SUPPLEMENTAL MATERIAL atA"** the information criteria are

1. Statigtical data analysis IC; = =21In(L;(A\***| D)) + s(n)k;

To capture bumblebee flights only, we exclude anycrawhnq,vIth s(n) = 2 for the Akaike information criterion and
behavior on the landing platforms by also removing all data L . o
s(n) = In(n) for the Bayesian information criterion as a
within a 1 cm boundary region of each platform. The size of enalty on the number of parametéss The best model, de-
this boundary is based on the size of the bumblebees, whidh

; : . noted bysx, is the one which minimizes the information cri-
have a height of approximately 1 cm. While smaller cutoffs
would not exclude all crawling behavior, the cutoff can be in terion IC.. = mm(IC ). The Akaike/Bayesian weights then
creased robustly within reasonable bounds. We have checkétive the preference of each model over the others as a proba-
that, e.g. a 2 cm cutoff does not have any influence on any d?ility
the analyzed quantities, as the amount of the data whichdvoul o ICi—1C.))2
be excluded in addition is very small. This leaves from 2000 Wi = ae
to 15000 data points (average: 6000) per bumblebee for ea
stage. We select the best model for the velocity distrilmgio
by maximum likelihood estimation and Akaike and Bayesian
weights for our candidate distributions [16] ff > 2.5 cm/s,
Given a set of measured velocitiés = {vy, v9, ..., v, } and
a probability density functiop, (v), whereA is a vector of k
parameters, thiog-likelihood of the probability density func-
tion for a finite resolution of the data\y = 5 <m/s) simplifies

(Wherea normalizes the weights 9", w; = 1.

The choice of the information criterion makes no strong dif-
ference for the model selection in this experiment. With the
Akaike information criterion the Gaussian mixture is chose
with a weight of over 95% for all bumblebees and all experi-
mental stages. The Bayesian information criterion agrets w
the Akaike information criterion on 90% of all data sets. For
the other 10% it prefers a single Gaussian or an exponential

to distribution - these data sets turned out to be those with the
maa(b) least amount of data available.
In L(\|D) = Z In Py (v;) = Z h[b] 1n/ oa(v)dv To compute the autocorrelation functioff (7) of the flight
v ED bEbins min(b) velocities
whereh(b) is the observed frequency in bin v (7) = {(w(t) = w)({t+7) — )

2
For each candidate distribution , i € {1,2,3}, we max- 7

imize the log-likelihoodn L; w.r.t. /\ locally with a Nelder-  we average over all bumblebees and over time in all flights
Mead algorithm by using a Monte Carlo method to find thethat are complete from starting on one flower to landing on
global maximum. To find the preference between the differthe next. We exclude flights containing gaps and correlation
ent model distributions whose likelihoods are maximized terms, where in-between tinteindt +  a flower was visited.

Table I. Model weights and estimated parameters. AkaikeBayksian weights both give preference to the mixture of tveassians for
vy for most of the bumblebees. The weights are estimated uhatlly and their mean and standard deviation (in bracketsshown. The
distribution parameters are also estimated individualygfach bumblebee in each stage.

Model: (a) Exponential (b) Power law (c) Gaussian (d) GarsMixture

Akaike weight 0.00 (0.00) 0.00 (0.00) 0.04 (0.19) 0.96 (9.19

Bayesian weight 0.04 (0.18) 0.00 (0.00) 0.08 (0.26) 0.8800)0.

Parameters A p, o a o1 o9
average (bumblebees) 5.61 1.11 0.25 0.67 0.06 0.29
stddev (bumblebees) 1.07 0.16 0.03 0.13 0.04 0.03

Table II. Weights and estimated parameters of the Gaussiannafor the different experimental stages. Weights am@meters are estimated
for each bumblebee. Shown are the mean over all individuadstize standard deviation (in brackets). The mixture of tvaus§sians is the
best fit in all stages. In the parameters of the distributiemolyserve no significant effect of the threat of predatorsherbumblebees.

Stages Akaike weight Bayesian weight a o1 02
(1) Without spiders 0.97 (0.15) 0.93 (0.23) 0.64 (0.11) q(me2) 0.29 (0.03)
(2) Under predation risk 0.99 (0.04) 0.90 (0.27) 0.68 (0.13) 0.06 (0.02) 0.29 (0.02)

(3) With risk, 1 day later 0.89 (0.29) 0.80 (0.38) 0.72 (0.16) 0.07 (0.07) 0Q0303)




zone, which is equal to one whenever the bumblebee is in the
cube around a flower as defined before, @pdi = 1,2 is
Gaussian noise with two different variances. The potebfial
models an interaction between bumblebee and spider in form
of a repulsive force exerted by the spider onto the bumblebee
for which we assume that the potential maxima are located
near infected flowers.

