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We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and

without predation risk from artificial spiders. For the flight velocities we find mixed probability

distributions reflecting the access to the food sources while the threat posed by the spiders shows up

only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the

environment and temporally to predation risk. Key information on response to environmental changes

is contained in temporal correlation functions, as we explain by a simple emergent model.
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Quantifying foraging behavior of organisms by statisti-
cal analysis has raised the question of whether biologically
relevant search strategies can be identified by mathemati-
cal modeling [1–7]. For sparsely, randomly distributed,
replenishing food sources, the Lévy flight hypothesis pre-
dicts that a random search with jump lengths following a
power law minimizes the search time [7–9]. Experimental
evidence [10–13] and further theoretical analyses [14,15]
supporting this hypothesis were challenged by refined
statistical data analyses [16–19] and more detailed theo-
retical modeling [6,20,21]. A crucial problem is how dis-
positions of a forager like memory [22] or sensory
perception [23], as well as properties of the environment
[12,13,24–27], can be tested in a statistical foraging analy-
sis [1–3,5,7]. Especially for data obtained from foraging
experiments in the wild, it is typically not clear to what
extent extracted search patterns are determined by forager
dispositions or reflect an adjustment of the dynamics of
organisms to the distribution of food sources and the
presence of predators [5,12,13]. This problem can be ad-
dressed by statistically quantifying search behavior in
laboratory experiments where foraging conditions are var-
ied in a fully controlled manner [13,24]. Such an experi-
ment has been performed by Ings and Chittka [28,29], who
studied the foraging behavior of bumblebees with and
without different types of artificial spiders mimicking
predators.

Here we ask the question of whether changes of envi-
ronmental conditions as performed in the experiment by
Ings and Chittka lead to changes in the foraging process.
We answer this question by a statistical analysis of the
bumblebee flights recorded in this experiment on both
spatial and temporal scales. For this purpose, we extract
both flight velocity probability distributions and temporal
velocity autocorrelation functions from the data.
Surprisingly, we find that the crucial quantity to understand
changes in the bumblebee dynamics under predation risk is
not the velocity distribution but the velocity correlation

function, which reveals nontrivial dynamics on different
time scales. We reproduce these changes by a simple
Langevin equation modeling a repulsive interaction be-
tween insect and predator. In order to construct mathemati-
cal models reproducing the foraging of organisms that
interact with the environment, our results suggest to shift
the focus from scale-free approaches [7,9,10] to the statis-
tical quantification of spatiotemporal changes in the forag-
ing dynamics.
In the experiment [28] bumblebees (Bombus terrestris)

were flying in a cubic arena of � 75 cm side length by
foraging on a 4� 4 vertical grid of artificial yellow flowers
on one wall. The 3D flight trajectories of 30 bumblebees,
tested sequentially and individually, were tracked by two
high frame rate cameras (�t ¼ 0:02 s). On the landing
platform of each flower, nectar was given to the bumble-
bees and replenished after consumption. The short trajec-
tory in Fig. 1 shows a typical flight path of a bumblebee
foraging in the arena. To analyze differences in the forag-
ing behavior of the bumblebees under threat of predation,
artificial spiders were introduced. The experiment was
staged into three phases: (1) spider-free foraging, (2) for-
aging under predation risk, and (3) a memory test one day
later. Before and directly after stage (2) the bumblebees
were trained to forage in the presence of artificial spiders,
which were randomly placed on 25% of the flowers. A
spider was emulated by a spider model on the flower and a
trapping mechanism which held the bumblebee for 2 s to
simulate a predation attempt. In (2) and (3) the spider
models were present but the traps were inactive in order
to analyze the influence of previous experience with pre-
dation risk on the bumblebees’ flight dynamics. To deter-
mine whether the detectability of the spiders is an
important factor, half of the bumblebees were trained on
easily visible (white) spider models and half of them on
yellow models, which meant that spiders were camou-
flaged on the yellow flowers; see Ings and Chittka [28]
for further details of the experiment.
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Figure 2 shows a typical normalized histogram of the
horizontal velocities parallel to the flower wall (cf. the y
direction in Fig. 1) for a single bumblebee. The histograms
are characterized by a peak at low velocities and vary in the
different spatial directions due to asymmetries induced by
physical and biological constraints as well as the spatial
arrangement of the flowers. Direct fitting of distributions on
the histogram and a visual comparison with some assumed
distribution were shown to be unreliable [17], as is illus-
trated by Fig. 2: only the power law and the Gaussian
distribution can be ruled out by visual inspection.
However, theGaussianmixture and an exponential function
appear to be equally likely. Therefore we use the maximum
likelihood method for a number of candidate distributions
to obtain the optimal parameters for each candidate and then
compare the different distribution types by their weights
using the Akaike information criterion [16]. Our candidate

