. In the

case of vanishing α, β, the transition probability between any
pair �s�r, �sI�r is uniform; thus, neither persistence nor alignment
occurs, and the dynamics is similar to the stochastic dynamics
of a simple random walk.

III. NUMERICAL ANALYSIS OF THE MODEL

Computer simulations of the LGCA model were performed
on a hexagonal lattice of L × L nodes, with L = 120, con-
sidering periodic boundary conditions. The initial state for all
simulations was chosen to be a spatially homogeneous state on
the average, i.e., with equal average density ρ = N/L2 at ev-
ery node, N being the total number of particles in the system,
and with every velocity channel having equal probability to
be occupied. In this paper, we kept ρ = 0.2 for the numerical
simulations, which corresponds to a dilute regime. We focus
our analysis in this rather nontrivial regime since collective
behavior in the crowded regime is well understood.

From computer simulations, we observe the emergence of
different collective patterns of motion characterized by dif-
ferent orientational symmetries: a single nematic band when
α → 0 and β � 0 (Fig. 2, top panel), a network of nematic
bands when both α ≈ β � 0 (Fig. 2, middle panel), and polar
clusters when α � β (Fig. 2, bottom-left panel).

After letting the system reach the stationary state (∼1000
time steps), we measured the degree of global order of
the system, characterized by two quantities: one considering
the global orientational order of the system corresponding
to the average direction of motion given by

SF = 1

N

∣∣∣∣∣∣
∑
�r∈L

6∑
j=1

exp
(
is j

�rθ
j
)∣∣∣∣∣∣, (4a)

with the other measuring the appearance of nematiclike order

SL = 1

N

∣∣∣∣∣∣
∑
�r∈L

6∑
j=1

exp
(
is j

�r 2θ j
)∣∣∣∣∣∣, (4b)

indicating directional order independently of the orientation
of motion, where | · | denotes the modulus of a complex num-
ber, θ j is the angular component of the jth velocity channel, i
is the imaginary unit, and N is the total number of particles in
a specific realization of the system, given by

∑
�r∈L

∑6
j=1 s j

�r .
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FIG. 2. Simulation snapshots obtained from the lattice gas cel-
lular automaton (LGCA) model. Simulations consider interactions
with the six neighbors of each node according to the updating rules
(see text) after 2000 time steps starting from disordered, homoge-
neous initial conditions (top: α = 0, β = 7; middle: α = 5, β = 7;
lower left: α = 9, β = 2.5). All simulations were performed on a
120 × 120 hexagonal lattice. Lattices were initialized with a mean
occupation of ρ = 0.2. Nodes were colored according to occupied
velocity channels. The color of nodes occupied by more than one
particle is computed by adding the color of the occupying channels
according to the color code provided.

Although simulations were performed with the specific par-
ticle density ρ = 0.2, different densities lead to qualitatively
the same stationary behavior. The qualitative density indepen-
dence becomes obvious from a linear stability analysis, which
shows that the behavior close to the homogeneous state only
depends on the product of density and the nematic sensitivity
β/persistence α, not on their individual values; see Sec. IV

FIG. 3. Simulation results of persistent, nematic-aligning parti-
cles. (Top) Polar order parameter values as a function of persistency
α and sensitivity β, with density ρ = 1

5 . (Bottom) Nematic order
parameter values as a function of persistency α and sensitivity β,
with density ρ = 1

5 . These plots show three main areas (A, B, and C),
with different global directional and orientational order parameter
values and different macroscopic patterning. A small area (α ∼ 0,
β ∼ 0) with no order is the random walk limit.

below and Ref. [66]. This behavior is not exclusive to discrete
models, see also Ref. [22].

Simulation results are reported in Fig. 3, where the three
distinct collective behaviors are mapped in the phase diagram
β-α: a region where the system exhibits high nematic order
SL � 1 but low polar order SF ∼ 0 for small persistence and
high sensitivity, denoted in Fig. 3 (top and bottom) with A
corresponding to the system snapshot at the top-left panel
of Fig. 2. A large region for intermediate values of α and
β, where polar order remains low, but the nematic one di-
minishes, is marked with B (top-right snapshot in Fig. 2). A
region where polar alignment rises and nematic order lowers,
for large values of α, is marked with C (bottom-left snapshot
in Fig. 2). Absence of polar and nematic order is observed for
small values of α and β.
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FIG. 4. Phase transition from region A to region B with varying
system sizes. The phase transition between the globally nematically
aligned state (A, Fig. 3) to the frustrated state (B, Fig. 3) produced by
increased persistence α was observed through computer simulations
while varying the value of the system size L. Particle density was
fixed at ρ = 0.2 and sensitivity at β = 4. The system was simulated
for 1000 time steps, and the value of the nematic order parameter
was recorded at the end of the simulation. The values reported are
averages over 100 simulations.