When the mechanism generating the correlation functions
shown in Fig. 3 is not the focus of the investigation, it suf-
fices to consider a reduced version of Eqgs. (2) in form of the
effective Langevin equation

dr

=GO+ 1~z )G0) . @)

This equation describes the spatially varying hovering and

Figure S1. Predator avoidance of bumblebees at flowers 1E@eX- _search modes by us_lng NOISE, i = 1.’ 2., Whlch models the
tracted from the experimental data. Hovering behavior amfrof a impact of the potential/ together with the nois¢. Further

flower is represented by the positive spike directly at therdiocen-  data analysis shows that excluding hovering has no signtfica
ter, while the negative region behind this spike reflectsattiidance ~ impact on the velocity autocorrelations, which are doredat

App(xrel -yrel)

in the flights towards a flower. by the search flights. This is in full agreement with Fig. 3,
where the time scale for the predator-induced anti-coticala
2. Mathematical modeling of bumblebee foraging (Fig. 3(b)) is larger than the time scale for flights between

The effect of the presence of a spider on the probability?€ighbouring flowers (Fig. 3(a)). Hence, we modglt) as a
of a bumblebee to fly in front of a flower can be measured’ector of Gaussian white noise with the smaller variange
by computing the difference between the position densities 91V€n In Table | which describes the hovering. The search

stage (1) and (2) as a function of the positions parallel th an flights from flower to flower are reproduced by the correlated
near(z <5 cm) the flower wall Gaussian noise vectgs(t) with variances3 and the autocor-

relationsv?“(r) , i = z,y shown in Fig. 3. The advantage of
App(Yrets zret) = P52 (Yrets 2ret) — PS5 (Yrets zret) » (1) this model is that it is directly based on our data analysis.
. . We now focus on the different aspect of understanding the
where the positiongy,.;, z..;) are relative to the nearest

flower center. This predator avoidance extracted from the exbiophysical mechanism that generates the anti-coreis

. ‘ Id.t } ph i Fig. S1. Two diff it fthe velocities parallel tgy shown in Fig. 3(b). Starting from
perimental data IS Shown In F1g. S2. 1W0 CIerent types oly,, ) mogel Egs. (2), it suffices to select the search mode
behavior can be seen: First, there is a small increase in th

LT . . gnly by settingé(r,t) = & (¢) thus neglecting any spatial
amount of hoverllng, €. mspecuon flights near the flqwet-pll variations of the noise. This yields the Langevin equation
form when a spider model is present [1, 2], which is consis-

tent with Ref. [3]. However, more important is the local min- dv, ou

imum representing the avoidance of flowers infected by spi- E(t) = —ny(t) - a_y(y(t)) +E), )
ders. This effect is strongest 3 cm above the dangerous row—h. h readv stated in th . t as th . i
ers, because the flowers are predominantly approached fro Ich was aiready stated In tne main part as the main equa
above. The avoidance behavior affects not only flights neaf o - A rough_ap_proxmat_lon f_or the Tep“'s"’e force is pro-
the flower wall but can still be detected further away from it. vided by a periodic potential with maxima at dangerous flow-

Comparing dangerous and safe flowers at stage (2) only cofr>

firms that avoidance is the dominant effect for search flights Yy
The avoidance of spider-infected flowers together with the U(r) = ucos (2”%) ' ®)
spatial switching of flight modes discussed in the main pfart o ) , .
our Letter can be modeled by the Langevin Equation where y, is the mean distance between spiders anthe
strength of the repulsion.

@(t) =v(t) We integrated this Langevin equation via an Euler-
dt Maruyama method under variation @by computing the au-
d_v(t) = —nv(t) — VU(x(t)) + &(r, t) (2) tocorrelation functionj¢ of the generated data. Figure S2
dt T showswv;“ by increasing the repulsion strength The cor-

wheren is a friction coefficient and white Gaussian noise relation function changes from positive correlations tai-an
with standard deviation depending on the flight mode a<orrelations in a range of delay timescomparable to the
a function of the position{(r,t) = xfz(r)&i(t) + (1 —  changesin the correlation function of the experimentad dét
Xfz(r))&2(t). Herer = (z,y, 2) " is the position of the bum-  Fig. 3(b). This qualitatively reproduces our experimefital-
blebee at time, x5, (r) is the indicator function of the feeding ings from first principles. Note that the oscillations fogher
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Figure S2. Autocorrelation function of the velocitieg for the

Langevin model Egs. (4),(5) modeling predation threat bfecknt

strengths of a repulsive potential. Shown are results fromputer

simulations without#¢ = 0; red triangles, upper line) and with pre-

dation threat¢ = 0.5 m?/s?; green circles, lower line). These re-

sults should be qualitatively compared with the experirakindings
Fig. 3(b).
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analysis of Langevin equations with periodic potentiala ca
be found, e.g., in Ref. [4]. The effect of the harmonic poten-
tial on the creation of negative velocity correlations césoa
be calculated analytically [5].

We emphasize that our model Egs. (4),(5) provides only a
qualitative description of the biophysical mechanism gatie
ing the change in the correlations of the bumblebee vetxiti
under predation threat. For a quantitative comparison ¢o th
experimental data a much more detailed model would be nec-
essary, which needs to include the random positioning of the
spiders and the general attractive force exerted by the flowe
onto the bumblebees. Modeling the three-dimensional aatur
of the potential would also be important: Notice, e.g., the |
cal maximum ofv®¢ aroundr ~ 2.5 which is an artifact of
the one-dimensional modeling of spider avoidance. However
as it is difficult to reliably estimate the parameters of tloe p
tential, such a quantitative comparison is beyond the sobpe
our Letter.
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