distributions are (a) exponential, ��ðvÞ ¼ ce��jvj,
(b) power law, ��ðvÞ ¼ cjvj��, (c) normal distribution

with zero mean,��ðvÞ ¼ N�ðvÞ, (d) mixture of two normal
distributions, �a;�1;�2

ðvÞ¼aN�1
ðvÞþð1�aÞN�2

ðvÞ,
where N�i

ðvÞ¼ 1
ffiffiffiffiffiffiffiffiffi

2��2
i

p e�ðv2=2�2
i Þ, i ¼ 1; 2, and 0 � a � 1.

Details of this analysis are described in the Supplemental
Material [30].

For the data sets of all bumblebees and in all stages of
the experiment, the Akaike weights show that a mixture of
two Gaussians is the preferred distribution of the tested
candidates (see Table I in the Supplemental Material [30]).
However, they do not inform us if the best of the candidates
is actually a good model: if all of the candidates are far off

the real distribution, the Akaike weights could highlight
one of them as the best of the poor fits. As a supplementary
qualitative test to what extent the estimated distribution
with the largest Akaike weight deviates from the data over
the whole range variables, we use quantile-quantile (Q-Q)
probability plots. The inset of Fig. 2 shows the Q-Q plot of
the mixture of two Gaussians against the experimental data
of a single bumblebee and 20 surrogate data sets. Each of
the surrogate data sets consists of independently identically
distributed random numbers drawn from the estimated
Gaussian mixture and has the same number of data points
as the real data for comparison with statistical fluctuations.
The Q-Q plot shows that the deviations of the experimental
data from the mixture of two Gaussians is not larger than
the expected deviations due to the finite quantity of data.
The Gaussian mixture for the velocities is generated by

different flight behavior near a flower versus in open space,
which bears some resemblance to intermittent dynamics
[6,7,25]. This has been verified by splitting the data into
flights far from the flower wall versus flights in the feeding
zone. The latter was defined by a cube of side length 9 cm
around each flower in which the velocities are determined
by approaching a flower and hovering behavior. This sepa-
ration of different flight phases is thus adapted to accessing
the food sources and explains the origin of Gaussian
distributions with different variances in both spatial re-
gions. Because of the absence of a sparse distribution of
food sources, there was no reason to expect Lévy-type
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FIG. 2 (color online). Estimated velocity distributions (main
part) and quantile-quantile probability plot of a Gaussian mix-
ture as the best fit (inset). Semilogarithmic plot of the normalized
histogram of velocities vy parallel to the y axis in Fig. 1 (black

crosses) for a single bumblebee in the spider-free stage (1)
together with a Gaussian mixture (red solid line), exponential
(blue dotted line), power law (green dashed line), and Gaussian
distribution (violet dotted line), fitted via maximum likelihood
estimation. The inset shows quantiles of vy (in m=s) of a single

bumblebee against quantiles of an estimated mixture of two
Gaussians. An ideal match would yield a straight line. The red
lines show 20 surrogate data sets of the same size.

