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Capturing correlations in chaotic diffusion by approximation methods
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We investigate three different methods for systematically approximating the diffusion coefficient of a
deterministic random walk on the line that contains dynamical correlations that change irregularly under
parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge
to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula
for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight
variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by
working them out analytically and numerically for a simple one-dimensional map, study their convergence, and
critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in
the case of dynamics where exact results for the diffusion coefficient are not available.
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I. INTRODUCTION

Diffusion is a fundamental macroscopic transport process
in many-particle systems. It is quantifiable by the diffusion
coefficient, which describes the linear growth in the mean-
square displacement of an ensemble of particles. The source
of this growth is often considered to be a Brownian or
random process of collisions between particles. However, on
a microscopic scale the equations governing these collisions
in physical systems are deterministic and typically chaotic.
By studying diffusion in chaotic dynamical systems we can
attempt to take these deterministic rules into account and
understand the phenomenon of diffusion from first principles
[1–4]. Of particular interest is the study of the diffusion
coefficient under parameter variation in chaotic dynamical
systems such as one-dimensional maps [5–8], area-preserving
two-dimensional maps [9–11], and particle billiards [12–15].
Where exact analytical results for chaotic dynamical systems
exist [16–21], one finds that the diffusion coefficient is typi-
cally a complicated fractal function of control parameters. This
phenomenon can be understood as a topological instability of
the deterministic diffusive dynamics under parameter variation
[3,16–18].

So far exact analytical solutions for the diffusion coefficient
could only be derived for simple cases of low-dimensional
dynamics. In higher dimensions even very fundamental
properties of diffusion coefficients are often unknown, such
as whether they are smooth or fractal functions of con-
trol parameters [3,13,22]. For example, much effort was
spent two decades ago studying more complicated sys-
tems such as a two-dimensional family of sawtooth maps
[10,23,24]. However, despite a good understanding of the
orbit structure [25,26], it was not possible to conclude
whether the diffusion coefficient is fractal or not [27].
If one wishes to achieve a microscopic understanding of
diffusion in more realistic physical systems, one therefore
has to rely on either numerical simulations or approximation
methods.
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In this paper we compare three different methods for ap-
proximating parameter-dependent diffusion coefficients with
each other by working them out analytically and numerically
for a simple one-dimensional map. This model has the big
advantage that it is amenable to rigorous analysis. Its diffusion
coefficient has been calculated exactly in Ref. [21] and was
found to be a fractal function of a control parameter. Our
goal is to assess the individual capabilities and limitations
of these approximation methods in terms of practicability,
physical interpretation, convergence toward the exact result,
and identification of an underlying fractal structure in the
diffusion coefficient. We also address recent criticism by
Gilbert and Sanders [28], who claimed that one of these
methods, as originally proposed in Ref. [29], is mathematically
wrong and unphysical.

In Sec. II we define the deterministic dynamical system that
provides our test case, which is a simple piecewise linear one-
dimensional map. In Sec. III the first approximation method
is introduced, called correlated random walk in Ref. [29],
which consists of truncating the Taylor-Green-Kubo formula
for diffusion. This method enables us to analytically build up
a series of approximations that gives evidence for a fractal
structure. In previous work this approximation scheme has
successfully been applied to understand parameter-dependent
diffusion in models that are much more complicated than the
one considered here [3,8,14,15]. Motivated by the criticism
of Ref. [28], in this paper we provide further insight into the
functioning of this method by working it out rigorously for
our specific example. In Sec. IV the persistent random walk
method for diffusion is studied. This method was originally
proposed within stochastic theory in the form of a persistent
random walk [30,31]. It consists of approximating the Taylor-
Green-Kubo formula by including memory in a self-consistent,
persistent way. Recently this method has been worked out for
chaotic diffusion in Hamiltonian particle billiards [28,32,33].
Here we apply this scheme to the different case of a
one-dimensional map and obtain a series of approximations
analytically and then numerically. In Sec. V we look at a third
method, defined by a slight variation [16–18] of the escape
rate theory of chaotic diffusion [1,2,34–37] in that absorbing
boundary conditions are replaced by periodic ones. This
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method thus consists of evaluating the diffusion coefficient
in terms of the decay rate of the dynamical system toward the
equilibrium state instead of using the escape rate. The decay
rate is obtained in turn by an approximation to the relevant
Markov transition matrix. By this method we are able to build
up a series of approximations that, through the functional form
of the interpolation that we find, gives very strong evidence
for fractality. Basic ideas defining this method have been
sketched in Ref. [3]; however, here it is fully worked out to
understand fractal diffusion coefficients. Section VI forms the
conclusion.