To study the effect of system size on the transition from
global nematic order with low persistence to a frustrated, local
nematic order with high persistence, we simulated the model
near the phase transition (corresponding to the boundary
between regions A and B in Fig. 3), for several system sizes
L. As can be observed in Fig. 4, with increasing system size,
the gap between the globally ordered state and the partially
ordered state seems to increase. This may be due to the fact
that, for greater system sizes, there is more space available for
different bands to form and to recruit particles, while for small
system sizes, only a few bands can form due to the overall
width of the bands.

IV. MEAN-FIELD ANALYSIS

We also performed a linear stability analysis of the
homogeneous phase against the breaking of orientational
symmetry. To simplify the analysis, we assumed a diluted
system such that the density is low enough that the transition
among occupation states can be approximated by an effective
single-particle transition probability as well as a mean-field
approximation (Stoßzahlansatz). The mean-field theory of our
analysis is built by considering the expectation values of
Eq. (1), which under the assumption of a dilute system results
in the partial difference equation

f�(�r + �c�, τ + 1) =
[

6∑
n=1

fn(�r, τ )

]
T�, (5)

where f�(�r, τ ) ∈ [0, 1] is the expected value of the occupation
of channel � at node �r and time τ , i.e., f� := 〈s�

�r 〉, and T� is the

probability that a particle occupies the channel �, given by

T�(�r, τ ) = 1

Z
exp

[
α

6∑
j=1

(�c� · �c j ) f j (�r, τ )

+ β

6∑
p=1

6∑
j=1

(�c� · �c j )2 f j (�r + �cp, τ )

]
, (6)

which is obtained from Eq. (3) after the mean-field approx-
imation by considering the reorientation of a single particle,
rather than the complete configuration, and assuming no in-
terference among the reorientation of particles within a single
node. Thus, Eq. (5) together with Eq. (6) defines the self-
consistency equation of the mean-field theory.

In the homogeneous phase, the mean particle density is
translationally invariant on L, and thus, ρ(�r) = ρ; from this
symmetry, we have that average number of particles at each
cell �r,

∑6
�=1 f�, is equal to 6ρ. The mean-field homogeneous

stationary solutions, if any, must satisfy f�(�r + �c j, τ + 1) =
f�(�r, τ ) for all �r and τ ; thus, Eq. (5) is transformed into

f� =
(∑

n

fn

)
T�. (7)

We proceed further as follows: without loss of generality,
we assume the case of nematic alignment among particles and
choose the nematic axis as the one that contains the channels
directions �c1 and �c4; thus,

f1 = f4, (8a)

f2 = f3 = f5 = f6. (8b)

Under this assumption, the alignment term does not
contribute to T�, and thus, the single-particle probability
reduces to

T� = 1

Z
exp

{
6β( f1 − f2) cos

[
2π

3
(� − 1)

]}
. (9)

Except for the trivial (disordered) steady state, Eq. (7) together
with the assumptions in Eqs. (8) and (9) cannot be solved
exactly, and thus, we resort to numerical calculations to find
the steady states with nonvanishing nematic order parameter

Q :=
({

6∑
j=1

f j cos

[
2π

3
( j − 1)

]}2

+
{

6∑
j=1

f j sin

[
2π

3
( j − 1)

]}2)1/2

. (10)

For a fixed density ρ, the disordered state (Q = 0) is stable
only for low values of the sensitivity β. As this is increased,
nematic-ordered states emerge. For these ordered states, f1 >

f2 (Fig. 5). There are two nematically ordered states, one
with f1 � f2, which we will name Q+, corresponding to a
high value of the nematic director (nematic alignment along
a single axis), and another with f1 > f2, but with 4 f2 > 2 f1,
named Q−, corresponding to a low value of the nematic direc-
tor (a higher proportion of mass along two different axes).