FIG. 1 (color online). Diagram of the foraging arena together
with part of the flight trajectory of a single bumblebee. The
bumblebees forage on a grid of artificial flowers on one wall of
the box. While being on the landing platforms, the bumblebees
have access to food supply. All flowers can be equipped with
spider models and trapping mechanisms simulating predation
attempts.
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probability distributions [9]. Surprisingly, by comparing
the best fits to these distributions for the different stages of
the experiment, we could not detect any differences in the
velocity distributions between the spider-free stage and the
stages where artificial spider models were present, as is
shown in Table II of the Supplemental Material [30]. The
parameters of the Gaussian mixture vary between individ-
ual bumblebees, but there is no systematic change due to
the presence of predators.

Hence, we examined the velocity autocorrelations for
complete flights from flower to flower. The autocorrela-
tions have been computed by averaging over all bumble-
bees while weighting with the amount of data available for
each time interval; see the Supplemental Material for de-
tails [30]. Figure 3 shows the velocity autocorrelations in
the x and y directions for different stages of the experiment.
In the x direction perpendicular to the wall the velocities
are always anticorrelated for times around 0.5 s [Fig. 3(a)],
which is due to the tendency of the bumblebees to quickly
return to the flower wall. However, the flights with long
durations between flower visits become more frequent for
stages (2) and (3) where the bumblebees were exposed to
predation risk compared with stage (1) [inset of Fig. 3(a)].
This is also reflected in a small shift of the global minimum
in the correlations for stages (2) and (3) away from the
origin. The vx autocorrelations thus display similar func-
tional forms but with quantitative changes between the
different stages. In contrast, for the vy autocorrelations

the functional forms change profoundly: Parallel to the
flower wall the velocities are anticorrelated in the presence
of spiders for 0:7< �< 2:8 s, while for the spider-free
stage the correlations remain positive up to 1.7 s
[Fig. 3(b)]. The vertical z direction is similar to the y
direction with a weaker dependence on the presence of
predators. As the limited amount of data causes variations
in the autocorrelations between individual bumblebees, we
resampled the result by leaving the data of each single
bumblebee out (jackknifing). The resampling [inset of
Fig. 3(b)] confirms that the positive autocorrelations of
vy are not a numerical artifact.

Our statistical analysis of the experimental data has thus
revealed that differences in the foraging behavior of bum-
blebees, triggered by predation risk, show up in changes of
the velocity autocorrelation functions only, and not in
modifications of the velocity probability distributions.
These changes are consistent with a more careful search:
When no threat of predators is present, the bumblebees
forage more systematically with more or less direct flights
from flower to flower, arching away from the flower wall.
Under threat the trajectories become longer and the bum-
blebees change their direction more often in their search
for food sources, rejecting flowers with spiders, as is
supported by Fig. 3. Further analysis rules out that the
main features of the correlation functions are induced by
the geometry of the experiment: In Fig. 3(a), all flight time

distributions display maxima around Tf � 0:5 s suggest-

ing that times below ’ 2 s are primarily related to flights
between flowers. Boundary effects are only evident for
flight times that fall within the tail of the distributions.
The anticorrelations in the y and z directions parallel to the
flower wall thus cannot be induced by the walls but are
generated by a reversal of directions at flowers under
predatory threat. For the x direction, the return to the flower
wall is responsible for the anticorrelation at small delay
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FIG. 3 (color online). Autocorrelation of the velocities at
different experimental stages: without spiders (red triangles),
under threat of predation (green circles), and under threat a
day after the last encounter with the spiders (blue crosses).
(a) In the x direction perpendicular to the wall the velocities
are anticorrelated for small times (� 0:5 s) due to short flights
from one flower to a nearby flower back at the flower wall.
Inset: The distribution of flight times Tf for each stage shows a

corresponding maximum for these short jumps. Under threat of
predation (dotted line) long flights become more frequent.
(b) The correlation of vy parallel to the wall shows the effect

of the presence of spiders on the flight behavior of the bumble-
bees. The inset shows the resampled autocorrelation for the
spider-free stage in the region where the correlation differs
from the stages with spider models, which confirms that the
positive autocorrelations are not a numerical artifact.
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times, not the opposite wall, which is too far away to have a
significant effect. Another interesting aspect is that Ings
and Chittka [28] report that bumblebees increase the time
they spend inspecting flowers bearing camouflaged spiders
compared to conspicuous ones. However, we did not detect
any change in velocity distributions or autocorrelations in
this case, which suggests that the bumblebees perform
longer localized inspection flights without changing their
velocities.