II. ONE-DIMENSIONAL MAP EXHIBITING
CHAOTIC DIFFUSION

We use the simplest setting possible, where determin-
istic diffusion is generated by a parameter-dependent one-
dimensional dynamical system. The equations of motion are
determined by a map Mh(x) : R → R so that

xn+1 = Mh(xn) = Mn+1
h (x), x ∈ R, h � 0, n ∈ N, (1)

with x = x0 [5–7,17]. In our case, the map Mh(x) is based
on the Bernoulli shift or doubling map, combined with a lift
parameter h, which gives the simple parameter-dependent map
of the interval

Mh(x) =
{

2x + h, 0 � x < 1
2

2x − 1 − h, 1
2 � x < 1.

(2)

This map exhibits escape, i.e., points leave the unit interval
under iteration. It is copied and lifted over the real line by

Mh(x + z) = Mh(x) + z, z ∈ Z (3)

in order to obtain a map from the real line to itself [see
Fig. 1(a)]. The symmetry in this system ensures that there is
no mean drift [19]. Note that the invariant density of the map
Eq. (2) modulo 1 remains, by construction, simply uniform
throughout the whole parameter range. This is in contrast to
the related piecewise linear maps studied in Refs. [3,16–18],

where the density becomes a highly complicated step function
under parameter variation, which profoundly simplifies the
situation. The model was introduced in Ref. [38], where its
parameter-dependent diffusion coefficient D(h) was obtained
numerically, while in Refs. [1,39] the diffusion coefficient for
a special single parameter value was calculated analytically.
Exact analytical solutions for D(h) for all h � 0 of this and
related models were recently obtained in Ref. [21]. Since
there is a periodicity with integer values of h, here we
restrict ourselves to the parameter regime of h ∈ [0,1] without
loss of generality. In Refs. [21,38] it was found that D(h)
displays both fractal and linear behavior [see Fig. 1(b)]. This
is one of the simplest models that exhibits a fractal diffusion
coefficient. Being nevertheless amenable to rigorous analysis,
it thus forms a convenient starting point to learn about the
power of different approximation methods for understanding
complicated diffusion coefficients.

III. CORRELATED RANDOM WALK

Our first approximation method starts with the diffusion
coefficient expressed in terms of the velocity autocorrelation
function of the map, called the Taylor-Green-Kubo formula
(see Refs. [1,29] for derivations),

D(h) = lim
n→∞

(
n∑

k=0

∫ 1

0
v0(x)vk(x)ρ∗(x)dx

)

− 1

2

∫ 1

0
v2

0(x)ρ∗(x)dx, (4)

where ρ∗(x) is the invariant density of the map Eq. (2) modulo
1, which is equal to one throughout the parameter range as
we have a family of doubling maps. The velocity function
vk(x) calculates the integer displacement of a point at the kth
iteration,

vk(x) = �xk+1� − �xk�. (5)

FIG. 1. Lifted Bernoulli shift map. (a) Section of the map Mh(x) [Eqs. (2) and (3)] illustrated for the value of the control parameter h = 0.5.
(b) Corresponding parameter-dependent diffusion coefficient D(h), exactly calculated in Ref. [21].
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In order to create an nth-order approximation we simply
truncate Eq. (4) at a given n [29]. Hence we obtain the finite
sum

Dn(h) =
n∑

k=0

∫ 1

0
v0(x)vk(x)dx − 1

2

∫ 1

0
v2

0(x)dx, (6)

which can physically be understood as a time-dependent
diffusion coefficient. Looking at how the sequence of Dn(h)
converges towards D(h) thus corresponds to incorporating
more and more memory in the decay of the velocity auto-
correlation function and checking how this decay varies as a
function of h for a given n. Note that the functional form of
Dn(h) for finite n is to some extent already determined by our
choice of integer displacements in Eq. (5); however, we have
checked that for the given model the deviations between using
integer and noninteger displacements for finite time are minor.
Furthermore, we remark that by using this straightforward
truncation scheme we have neglected further cross-correlation
terms that do not grow linearly in n (cf. Ref. [1]). Still, by
definition we have Dn(h) → D(h) (n → ∞). Going to lowest
order, for n = 0 we immediately see that

D0(h) = h

2
, (7)

which is the simple uncorrelated random walk solution for the
diffusion coefficient [21]. In Fig. 2 one could see that D0(h) is
asymptotically exact for h → 0.