We now investigate the stability of each of the steady states.
Following Refs. [66] and [59], we linearize Eq. (5) around one
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FIG. 5. Numerical bifurcation diagram showing the steady-state
nematic order director Q with changing sensitivity β. The state Q+
is shown in yellow; the state Q− is show in green.

of the steady states and perform a discrete Fourier transform,
which yields the equation

f̂�(�k, τ + 1) =
b∑

j=1


�, j (�k) f̂ j (�k, τ ), (11)

where ·̂ represents the discrete Fourier transform, and 
�, j (�k)
is called the Boltzmann propagator, defined as


�, j (�k) = exp

(
−2π i

L
�k · �c�

)[
δ�, j + ∂C�

∂ f j (�r, τ )

∣∣∣∣
st.s

+
6∑

p=1

exp

(
2π i

L
�k · �cp

)
∂C�

∂ f j (�r + �cp, τ )

∣∣∣∣
st.s

]
, (12)

where �k is the wave vector, L is the number of lattice sites in
each velocity channel direction, and the change of occupation
numbers is defined as C� = f�(�r + �c j, τ + 1) − f�(�r, τ ). The
eigenvectors and eigenvalues of the Boltzmann propagator
give information about the stability of the steady states.

We start with the stability of the disordered state f1 = f2 =
f3 = f4 = f5 = f6 = ρ. Using Eqs. (5), (9), and (12), we find
that, at this steady state, the Boltzmann propagator is given by


�, j (�k) = exp

(
−2π i

L
�k · �c�

){
1

6
+ αρ(�c� · �c j )

+ βρ[2(�c� · �c j )2 − 1]
3∑

p=1

cos

(
2π

L
�k · �cp

)}
. (13)

We start by looking at the homogeneous case �k = (0, 0).
First, we find an eigenvalue λρ = 1 with the correspond-
ing eigenvector (1, 1, 1, 1, 1, 1), which is related to mass
conservation. Then we find an eigenvalue λtot.flux = 0 with
eigenvector (−1, 1,−1, 1,−1, 1), which represents the flux
along all lattice axes. We find a twofold degenerate eigen-
value λflux1,2 = 3αρ with eigenvectors (1, 0,−1,−1, 0, 1)
and (−1,−1, 0, 1, 1, 0), representing fluxes along two lat-
tice axes. This explains the transition to the polar-aligned
state (Fig. 3, region C) Finally, we encounter a fourth,

FIG. 6. Eigenvalue logarithms z corresponding to the disordered
state, as a function of the wave number �k, real (top) and imaginary
(bottom) parts. The eigenvalue logarithm was evaluated along the
vector parallel to the x axis, �k = (k, 0). z(k) corresponding to λtot.flux

is not shown as λtot.flux = 0 for every k. Parameter values were set at
ρ = 0.2, α = 7, β = 4.

twofold degenerate eigenvalue λnem1,2 = 9βρ, with eigen-
vectors (−1, 0, 1,−1, 0, 1) and (−1, 1, 0,−1, 1, 0), which
represents nematic alignment along two lattice axes. This in-
stability relates to the transition to the completely nematically
aligned state (Fig. 3, region A). The homogeneous pattern
becomes unstable when 3αρ = 1, in which case the flux
components of the perturbation grow, and when 9βρ = 1, in
which case the nematic components of the perturbation grow.

For nonhomogeneous perturbations (�k 
= 0), following
Ref. [66], it is convenient to define an eigenvalue logarithm,
defined as z(�k) = ln[λ(�k)], so that perturbations grow like
exp[z(�k)]. Modes are unstable when Re[z(�k)] > 0 and sta-
ble when Re[z(�k)] < 0. Moreover, perturbations travel with
nonzero speed when the imaginary part Im[z(�k)] 
= 0.

When β � α, both nematic modes are unstable, while all
other modes are stable for every value of the wave vector �k.
All z are real, which indicates no net transport takes place
(purely diffusive behavior). This agrees qualitatively with
continuous migration models with nematic alignment [22].

On the other hand, when α � β, the case is completely
analogous to the case of polar alignment studied in Ref. [66],
where density and flux modes travel with a certain velocity
and a restricted finite wavelength.

