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Abstract
Lévy walks (LWs) define a fundamental class of finite velocity stochastic 
processes that can be introduced as a special case of continuous time random 
walks. Alternatively, there is a hyperbolic representation of them in terms of 
partial probability density waves. Using the latter framework we explore the 
impact of aging on LWs, which can be viewed as a specific initial preparation 
of the particle ensemble with respect to an age distribution. We show that the 
hyperbolic age formulation is suitable for a simple integral representation in 
terms of linear Volterra equations  for any initial preparation. On this basis 
relaxation properties, i.e. the convergence towards equilibrium of a generic 
thermodynamic function dependent on the spatial particle distribution, and 
first passage time statistics in bounded domains are studied by connecting the 
latter problem with solute release kinetics. We find that even normal diffusive 
LWs, where the long-term mean square displacement increases linearly 
with time, may display anomalous relaxation properties such as stretched 
exponential decay. We then discuss the impact of aging on the first passage 
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time statistics of LWs by developing the corresponding Volterra integral 
representation. As a further natural generalization the concept of LWs with 
wearing is introduced to account for mobility losses.

Keywords: stochastic processes, anomalous diffusion, Lévy walks,  
first-passage properties, aging

(Some figures may appear in colour only in the online journal)

1.  Introduction

Since the unveiling of the mutual relationships between random motion on microscopic scales 
and thermodynamic irreversibility described by the diffusion equation [1, 2], statistical phys-
ics and the theory of irreversible processes have taken great advantage from the formulation 
of simple models of stochastic motion. These models have been widely used to understand the 
complex phenomenologies occurring in fluids, colloidal and condensed matter systems espe-
cially when the molecular structure (e.g. in polymer physics) or disorder (defects in crystalline 
structures or amorphous materials) are accounted for [3].

A huge field of investigation involves particle motion on discrete lattices (see e.g. [4]), 
where both space and time become discretized. Here particle motion is described with respect 
to an operational time (discrete clock) attaining integer values, and the distance between 
neighbouring sites of the lattice is fixed. The transposition of the lattice model to physical 
reality requires the definition of a characteristic length δ (spacing between nearest neighbor-
ing sites) and time τ  (time interval associated with the elementary movement of a single 
operational clock). This class of models is suitable for coarse-graining leading to a contin-
uous statistical space-time representation by considering the so-called hydrodynamic limit  
[5, 6]. We let δ, τ → 0 while imposing a specific constraint on the behavior of δ and τ , which 
is usually expressed by the scaling condition δα/τ = constant, where α is an integer. In this 
way, the usual diffusion equation is recovered from symmetric random walks (setting α = 2). 
Alternative approaches are described in [7]. Lattice models are particularly suited for includ-
ing the effect of particle interactions, either in the form of exclusion principles or as interpar-
ticle potentials [8, 9]. Recently they have also been used to study collective motion in active 
matter systems [10, 11]. In addition lattice models provide a clear pathway to analyze the 
core of fundamental problems involving the foundations of statistical physics. As an example, 
the Kac ring model permits to address in an elegant and rigorous way the relation between 
microscopic time-reversible motion, macroscopic irreversibility and the role of a statistical 
description of the dynamics [12, 13].

Another basic paradigm of random kinematics originated from the seminal article by 
Montroll and Weiss [14], which introduced the concept of the continuous time random walk 
(CTRW). In this model the evolution of the system is still parametrized with respect to an 
integer-valued operational time n (counting the number of transitions in the particle motion) 
while the particle position and the physical time associated to it attain any real value. Here the 
length �n traveled and the time τn spent at the nth transition are real random variables (in most 
cases independent of each other), which are characterized by a prescribed joint distribution 
functions. This simple model triggered a huge flow of investigations [15–19] focusing pri-
marily onto cases where the main property of Brownian motion, namely the linear long-term 
scaling of the mean square displacement as a function of time, is broken yielding so-called 
anomalous diffusion [20].
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If the length �n and the time interval τn at the nth transition are not independent but linked 
to each other by the existence of a characteristic and constant velocity b, the relation between 
these two quantities can still be of a probabilistic nature, �n = bαn τn, where αn is a random 
variable attaining values ±1 determining the direction of motion. The resulting CTRW is usu-
ally referred to as a Lévy walk (LW) [21–23]; see [24] for a review containing further details. 
The relation of LWs to discrete jump processes, using different scenarios for jump time and 
jump steps, is discussed in [24, 25]. The sequence of transitions relating �n and τn can be 
made fully deterministic by rewriting the LW dynamics as �n = s0 b (−1)n τn, where the initial 
direction of motion s0 is a random variable. The kinematics of a particle performing a LW is 
thus specified by the distribution function of the time intervals τn between two subsequent 
transitions, which are assumed to be independent of each other. LWs are particularly attractive 
due to the natural constraint of possessing a bounded propagation velocity, which determines 
the almost everywhere regularity of their trajectories. By modulating the statistics of τn it is 
possible to provide simple examples of random motions violating the Einsteinian linear scal-
ing of the mean square displacement with time [26].