Of more interest, however, are the higher values of n

capturing the higher-order correlations that come into play. To
evaluate these we define a jump function J n

h (x) : [0,1] → R,

J n
h (x) =

n∑
k=0

vk(x), (8)

which gives the integer displacement of a point x after n

iterations. Equation (8) can be written recursively as [21]

J n
h (x) = v0(x) + J n−1

h (M̃h(x)), (9)

where M̃h(x) is Eq. (2) taken modulo 1. This recursive formula
will help when we solve the integral in Eq. (6). Let T n

h (x) :
[0,1] → R be defined as

T n
h (x) =

∫ x

0
J n(y)dy, T −1

h (x) ≡ 0. (10)

Using Eq. (9) we can solve Eq. (10) recursively as

T n
h (x) = sh(x) + 1

2T n−1(M̃h(x)) (11)

with

sh(x) =
∫ x

0
v0(y)dy = xv0(x) + c, (12)

where the constants of integration c can be evaluated using the
continuity of T n

h (x) and the fact that T n
h (0) = T n

h (1) = 0 as
there is no mean drift in this system. We obtain the following
functional recursion relation for T n

h (x):

T n
h (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2T n−1

h (2x + h) − 1
2T n−1

h (h), 0 � x < 1−h
2

1
2T n−1

h (2x + h − 1) − 1
2T n−1

h (h) + x + (
h−1

2

)
, 1−h

2 � x < 1
2

1
2T n−1

h (2x − h) − 1
2T n−1

h (h) − x + (
h+1

2

)
, 1

2 � x < 1+h
2

1
2T n−1

h (2x − 1 − h) − 1
2T n−1

h (h), 1+h
2 � x < 1.

(13)

Using Eq. (13) in Eq. (6) via Eqs. (8) and (10) we can evaluate
our nth-order approximation as

Dn(h) = h

2
+ T n−1

h (h). (14)

So we see that the higher-order correlations are all captured by
the cumulative integral functions T n

h (x). In order to evaluate
Eq. (14) we construct a recursive relation from Eq. (13),

T n
h (h) =

n∑
k=0

1

2k
th

(
M̃k

h(h)
) −

n∑
k=1

1

2k
T n−k

h (h), (15)

where

th(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 � x < 1−h
2

x + h−1
2 , 1−h

2 � x < 1
2

−x + h+1
2 , 1

2 � x < 1+h
2

0, 1+h
2 � x < 1

(16)

is sh(x) with the − 1
2T n

h (h) terms removed. In order to simplify
Eq. (15) we write it entirely in terms of Eq. (16). Let

τh(n) =
n∑

k=1

1

2k
T n−k

h (h). (17)

We can write Eq. (17) recursively as

τh(n) = 1
2T n−1

h (h) + 1
2τh(n − 1). (18)

Substituting Eqs. (17) and (18) into Eq. (15) we obtain

T n
h (h) =

n∑
k=0

1

2k
th

(
M̃k

h(h)
) − 1

2
T n−1

h (h) − 1

2
τh(n − 1). (19)
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FIG. 2. (Color online) Correlated random walk. The first four approximations to the parameter-dependent diffusion coefficient D(h) are
illustrated in bold (red) along with the actual diffusion coefficient: (a) zeroth-order approximation, which is simply the random walk solution;
(b) first-order approximation; (c) second-order approximation; and (d) third-order approximation. At each stage one obtains a set of extrema
with linear interpolation, which converge quickly to the exact diffusion coefficient D(h). The amount of extrema increases exponentially with
n, hence we see the fractal structure emerging.

Then substituting Eq. (15) back into Eq. (19),

T n
h (h) =

n∑
k=0

1

2k
th

(
M̃k

h(h)
) − 1

2

(
n−1∑
k=0

1

2k
th

(
M̃k

h(h)
)
)

+ 1

2
τh(n − 1) − 1

2
τh(n − 1), (20)

we arrive at our final expression

T n
h (h) = 1

2n
th

(
M̃n

h (h)
) +

n−1∑
k=0

1

2k+1
th

(
M̃k

h(h)
)
. (21)

It is helpful to rewrite Eq. (15) in the form of Eq. (21) as
it allows us to show that under this method, Dn(h) converges
exactly to D(h) in finite time for particular values of h (see
Fig. 2 for an illustration). This means that for a specific set
of parameter values, we can fully capture the correlations of
the map with a finite time approximation. This convergence is
dependent upon the behavior of the orbit of the point x = h

under the map M̃h(x). In particular, if this orbit is preperiodic

and the values of the points in the periodic loop correspond to
zero in Eq. (16), then the time-dependent diffusion coefficient
Dn(h) will converge to the exact value D(h) on the nth step,
where n is given by the transient length of the orbit of h, plus
one. For example, let h = 2/5:

M̃2/5(2/5) = 1/5, M̃2/5(1/5) = 4/5, M̃2/5(4/5) = 1/5.