Finally, when both α and β have high values (Fig. 6),
all modes are unstable. As in the first case, nematic modes
dominate. After a critical wave number, both nematic modes
and both flux modes merge, while at the critical point, nematic
modes and a flux mode coexist. The density mode remains
separate from all other modes. Meanwhile, both nematic and
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FIG. 7. Eigenvalue logarithms z corresponding to the ordered
state Q+ as a function of the wave number �k. The persistence param-
eter was set to α = 0.3 (top) and α = 5 (bottom). Other parameters
were set at ρ = 0.2 and β = 0.8 in both cases. The eigenvalue loga-
rithm was evaluated along the vector parallel to the x axis, �k = (k, 0).

both flux modes have nonzero imaginary parts starting from
the critical point. This indicates that nematic and flux modes
travel with finite speed. The density mode remains real for ev-
ery wave number, indicating that traveling nematic and polar
structures form, but no net mass transport occurs.

Conversely, the Boltzmann propagator at the homoge-
neous, nematically ordered steady states is


�, j (�k) = exp

(
−2π i

L
�k · �c�

)
T nem

�

×
[
1 + (2 f1 + 4 f2)

{
α(�c� · �c j ) + β

[
2(�c� · �c j )2 − 1

− cos

(
2π j

3

)
E1 − E2

E1 + 2E2

] 3∑
p=1

cos

(
2π

L
�k · �cp

)}]
,

(14)

where we define the nonnormalized weights E� :=
exp [6β( f1 − f2) cos ( 2π�

3 )]. Numerically, we find that,
for α = 0, the nematic steady-state Q+ is stable, while Q− is
unstable. This is not surprising since, in the first case, there
is nematic alignment along one axis, while in the second,
there is nematic alignment along two axes. Also in agreement
with the findings in Ref. [67], we find that, while for low
nonzero persistence Q+ remains stable (Fig. 7, top), large

nonzero persistence α destabilizes the nematic steady-state
Q+, creating unstable polar and nematic modes (Fig. 7,
bottom). This analysis explains the observed transition from
region A with complete nematic alignment to region B with
partial nematic alignment (see Fig. 3) by increasing the
persistence α.

V. SUMMARY AND DISCUSSION

In this paper, we have introduced a generic model of
active matter that considers aligning interactions among self-
propelled Brownian particles. We show that the collective
dynamics that emerge from local-nematic-aligning interac-
tions is strongly influenced by the persistence of the motion
of the individuals. Our model is based on a LGCA approach
which is amenable to numerical simulations and analytical
treatment in the mean-field approximation, in contrast with
other agent-based models. An advantage of the model is that
the individual motility and the aligning collective interactions
contribute to the dynamics in a well-separated manner, al-
lowing the analysis of the competition between them, as may
happen in realistic systems. For instance, in the Vicsek model,
both elements are intrinsically interconnected through the
noise amplitude. In other models, persistence and interaction
strength are coupled through the Péclet number [68]. Other
agent-based models can be used to consider individual and
collective effects separately, however, at the cost of mathe-
matical simplicity [69].

Two parameters define the phases of collective motion: the
sensitivity to the alignment interaction β and the intrinsic per-
sistence of motion of the individuals α. Our analysis at fixed
particle density indicates the existence of four distinct phases
with different order parameters, corresponding to different
modes of collective motion. Interestingly, we found phases
where collective motion is frustrated by the persistence of
motion of the individuals. In the case of low sensitivity to
alignment and low persistence (β � 1 and α � 1, respec-
tively), a stable homogeneous phase with no polar nor nematic
order appears. At a high sensitivity β but low persistence α,
the disordered phase becomes unstable, and a globally ordered
nematic state emerges. Conversely, for low sensitivity β and
high persistence α, a state with global polar order is observed.
Finally, when both sensitivity β and persistence α are high, a
state with partial nematic order emerges.

The influence of persistence is conspicuous in the collec-
tive dynamics, as we have mathematically found steady states
that exhibit nematic order at sufficiently high values of the
sensitivity: one with high nematic order, a second with low
nematic order, and a third one with no nematic order. We
would like to point out that only two out of these three states
can be observed computationally since the disordered state
and the state with high nematic order are stable for certain
parameter regimes. On the other hand, the steady state with
low nematic order is never stable and therefore not observable.