In the last two decades LWs found many useful applications in physical and biological 
systems, from quantum dot fluctuations [27] to the kinematics of unicellular microorgan-
isms and cells [28, 29] and animal foraging [30]; see [24] for further applications. A central 
issue in the theory of LWs is the formulation of models for their statistical characterization, 
expressed in the form of evolution equations for their representative density functions (thus 
corresponding to generalized Fokker–Planck equations) especially for those cases where a 
LW displays anomalous diffusive properties [31–34].

For trajectories of CTRWs a natural parametrization is obtained through subordination. 
We introduce: (a) a discrete operational time n, which corresponds to the jumps occurring 
during the walk, and (b) a discrete Markovian stochastic process in the operational time Y(n), 
which specifies the particle position after each jump. Within this picture, the physical time is 

expressed as a function of the operational time via the elapsed time process T(n) =
∑n

j=1 τj. 
Introducing now the process N(t) ≡ max{n � 0 : T(n) � t}, the position of the walker can 
be expressed as X(t) = Y(N(t)). A similar relation can be shown to hold in the continuum 
limit. This formula immediately suggests that statistical models for this random walk process 
can be naturally obtained by considering exclusively the probability density function P(x, t) 
of finding the particle coordinate X(t) at time t in the interval (x, x + dx). In fact, according to 
the previous formula, P can be expressed as the convolution of the corresponding densities for 
the processes N and Y. Since the concept of a LW originated as a branching of CTRW theory, 
a similar approach, focused on deriving an evolution equation for the position statistics P, was 
later also applied to LWs. In fact, despite the spatio-temporal coupling introduced by impos-
ing bounded particle velocities, these processes are still Markovian in the operational time 
n. However, for anomalous diffusive LWs this modelling approach generates convolutional 
operators corresponding to fractional derivatives of the density P(x, t), where, differently from 
the fractional derivatives typically appearing in the evolution equations of CTRWs, the spatio-
temporal coupling manifests itself as advective derivatives and retardation of P. Therefore, 
in a continuous time setting the coordinate LW position process X(t) is no longer a Markov 
process, because the condition of bounded velocity and a fortiori the local regularity of the 
trajectories enforces to add the local direction of motion to the state description of the system. 
Exactly in the same way a lattice random walk is not Markovian if the lattice spacing δ and the 
hopping time τ  are assumed to be finite and the trajectory of a particle is interpolated between 
two transitions in a continuous way [7].
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In 2016 Fedotov published a short paper [35] showing that the statistical properties of 
a LW on the one-dimensional line are fully described by a system of hyperbolic first-order 
differential equations involving a system of partial probability densities (two in the simplest 
case) accounting for the local direction of motion and parametrized with respect to the particle 
age, which is defined as the time elapsed from the latest transition in the direction of motion. 
Further elaborations of this idea can be found in [36–38]. The importance of this theoretical 
approach, other than its technical value, is conceptual, as it stimulates a radical change of 
paradigm in the parametrization of the trajectory of a LW with respect to time. In fact, differ-
ently from the commonly accepted picture stemming from CTRW theory, where the primitive 
time is the operational time n and the physical time t should be recovered from it, the statistical 
approach due to Fedotov puts the physical time t as the primitive temporal parametrization 
and derives the statistical description in the physical space time by using different analytical 
techniques. Remarkably, such a seemingly simple change of perspective yields a manifold of 
implications, as it connects the theory of LWs with the classical approaches developed to char-
acterize stochastic processes possessing finite propagation velocity, which originated from 
the articles of Goldstein [39] and Kac [40, 41] and led later on to the concepts of Poisson–
Kac [42, 43] and Generalized Poisson–Kac processes [44–46]. However, this useful relation 
comes at the price of a seemingly increased complexity with respect to the existing statistical 
approaches based on the evolution equation for the overall probability density function P(x, t), 
because an extra independent variable must be introduced (the age) to parametrize the partial 
densities of LWs. Recently Poisson–Kac type models for active and biological particle motion 
have been considered under the diction of run-and-tumble models [47], including the case 
where Wiener perturbations are superimposed onto Poissonian perturbations [48]. This case 
was also considered in [46].

The aim of this article is to analyze the hyperbolic formulation of LW processes and the 
role played by the transitional age in them as an additional internal parameter to be introduced 
in order to completeley specify the representation of the local state of a LW particle. We 
then explore the consequences of this framework for the formulation of statistical theories 
of LW dynamics. Along these lines we introduce the concept of ‘initial preparation’ in the 
hyperbolic setting, and we show that many macroscopic properties (with the sole exception 
of the long-term scaling of the moments) are significantly influenced by it. Furthermore, we 
show that, owing to the simple first-order hyperbolic structure of the balance equations for 
the partial probability densities, the additional level of complexity can be ‘renormalized out’ 
from the model by defining the system evolution in terms of a single function h(x, t) (or of 
two functions h±(x, t) in the more general case) of a spatial x and a temporal t coordinate. 
Consequently no extra degree of complexity is added, other than the intrinsic convolutional 
nature of the resulting integral equation, which is the fingerprint of a LW process. The analysis 
of the concept of LW preparation solves the issue of completeness in the description of a LW 
process, indicating that any coarse model based exclusively on the overall density P(x, t) cor-
responds to a specific initial preparation of the system involving symmetries and constraints 
on the initial distribution of ages and velocity directions.