(22)

So h = 2/5 is preperiodic of transient length one. In addition

th(2/5) = 1/10, th(1/5) = 0, th(4/5) = 0; (23)

thus t2/5(M̃n
2/5(2/5)) = 0 for n > 1. Hence we see finite time

convergence to D(h). This finite time convergence at a certain
set of points is helpful in understanding the structure of D(h)
as the fractal diffusion coefficient can be seen emerging around
these points in the same manner as an iterated function system
such as a Koch curve (see Fig. 2).
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Being able to analytically expose the fractal structure
of parameter-dependent diffusion coefficients is the main
strength of this method. In addition, the convergence of the
series of approximations is very quick due to the finite time
convergence at certain values of h. Moreover, the fact that
one only needs to directly put in the map dynamics makes it
very user friendly. However, due to the recurrence relation that
this method is based on, applying it analytically is restricted
to one-dimensional systems or higher-dimensional systems
whose dynamics can be projected down to one-dimensional
systems, such as baker maps [1–3,37,38]. In order to answer
questions about more realistic, physical systems, one would
need to resort to numerical analysis. By using families of time-
and parameter-dependent diffusion coefficients such as defined
by Eq. (6) this is, on the other hand, straightforward, as has
been successfully demonstrated for many different types of
systems [3,8,14,15,29].

This approximation method, represented by Eq. (6), was
criticized by Gilbert and Sanders in [28] in two ways: First,
it was stated that “this ad hoc truncation has no physical
meaning: if 〈v0 · vl〉 �= 0, it is not true that higher-order
correlations 〈v0 · vk〉 vanish.” However, there is no assump-
tion in Eq. (6) that higher-order correlations disappear. On
the contrary, this expansion is to be truncated at different
time steps for exploring the impact of higher-order corre-
lations on the convergence of the series by systematically
incorporating them step by step. Interestingly, as we have
shown above, there do exist parameter values for this model
at which all higher-order correlations disappear. This set,
whose number of elements becomes infinite for n → ∞,
holds the key to understanding the emergence of the fractal
structure in the diffusion coefficient. There is a clear physical
interpretation of this set of parameter values in terms of
the orbits of the associated critical points of the map, as
exemplified above. Under parameter variation these orbits
generate complicated sequences of forward and backward
scattering, which characterize the diffusive dynamics by
physically explaining the origin of the fractal structure in
terms of the topological instability of the associated mi-
croscopic scattering processes. This physical interpretation,
called turnstile dynamics, has been explained in detail in
Refs. [3,16–18,21].

Second, by applying a higher-dimensional equivalent of
Eq. (6) to the billiard models discussed in Ref. [28] Gilbert and
Sanders claimed that in Ref. [29] “the stationary distribution
... was erroneously assumed to be uniform.” We first clarify
that there is no room for assuming any stationary distribution
in this equation. The mathematically exact derivation of
the Taylor-Green-Kubo formula Eq. (4) is based on time
translational invariance of the dynamics (cf. [1,29]) and can
only be carried out if the density ρ∗(x) in Eq. (6) is strictly
the invariant one. Hence, there is no choice and for our map
as well as for the Hamiltonian particle billiards studied in
Ref. [28] this density has to be the invariant one, which in
turn for all these systems is uniform. Gilbert and Sanders
claim to “correct this mistake” by deriving a second-order
approximation of their billiard models that is different from
the one obtained from the method outlined in this section
as applied to billiards [compare Eq. (11) in Ref. [28] with
Eq. (21) in Ref. [29]). Their Eq. (11), which they use for their

simulations, thus seems to represent a mix between the method
outlined in this section and the one described in the following
section.

IV. PERSISTENT RANDOM WALK

The next method we look at again starts with the Taylor-
Green-Kubo formula for diffusion Eq. (4). However, rather
than truncating it, we now approximate the correlations in
a more self-consistent way by including memory effects
persistently. The key difference from the previous method
is that this approach models an exponential decay of the
velocity autocorrelation function beyond the lowest-order
approximation. This method first emerged within stochastic
theory as a persistent random walk [30,31] and was recently
applied to understand chaotic diffusion in Hamiltonian particle
billiards [28,32,33].

The main task of evaluating the diffusion coefficient with
this method is to find an expression for the correlation function
at the nth time step by only including memory effects of a
given length. We start by defining the velocity autocorrelation
function as a sum over all possible velocities weighted by
the corresponding parts of the invariant measure μ∗ of the
system,

〈v0(x)vn(x)〉 =
∑

v0(x),...,vn(x)

v0(x)vn(x)μ∗({v0(x), . . . ,vn(x)}).

(24)

The different parts of the invariant measure in Eq. (24) are
approximated by the transition probabilities of the system,
depending on the length of memory considered. These in turn
are trivially obtained from the invariant probability density
function ρ∗(x). As a zeroth-order approximation of this
method, no memory is considered at all; that is, the movement
of a particle is entirely independent of its preceding behavior.
In this case the correlations evaluate simply as

〈v0(x)vn(x)〉 = 0 (n > 0); (25)

thus we need only consider 〈v2
0(x)〉. By Eq. (4) the approximate

diffusion coefficient is obtained as

D0(h) = 1

2

∫ 1

0

〈
v2

0(x)
〉
dx = h

2
, (26)

which reproduces again the random walk solution, as expected.
For the higher-order approximations, one must refine the level
of memory that is used based upon the microscopic dynamics
of the map.