Our model provides evidence that persistence can act as
a control parameter regarding macroscopic patterns formed
by self-propelled particles. This is particularly interesting, as
it suggests that particle preference to move along a certain
direction can be tuned to achieve certain structural outcomes,
which could be used for the design of active materials.
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Furthermore, our results indicate that, in systems where parti-
cles exhibit nematic alignment, persistence can be a decisive
factor in determining which type of order dominates. The
spatial patterns we observe in simulations are similar to those
observed experimentally in Ref. [70], in which authors re-
ported local but not global nematic order for a population of
persistent E. coli bacteria. Even though they observed global
nematic order for very high cell densities, this could be a result
of hydrodynamic interactions with the surrounding fluid or
steric repulsion among cells, which we did not consider here.
This behavior is analogous to that in microtubules moved by
kinesin motors with tunable activity through varying adeno-
sine triphosphate concentration [71] and the nematic networks
formed by C. elegans [72]. Our results also agree with those
found in Ref. [58], where it was observed that populations of
M. xanthus bacteria formed two-dimensional sheets (analo-
gous to Fig. 2, top) as well as streams (analogous to Fig. 2,
middle). Importantly, our model not only agrees with patterns
formed by bacterial systems. Our minimal model also repro-
duces patterns observed in human tumor cells, where globally
nematic ordering is commonly observed along with regions of
high local nematic order but bounding regions with different
ordering as well as polar flocking structures [73]. Thus, our
results could shed light on the mechanisms underlying the
formation and cohesion of biological swarms.

Thus, in this paper, we provide insight into the funda-
mental mechanisms driving pattern formation in active matter
systems, highlighting the importance of persistence in nemat-
ically aligning particles, which is often disregarded but which
could have significant impacts on the possibility of achieving
global ordering within the population [74–77].

Our model still presents open questions which will be
addressed in upcoming work. To begin with, the critical ex-
ponents at the five different phase transition among the four
observed steady states can be obtained explicitly. These expo-
nents define a rescaling of the order parameters and the system
size which, in turn, allow us to characterize the order of the
phase transition among these states. These exponents would
allow us to transform our results (Fig. 4) and better understand
the critical nature of the phase transition [78]. Furthermore,
here, we have only characterized the patterns formed in a
square lattice with periodic boundary conditions. It remains to
be determined whether such patterns are affected by changes
in the aspect ratio of the simulation area and the boundary
conditions, in a similar fashion to continuous agent-based
models.

The model introduced in this paper is susceptible to
straightforward generalizations to study physically relevant
situations. In this paper, we have considered persistent par-

ticles with exponentially decaying velocity autocorrelations
[61]. It would be interesting to explore whether similar
trends are observed when either autocorrelations become
more slowly decaying (for example, as a power law) or
jump lengths are fat-tailed (Lévy) distributed. Additionally,
it is an open problem whether intrinsic movement prefer-
ence affects the population-level behavior of a system of
interacting particles independently of the nature of the in-
terparticle interaction or if such effects are only allowed by
certain interaction types. Furthermore, particles in our model
do not show steric interactions, in the sense that nearby
particles may still move at oblique angles, albeit with low
probability. This can be prevented by including zero-velocity
channels, whose occupation probability grows with particle
density and orientation mismatch, in a similar fashion to that
in Ref. [79]. Changes in interactions defining reorientations
can be straightforwardly implemented by changing the Hamil-
tonian H (�s�r, �sI�r ), as described in Ref. [63]. Environmental
effects can also be considered by defining a (not necessarily
time-independent) scalar or vector field on L which impacts
transition probabilities (such as the extracellular matrix field
in Ref. [79]). Additionally, alien or disruptive particles (cor-
responding to defects in inert crystals) could be introduced
by following Refs. [80,81], whereby particles are no longer
identical, such that individual identities and behaviors can be
assigned to any or all of them.

Finally, here, we have explored some consequences of the
effects of the individual behavior (persistence in this case) on
the macroscopic collective properties of the system. The con-
verse problem, which would look at the effect of interactions
on the motility of individual particles, has only been studied
very recently [82,83]. It could shed light on the mechanistic
origin of anomalous diffusion in collective motion, observed
in biological systems [84–86].
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