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SUPPLEMENTAL MATERIAL

1. Statistical data analysis

To capture bumblebee flights only, we exclude any crawling
behavior on the landing platforms by also removing all data
within a 1 cm boundary region of each platform. The size of
this boundary is based on the size of the bumblebees, which
have a height of approximately 1 cm. While smaller cutoffs
would not exclude all crawling behavior, the cutoff can be in-
creased robustly within reasonable bounds. We have checked
that, e.g. a 2 cm cutoff does not have any influence on any of
the analyzed quantities, as the amount of the data which would
be excluded in addition is very small. This leaves from 2000
to 15000 data points (average: 6000) per bumblebee for each
stage. We select the best model for the velocity distributions
by maximum likelihood estimation and Akaike and Bayesian
weights for our candidate distributions [16] for|v| ≥ 2.5 cm/s.
Given a set of measured velocitiesD = {v1, v2, ..., vn} and
a probability density functionρλ(v), whereλ is a vector of k
parameters, thelog-likelihood of the probability density func-
tion for a finite resolution of the data (∆v = 5 cm/s) simplifies
to

lnL(λ|D) =
∑

vj∈D

lnPλ(vj) =
∑

b∈bins

h[b] ln

∫ max(b)

min(b)

ρλ(v)dv

whereh(b) is the observed frequency in binb.
For each candidate distributionρi

λi
, i ∈ {1, 2, 3}, we max-

imize the log-likelihoodlnLi w.r.t. λi locally with a Nelder-
Mead algorithm by using a Monte Carlo method to find the
global maximum. To find the preference between the differ-
ent model distributions whose likelihoodsLi are maximized

atλmax
i the information criteria are

ICi = −2 ln(Li(λ
max
i |D)) + s(n)ki

with s(n) = 2 for the Akaike information criterion and
s(n) = ln(n) for the Bayesian information criterion as a
penalty on the number of parameterski. The best model, de-
noted by∗, is the one which minimizes the information cri-
terionIC∗ = min

i
(ICi). The Akaike/Bayesian weights then

give the preference of each model over the others as a proba-
bility

wi = αe−(ICi−IC∗)/2 ,

whereα normalizes the weights to
∑

i wi = 1.
The choice of the information criterion makes no strong dif-

ference for the model selection in this experiment. With the
Akaike information criterion the Gaussian mixture is chosen
with a weight of over 95% for all bumblebees and all experi-
mental stages. The Bayesian information criterion agrees with
the Akaike information criterion on 90% of all data sets. For
the other 10% it prefers a single Gaussian or an exponential
distribution - these data sets turned out to be those with the
least amount of data available.

To compute the autocorrelation functionvac(τ) of the flight
velocities

vac(τ) =
〈(v(t) − µ)(v(t + τ) − µ)〉

σ2

we average over all bumblebees and over time in all flights
that are complete from starting on one flower to landing on
the next. We exclude flights containing gaps and correlation
terms, where in-between timet andt+ τ a flower was visited.

Table I. Model weights and estimated parameters. Akaike andBayesian weights both give preference to the mixture of two Gaussians for
vy for most of the bumblebees. The weights are estimated individually and their mean and standard deviation (in brackets) are shown. The
distribution parameters are also estimated individually for each bumblebee in each stage.

Model: (a) Exponential (b) Power law (c) Gaussian (d) Gaussian Mixture

Akaike weight 0.00 (0.00) 0.00 (0.00) 0.04 (0.19) 0.96 (0.19)

Bayesian weight 0.04 (0.18) 0.00 (0.00) 0.08 (0.26) 0.88 (0.30)

Parameters λ µ σ a σ1 σ2

average (bumblebees) 5.61 1.11 0.25 0.67 0.06 0.29

stddev (bumblebees) 1.07 0.16 0.03 0.13 0.04 0.03

Table II. Weights and estimated parameters of the Gaussian mixture for the different experimental stages. Weights and parameters are estimated
for each bumblebee. Shown are the mean over all individuals and the standard deviation (in brackets). The mixture of two Gaussians is the
best fit in all stages. In the parameters of the distribution we observe no significant effect of the threat of predators on the bumblebees.

Stages Akaike weight Bayesian weight a σ1 σ2

(1) Without spiders 0.97 (0.15) 0.93 (0.23) 0.64 (0.11) 0.06(0.02) 0.29 (0.03)

(2) Under predation risk 0.99 (0.04) 0.90 (0.27) 0.68 (0.13) 0.06 (0.02) 0.29 (0.02)

(3) With risk,1 day later 0.89 (0.29) 0.80 (0.38) 0.72 (0.16) 0.07 (0.07) 0.30 (0.03)
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Figure S1. Predator avoidance of bumblebees at flowers, Eq. (1), ex-
tracted from the experimental data. Hovering behavior in front of a
flower is represented by the positive spike directly at the flower cen-
ter, while the negative region behind this spike reflects theavoidance
in the flights towards a flower.