A. One-step memory approximation

We now include one step of memory in the system, i.e.,
we assume that the behavior of a point at the nth step is
only dependent on the (n − 1)th step. In Ref. [28] Eq. (24)
was evaluated for approximating the diffusion coefficient in a
particle billiard. For this purpose it was assumed that a point
moves to a neighboring lattice point at each iteration. Hence
the velocity function vn(x) could only take the values � or
−�, where � defines the lattice spacing. In order to evaluate
the one-step memory approximation for the map Mh(x), we
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need to modify the method to include the probability that
a point stays at a lattice point and does not move; hence
our velocity function can take the values 1, −1, or 0. Let
P (b|a) be the conditional probability that a point takes the
velocity b given that at the previous step it had velocity a

with a,b ∈ {0,1, − 1}. We use these probabilities to obtain a
one-step memory approximation. We can write our velocity
autocorrelation function as

〈v0vn〉 =
∑

v0,...,vn

v0vnp(v0)
n∏

i=1

P (vi |vi−1), (27)

where we set vk(x) = vk for the sake of brevity and p(a) is
the probability that a point takes the velocity a at the first step.
We can capture the combinatorics of the sum over all possible
paths by rewriting Eq. (27) as a matrix equation,

〈v0vn〉 = (0 1 −1)

⎛
⎜⎝

P00 P01 P0−1

P10 P11 P1−1

P−10 P−11 P−1−1

⎞
⎟⎠

n

×

⎛
⎜⎝

0

p(1)

−p(−1)

⎞
⎟⎠ , (28)

where Pba = P (b|a). Equation (28) can be simplified by using
the fact that all the paths with a zero state cancel each other
out, therefore not contributing to diffusion, and by using the
symmetries in the system, i.e.,

P−1−1 = P11, P−11 = P1−1, p(−1) = p(1). (29)

Hence Eq. (27) can be simplified to

〈v0vn〉 = ( 1 −1 )

(
P11 P1−1

P1−1 P11

)n (
1

−1

)
p(1), (30)

which is a simple quadratic form. By diagonalization the
expression for the nth velocity autocorrelation function is
obtained to

〈v0vn〉 = 2p(1)(P11 − P1−1)n, (31)

yielding the exponential decay of the velocity autocorrelation
function 〈v0vn〉 ∼ exp[n ln(P11 − P1−1)] referred to above.
Substituting Eq. (31) into the Taylor-Green-Kubo formula
Eq. (4) by using the fact that p(1) = h/2 gives

D(h) =
∞∑

n=0

〈v0vn〉 − 1

2

〈
v2

0

〉

= h

( ∞∑
n=0

(P11 − P1−1)n
)

− h

2

= h

1 − P11 + P1−1
− h

2
. (32)

The relevant parameter-dependent probabilities can be worked
out from the invariant density ρ∗(x) of the system and are

P11 =

⎧⎪⎨
⎪⎩

0, 0 � h < 1
3

1 − (1−h)
2h

, 1
3 � h < 1

2
1
2 , 1

2 � h < 1

(33)

and

P1−1 =

⎧⎪⎨
⎪⎩

0, 0 � h < 1
3

0, 1
3 � h < 1

2

1 − 1
2h

, 1
2 � h < 1.

(34)

Substituting Eqs. (33) and (34) into Eq. (32), we obtain a
persistent one-step memory approximation for the diffusion
coefficient of the map Mh(x). Figure 3 shows a plot of the final
result as a function of the control parameter in comparison to
the exact diffusion coefficient D(h).

FIG. 3. (Color online) Persistent random walk approximation. (a) First-order approximation Eq. (32) to the exact parameter-dependent
diffusion coefficient D(h) and (b) second-order approximation Eq. (36). Approximations are in bold (red) along with the diffusion coefficient.
The major topological changes in the dynamics are picked out by piecewise-differentiable approximations.
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B. Two-step memory approximation

We now extend the approximation to include two steps of
memory, i.e., the behavior of a point at the nth step depends
on what has happened at the (n − 1)th and (n − 2)th steps.
Let P (c|b,a) be the conditional probability that a point has
velocity c given that it had velocity b at the previous step and
a at the step before that with a,b,c ∈ {0,1, − 1}. For this two-
step approximation, the velocity autocorrelations are given
by

〈v0vn〉 =
∑

v0,...,vn

v0vnp(v0,v1)
n∏

i=2

P (vi |vi−1,vi−2), (35)

where p(a,b) is the probability that a point takes velocity a at
the first step followed by b. Again we proceed by the method
of Ref. [32] and rewrite Eq. (35) as a matrix equation in order
to capture the combinatorics of the sum,

〈v0vn〉 = r · An · s, (36)

where r evaluates vn, s evaluates v0p(v0,v1), and A is the 9 × 9
probability transition matrix for the system. Unfortunately,
Eq. (36) cannot be evaluated analytically (see the Appendix),
so we resort to numerical evaluations. The result is depicted in
Fig. 3. We see that this method picks out the same topological
changes in the map dynamics that the previous method did
and interpolates between them; however, the convergence at
these points is not as accurate.