In order to understand the changes shown in Fig. 3, we
model the dynamics of vy by the Langevin equation

dvy

dt
ðtÞ ¼ ��vyðtÞ � @U

@y
ðyðtÞÞþ �ðtÞ;

where � is a friction coefficient and � Gaussian white
noise. The potential U mimics an interaction between
bumblebee and spider. Specific data analysis shows that
this force is repulsive and dominates any hovering behavior
in the velocity correlation decay. Computer simulations of
the above equation reproduce a change from positive to
anticorrelations by increasing the repulsive force. Details
are discussed in the Supplemental Material [30]. Note that
the correlation decay displayed in Fig. 3 rules out a mathe-
matical modeling in terms of ordinary correlated random
walks or Lévy walks, which predict velocity correlations to
decay strictly exponentially [7,26] or algebraically [31,32],
respectively.

We emphasize that the experiment analyzed in this
Letter does not match the conditions of the Lévy flight
hypothesis [9]. Lévy flights and Lévy walks predict scale-
free probability distributions [7] and generate trivial func-
tional forms for the velocity correlations [31,32].
Accordingly, experiments testing this hypothesis have fo-
cused on probability distributions, not on correlation decay
[10–13]. However, our results demonstrate that velocity
autocorrelations can contain crucial information for under-
standing foraging dynamics, here in the form of a highly
nontrivial correlation decay emerging from an interaction
between forager and predator. Identifying such an emer-
gent property in contrast to adaptive behavior, as we do
with our simple model, has been highlighted as a crucial
problem in foraging dynamics [13]. In addition, we ob-
serve a spatial variation of the velocity distributions. These
findings illustrate the presence of different flight modes
governing the foraging dynamics on different scales of
time and space. Our results thus indicate that taking
scale-free distributions as a paradigm beyond the condi-
tions of validity of the Lévy flight hypothesis might be too
restrictive an approach in order to capture complex forag-
ing dynamics. A variety of mechanisms may naturally lead
to different foraging dynamics on different length and time
scales, e.g., individuality of animals [19,33,34], an inter-
mittent switching between quasiballistic persistent dynam-
ics and localized search modes [6,18], or quantities over
which one has averaged like time of day [13]. As ignoring

these mechanisms can lead to spurious power laws [16,17],
it is important to look for the reasons of the occurrence of
nontrivial distributions like mixtures, e.g., animals switch-
ing between different search modes. These mixtures may
not always be optimal distributions for a particular search
problem, but they are easy to produce, composable, and
flexible enough such that differences to some optimal
distribution might not be large enough to give rise to
evolutionary pressure [4].
In summary, the fundamental question ‘‘What is the

mathematically most efficient search strategy of foraging
organisms?’’ has, under specific conditions [21], been
answered by the Lévy flight hypothesis [8,9]. This question
is well posed under precise foraging conditions and has the
big advantage that it is amenable to mathematical analysis.
However, it does not capture the full complexity of a
biological foraging problem [7], which incorporates both
the dependence of foraging on ‘‘internal’’ conditions of a
forager (sensory perception [23], memory [22], individu-
ality [19,33,34]) as well as ‘‘external’’ environmental con-
straints (distribution of food sources [12,13,27], day-night
cycle [13], predators [28,29]). Asking about the range of
applicability of the Lévy flight hypothesis leads to the
overarching question ‘‘How can we statistically quantify
changes in foraging dynamics due to interactions with the
environment?,’’ which requires one to identify suitable
measurable quantities characterizing such changes. This
question highlights the need to better understand, and more
carefully analyze, the interplay between forager and envi-
ronment, which will yield crucial information for con-
structing more general mathematical foraging models.
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