2. Mathematical modeling of bumblebee foraging

The effect of the presence of a spider on the probability
of a bumblebee to fly in front of a flower can be measured
by computing the difference between the position densitiesat
stage (1) and (2) as a function of the positions parallel to and
near(x <5 cm) the flower wall,

∆ρp(yrel, zrel) = ρ(2)
p (yrel, zrel) − ρ(1)

p (yrel, zrel) , (1)

where the positions(yrel, zrel) are relative to the nearest
flower center. This predator avoidance extracted from the ex-
perimental data is shown in Fig. S1. Two different types of
behavior can be seen: First, there is a small increase in the
amount of hovering, i.e. inspection flights near the flower plat-
form when a spider model is present [1, 2], which is consis-
tent with Ref. [3]. However, more important is the local min-
imum representing the avoidance of flowers infected by spi-
ders. This effect is strongest 3 cm above the dangerous flow-
ers, because the flowers are predominantly approached from
above. The avoidance behavior affects not only flights near
the flower wall but can still be detected further away from it.
Comparing dangerous and safe flowers at stage (2) only con-
firms that avoidance is the dominant effect for search flights.

The avoidance of spider-infected flowers together with the
spatial switching of flight modes discussed in the main part of
our Letter can be modeled by the Langevin Equation

dr

dt
(t) = v(t)

dv

dt
(t) = −ηv(t) −∇U(r(t)) + ξ(r, t) , (2)

whereη is a friction coefficient andξ white Gaussian noise
with standard deviation depending on the flight mode as
a function of the position,ξ(r, t) = χfz(r)ξ1(t) + (1 −
χfz(r))ξ2(t). Herer = (x, y, z)⊤ is the position of the bum-
blebee at timet, χfz(r) is the indicator function of the feeding

zone, which is equal to one whenever the bumblebee is in the
cube around a flower as defined before, andξi , i = 1, 2 is
Gaussian noise with two different variances. The potentialU
models an interaction between bumblebee and spider in form
of a repulsive force exerted by the spider onto the bumblebee,
for which we assume that the potential maxima are located
near infected flowers.

When the mechanism generating the correlation functions
shown in Fig. 3 is not the focus of the investigation, it suf-
fices to consider a reduced version of Eqs. (2) in form of the
effective Langevin equation

dr

dt
= χfz(r)ζ1(t) + (1 − χfz(r))ζ2(t) . (3)

This equation describes the spatially varying hovering and
search modes by using noiseζi , i = 1, 2., which models the
impact of the potentialU together with the noiseξ. Further
data analysis shows that excluding hovering has no significant
impact on the velocity autocorrelations, which are dominated
by the search flights. This is in full agreement with Fig. 3,
where the time scale for the predator-induced anti-correlation
(Fig. 3(b)) is larger than the time scale for flights between
neighbouring flowers (Fig. 3(a)). Hence, we modelζ1(t) as a
vector of Gaussian white noise with the smaller varianceσ2

1

given in Table I which describes the hovering. The search
flights from flower to flower are reproduced by the correlated
Gaussian noise vectorζ2(t) with varianceσ2

2 and the autocor-
relationsvac

i (τ) , i = x, y shown in Fig. 3. The advantage of
this model is that it is directly based on our data analysis.

We now focus on the different aspect of understanding the
biophysical mechanism that generates the anti-correlations of
the velocities parallel toy shown in Fig. 3(b). Starting from
the full model Eqs. (2), it suffices to select the search mode
only by settingξ(r, t) = ξ2(t) thus neglecting any spatial
variations of the noise. This yields the Langevin equation

dvy

dt
(t) = −ηvy(t) −

∂U

∂y
(y(t)) + ξ(t) , (4)

which was already stated in the main part as the main equa-
tion. A rough approximation for the repulsive force is pro-
vided by a periodic potential with maxima at dangerous flow-
ers,

U(r) = u cos

(

2π
y

y0

)

, (5)

where y0 is the mean distance between spiders andu the
strength of the repulsion.

We integrated this Langevin equation via an Euler-
Maruyama method under variation ofu by computing the au-
tocorrelation functionvac

y of the generated data. Figure S2
showsvac

y by increasing the repulsion strengthu. The cor-
relation function changes from positive correlations to anti-
correlations in a range of delay timesτ comparable to the
changes in the correlation function of the experimental data of
Fig. 3(b). This qualitatively reproduces our experimentalfind-
ings from first principles. Note that the oscillations for higher
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Figure S2. Autocorrelation function of the velocitiesvy for the
Langevin model Eqs. (4),(5) modeling predation threat by different
strengths of a repulsive potential. Shown are results from computer
simulations without (u = 0; red triangles, upper line) and with pre-
dation threat (u = 0.5 m

2/s2; green circles, lower line). These re-
sults should be qualitatively compared with the experimental findings
Fig. 3(b).

τ in Fig. S2 would be suppressed in a higher-dimensional
model. The other directions can be treated analogously, e.g.,
by including anx-dependent term in the potential for the at-
traction of the bumblebees to the flower wall. A stochastic

analysis of Langevin equations with periodic potentials can
be found, e.g., in Ref. [4]. The effect of the harmonic poten-
tial on the creation of negative velocity correlations can also
be calculated analytically [5].

We emphasize that our model Eqs. (4),(5) provides only a
qualitative description of the biophysical mechanism generat-
ing the change in the correlations of the bumblebee velocities
under predation threat. For a quantitative comparison to the
experimental data a much more detailed model would be nec-
essary, which needs to include the random positioning of the
spiders and the general attractive force exerted by the flowers
onto the bumblebees. Modeling the three-dimensional nature
of the potential would also be important: Notice, e.g., the lo-
cal maximum ofvac

y aroundτ ≃ 2.5 which is an artifact of
the one-dimensional modeling of spider avoidance. However,
as it is difficult to reliably estimate the parameters of the po-
tential, such a quantitative comparison is beyond the scopeof
our Letter.
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