The strength of this method is in modeling the exponential
decay of correlations that is often found in diffusive systems,
particularly in Hamiltonian particle billiards [40]. When
applied to these systems, the method is not restricted by
dimension, making it very useful in this setting. However,
generating by default an exponential decay of correlations
is not an ideal approach for diffusive systems in which
correlations do not decay exponentially. In contrast to the
correlated random walk approach, this method is not designed
to reveal possibly fractal structures of parameter-dependent
diffusion coefficients. It also requires a lot of input about
the relevant transition probabilities, making it impractical
when it comes to analyzing higher-order approximations.
In particular, if one was to consider nonhyperbolic systems
[8] or even hyperbolic systems with less simple invariant
measures [16–18,29], then deriving the transition probabil-
ities of Eqs. (33) and (34) would be much more compli-
cated.

V. APPROXIMATING MARKOV PARTITIONS

The final method that we look at does not involve the
Taylor-Green-Kubo formula. Using the framework of the
escape rate theory applied to dynamical systems [1,2,34–37],
we consider a truncated map Mh(x) defined on [0,L]. By
applying absorbing boundary conditions to this map, thus
generating an open system, standard escape rate theory
expresses the diffusion coefficient in terms of the escape rate
from a fractal repeller [18]. Here we use a slight variation of
this approach by using periodic boundaries. For calculating
diffusion coefficients in simple maps this setting is technically

easier because it produces simpler transfer operators than
absorbing boundaries [16]. We thus consider a closed system
whose initial density decays exponentially to an invariant one,
as quantified by the parameter-dependent decay rate γdec(h).
As shown in Refs. [16–18], by this modified approach and in
complete analogy to ordinary escape rate theory, the diffusion
coefficient can be obtained as

D(h) = lim
L→∞

L2

4π2
γdec(h). (37)

The decay rate can in turn be calculated exactly if the
Frobenius-Perron equation can be mapped onto a Markov
transition matrix. In the case of Mh(x) the second largest
eigenvalue χ1(h) of this transition matrix determines the decay
rate according to [16–18]

γdec(h) = ln

(
2

χ1(h)

)
. (38)

Unfortunately, constructing Markov transition matrices ex-
actly for even the simplest parameter-dependent maps can
be a very complicated task. Our approximate method starts
as follows (see Refs. [16,18] for details): For a given value
of the parameter h, we restrict the dynamics to the unit
interval by using Eq. (2) modulo 1. We then consider the
set of iterates of the critical point x = 0.5, which for certain
parameter values form a set of Markov partition points. This
set is then copied and lifted back onto the system of size L

into each unit interval. By supplementing this partition with
periodic boundary conditions, it defines a Markov partition
for the whole system on [0,L]. The key problem is that the
behavior of the orbit of the critical point under parameter
variation is very irregular. Therefore, we approximate Markov
partitions by truncating this orbit for a given parameter value
after a certain number of iterations. Typically, the resulting
set of points will then not yield a Markov partition for this
parameter value. In order to make up for this, we introduce a
weighted approximation into our transition matrix to account
for any non-Markovian behavior. For example, if partition part
i gets mapped onto a fraction of partition part j then the entry
ai,j in the approximate transition matrix will be equal to this
fraction (see also Ref. [3] for the basic idea of this approach).

The motivation behind this method is that at each stage of
the approximation, whose level is defined by the number of
iterates of the critical point, there will be certain values of the
parameter whose Markov partitions are exact. So at least for
these parameter values we will obtain the precise diffusion
coefficient D(h), with interpolations between these points as
defined by the approximate transition matrix. That way, we
will have full control and understanding over the convergence
of our approximations.

We first work out the zeroth-order approximation, for which
we take the unit intervals as partition parts [see Fig. 4 for an
illustration of Mh(x) at system size L = 3]. The corresponding
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T(h) =

⎛
⎜⎝

2 − 2h h h
h 2 − 2h h
h h 2 − 2h

⎞
⎟⎠

FIG. 4. (Color online) Approximate Markov transition matrix.
Illustrated here is the map Mh(x) truncated on [0,L] with L = 3 and
periodic boundary conditions. The map is given by the diagonal lines
(red) and the zeroth-order approximation to the Markov partition is
shown by the thick black lines. The partition parts are simply the unit
intervals. Note the periodic boundary conditions. The corresponding
transition matrix T(h) is shown below the map. Note that this partition
is only Markov when h = 0 or 1.

approximate transition matrix T(h) is cyclic and reads

T(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 − 2h h 0 · · · h

h 2 − 2h h · · · 0

0 h 2 − 2h h · · ·
...

... h
. . . h

h 0 · · · h 2 − 2h

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (39)

therefore, the eigenvalues can be evaluated analytically [17,18]
as

χ1(h) = 2 − 2h + 2h cos(2π/L)

 2 − 2h + 2h

(
1 − 2π2

L2

)
(L → ∞). (40)

By combining this result with Eq. (38), the decay rate is given
as a function of the parameter and length L,

γdec(h) = ln

(
1

1 − h + h cos(2π/L)

)
 h2π2

L2
(L → ∞).

(41)

Using Eq. (41) in Eq. (37), the diffusion coefficient is finally

given by

D(h) = h

2
, (42)

which again yields the familiar random walk approximation.
The next stage of approximation involves two partition parts

per unit interval and for this we simply include the critical
point x = 0.5 as a partition point. So our partition parts are
the half-unit intervals on the real line. For the next iteration
level we include the first iteration of x = 0.5, M̃h(0.5) = 1 −
h, as a partition point and its mirror image about x = 0.5,
which is h, and for each higher approximation we include one
more iterate. However, with these higher approximations we no
longer obtain a cyclic matrix, so we have to resort to numerics
to evaluate the decay rate and the diffusion coefficient. The first
three approximations obtained by this method are displayed in
Fig. 5.

The main strength of this method is that we know by defini-
tion where our approximations are going to converge exactly
in finite time, namely, at Markov partition parameter values
h picked out by each subsequent approximation. In addition,
the functional form of the interpolation between these points
highlights areas of self-similarity and therefore gives one
evidence for fractal behavior even at low-level approximations
(see Fig. 5). However, this method quickly relies on numerical
computation and again requires considerable input from the
user, making it impractical at higher-level approximations. It
seems unlikely that this method can easily be generalized to
higher-dimensional systems due to the difficulty in construct-
ing (approximate) Markov partitions and associated transition
matrices.

VI. CONCLUSION

We have studied three different approximation methods
applied to a particular chaotic dynamical system. For this
model the exact parameter-dependent diffusion coefficient was
known beforehand [21]. Taking it as a reference, the motivation
was to learn about the capabilities and the weaknesses of the
individual methods. These are of course not a comprehensive
list of the many possible ways to approximate the diffusion
coefficient of a system (see, for example, Refs. [9,11] for
diffusion in sawtooth and standard maps). However, what
they do illustrate is the fact that even in our simple one-
dimensional model studied here, the results that one obtains
are very much dependent upon the individual method that
one uses and these results vary greatly between the different
methods.

By the first method, which relied on a systematic truncation
of the Taylor-Green-Kubo formula, we saw the fractal structure
building up fully analytically over a series of correlated random
walk approximations, as we were able to exactly capture the
correlations of the system in finite time at certain parameter
values. This in turn yielded quick convergence to the exact
results. Using a persistent random walk approach, the second
method retained an exponential decay of correlations even
in finite time approximations. However, for the model under
consideration this approximation yielded convergence that was
significantly weaker than in case of the other two methods. By

041135-8



CAPTURING CORRELATIONS IN CHAOTIC DIFFUSION . . . PHYSICAL REVIEW E 84, 041135 (2011)

FIG. 5. (Color online) Approximating transition matrices. (a) First-order approximation to the parameter-dependent diffusion coefficient
D(h) obtained by this method; (b) second-order approximation; (c) third-order approximation; and (d) blowup of (c). The approximations are
shown in bold (red) along with the diffusion coefficient diffusion coefficient. We see that the functional form of the interpolation in (a) is
repeated in (b) at a smaller scale (see the contents of the dashed line box). This functional form is again repeated on a still smaller scale in (c),
as illustrated in (d). This self-similarity provides evidence that the final function D(h) is fractal.

using a variation of the escape rate approach to chaotic diffu-
sion combined with approximate transition matrices, the third
method had our attention focused on areas of self-similarity,
giving us particularly strong evidence for fractal structures
in the parameter-dependent diffusion coefficient. This method
generated again very quick convergence. Comparing the three
different methods with each other demonstrates that one is
able to tailor the approximate results one gets by applying a
specific method to the specific questions one wishes to answer
or to the specific setting.

As a side aspect, we addressed recent criticism of the
first method by Gilbert and Sanders [28]. Here we chose
a different class of systems than the Hamiltonian particle
billiards that they considered in their paper. This had the
advantage that the different approximation methods could
be studied more rigorously. We conclude that the persistent
random walk method favored in Ref. [28] may be more
appropriate for dispersing billiards because an integral part of
this method is modeling an exponential decay of correlations,
as it is quite common in these systems. However, one may
question the usefulness of this method for diffusive dynamical
systems where exponential decay is not guaranteed. Here other
methods, such as the first and the third one discussed above,
may yield superior results in terms of speed of convergence

and identification of possible fractal structures in diffusion
coefficients. Particularly the first method has the advantage
that it is conceptually very simple and quite universally
applicable, without making any assumptions on the decay of
correlations.

Accordingly, we find the quest for a unique way to
approximate the diffusion coefficient of a dynamical system,
as suggested in Ref. [28], unnecessarily restrictive. In our
view, each of the three approximation methods discussed
here has, for a given model, its own virtue. When one
looks to understand, or display, a particular property of a
system and cannot achieve this analytically, resorting to one
of these approximation methods is thus a sensible course of
action.

We finally emphasize that the structure of the diffusion
coefficients in more physical systems such as Lorentz gases
and sawtooth maps are still not fully understood [3,11]. In
particular, to what extent these systems’ diffusion coefficients
are fractal remains an open question. Further refining approx-
imation methods, such as the ones presented in this paper, to
highlight areas of self-similarity in parameter-dependent dif-
fusion coefficients in these systems or to show the emergence
of fractal structures would be of great help in answering these
questions.

041135-9



GEORGIE KNIGHT AND RAINER KLAGES PHYSICAL REVIEW E 84, 041135 (2011)

APPENDIX: RECURRENCE RELATION FOR THE TWO-STEP APPROXIMATION

Equation (36) in a more explicit form is written as

〈v0vn〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

1

1

−1

−1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P000 P001 P00−1 0 0 0 0 0 0

0 0 0 P010 P011 P01−1 0 0 0

0 0 0 0 0 0 P0−10 P0−11 P0−1−1

P100 P101 P10−1 0 0 0 0 0 0

0 0 0 P110 P111 P11−1 0 0 0

0 0 0 0 0 0 P1−10 P1−11 P1−1−1

P−100 P−101 P−10−1 0 0 0 0 0 0

0 0 0 P−110 P−111 P−11−1 0 0 0

0 0 0 0 0 0 P−1−10 P−1−11 P−1−1−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p(1,0)

−p(−1,0)

0

p(1,1)

−p(−1,1)

0

p(1, − 1)

−p(−1, − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which can be simplified using the symmetries in the probabilities like P100 = P−100 and p(1,0) = p(−1,0). In addition, if we let
mn

ij be the ij th entry of An we can use the fact that the symmetries of A are the same as An and reduce Eq. (36) to a 3 × 3 matrix
equation,

〈v0vn〉 = (2 2 2)

⎛
⎜⎝

(
mn

42 − mn
43

) (
mn

45 − mn
49

) (
mn

48 − mn
46

)(
mn

52 − mn
53

) (
mn

55 − mn
59

) (
mn

58 − mn
56

)(
mn

62 − mn
63

) (
mn

65 − mn
69

) (
mn

68 − mn
66

)
⎞
⎟⎠

⎛
⎜⎝

p(1,0)

p(1,1)

p(1, − 1)

⎞
⎟⎠ . (A1)

In order to obtain an analytical expression for the matrix in Eq. (A1), we would like to obtain a solvable recurrence relation;
however, this matrix is equal to⎛

⎜⎝
P100 P101 P10−1

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0(
mn−1

33 − mn−1
32

) (
mn−1

39 − mn−1
35

) (
mn−1

36 − mn−1
38

)
(
mn−1

32 − mn−1
33

) (
mn−1

35 − mn−1
39

) (
mn−1

38 − mn−1
36

)
⎞
⎟⎠

+

⎛
⎜⎝

0 0 0

P110 P111 P−1−11

0 0 0

⎞
⎟⎠

⎛
⎜⎝

(
mn−1

42 − mn−1
43

) (
mn−1

45 − mn−1
49

) (
mn−1

48 − mn−1
46

)
(
mn−1

52 − mn−1
53

) (
mn−1

55 − mn−1
59

) (
mn−1

58 − mn−1
56

)
(
mn−1

62 − mn−1
63

) (
mn−1

65 − mn−1
69

) (
mn−1

68 − mn−1
66

)
⎞
⎟⎠

+

⎛
⎜⎝

0 0 0

0 0 0

P1−10 P1−11 P1−1−1

⎞
⎟⎠

⎛
⎜⎝

(
mn−1

43 − mn−1
42

) (
mn−1

49 − mn−1
45

) (
mn−1

46 − mn−1
48

)
(
mn−1

53 − mn−1
62

) (
mn−1

69 − mn−1
65

) (
mn−1

66 − mn−1
68

)
(
mn−1

63 − mn−1
52

) (
mn−1

59 − mn−1
55

) (
mn−1

56 − mn−1
58

)
⎞
⎟⎠ (A2)

and unlike for the one-step approximation, a recurrence relation is unobtainable, which is due to the introduction of a zero state
in the velocities.
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