The article is organized as follows: section 2 introduces the hyperbolic representation of 
LW statistics in terms of partial density waves parametrized with respect to the transitional 
age and the direction of propagation. This directly relates LWs to other classes of processes 
possessing finite propagation velocity, such as Poisson–Kac and generalized Poisson–Kac 
processes [44–46]. In section 3 we show that the transitional age formulation naturally leads to 
the concept of age preparation of a LW ensemble out of which the notion of aging, introduced 
for CTRWs first and later extended to LWs [51–55], follows. As a further generalization, 
the concept of a wearing LW is introduced in which the mobility properties of the process 
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decay, by wearing, as a function of the number of transitions. Section 4 provides a simple 
analytical representation of the solutions of the hyperbolic system of equations for the partial 
densities characterizing the statistics of LWs by reducing the problem to the solution of a 
simple Volterra convolutional integral equation. This approach allows us to investigate the 
relaxational properties of LW fluctuations, namely the convergence towards equilibrium of 
generic thermodynamic quantities associated with the spatial distribution of the LW particle 
ensemble in closed bounded domains equipped with reflective boundary conditions. The latter 
are discussed in section 5. There we show that even LWs that diffuse normally, i.e. with a posi-
tion mean square displacement scaling linearly for long time, may display anomalous relaxa-
tion properties, such as a Kohlrausch–William–Watts stretched exponential decay [58, 59]. 
Section 5 analyzes the influence of different ensemble preparations on the first passage time 
statistics in closed bounded domains by connecting this problem with the release of a solute 
from a polymeric matrix. Finally, section 6 considers the application of the classical method 
of images to the first passage time statistics, the validity of which has been questioned in [50] 
in the case of Lévy flights and LWs. It is shown that the failure of the method of images for the 
estimate of the first passage time statistics is a generic feature of all the processes possessing 
finite propagation velocity owing to the particular boundary condition at the passage point, 
see equation (48), that cannot be matched by the propagation of an additional symmetric point 
source. This is due to the intrinsic lack of spatial symmetries of the elements of the associated 
Green function matrix.

2.  Representation and age of Lévy walks

LWs represent a prototype of stochastic processes possessing finite propagation velocity, 
which under certain conditions can display anomalous diffusive behavior in terms of a long-
term deviation of the mean square displacement from a linear Einsteinian scaling with time. 
Throughout this article we consider one-dimensional LWs. The extension to higher dimen-
sions of the theory developed is in many cases straightforward, in other cases less simple. In 
any case, one-dimesional problems are definitely the proper framework for addressing some 
fundamental physical concepts associated with the representation of LWs, as will be shown 
in this article.

In a CTRW description of a LW, indicating with xn ∈ R the particle position after the 
nth transition in the direction of motion and assuming a constant velocity b, the equations of 
motion are given by

xn+1 = xn + s0 b (−1)n τn, tn+1 = tn + τn.� (1)

Here s0 is a random variable attaining values ±1 with equal probabilities 1/2 and τn are the 
time intervals between subsequent transitions in the direction of motion, which correspond 
to independent random variables defined by the same probability density function T(τ). The 
random variables s0 and {τh}∞h=0 are independent of each other so that, for any functions f  
and g, 〈 f (s0) g(τh)〉 = 〈 f (s0)〉 〈g(τh)〉, 〈 f (τh) g(τk)〉 = 〈 f (τh)〉 〈g(τk)〉, h, k = 0, 1, . . ., h �= k, 
where 〈·〉 indicates the average with respect to the corresponding probability measure. Note 
that equation (1) defines a special case of a CTRW where the direction of the velocity alter-
nates periodically in time. As mentioned previously, in an alternative description the velocity 
itself can be a random variable.

In equation (1) the integer n corresponds to the operational time counting the transitions 
that determine a switch in the velocity direction. With respect to n a LW is a Markov process 
for which the probability density function Pn(x) can be evaluated by employing its Markovian 
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structure. The original definition of LW processes as coupled CTRWs motivates the widely 
adopted strategy of defining their statistical properties in terms of an evolution equation for the 
position probability density function P(x, t).

Conversely, the analysis of a LW process becomes more subtle when the physical time 
t ∈ R+ is considered as the primitive time parametrization, and the LW is viewed as a con-
tinuous process in the independent variable t. The simplest and most natural way of defining 
this continuation is to adopt a Wong–Zakai interpolation [60, 61] between two subsequent 
space-time points (xn, tn) and (xn+1, tn+1) as prescribed by equation (1), i.e. by assuming that 
the kinematics of the LW is described by means of straight line trajectories,

x(t) = xn +
(xn+1 − xn)

(tn+1 − tn)
(t − tn) t ∈ (tn, tn+1) .� (2)

Although other discontinuous interpretations of the kinematics of LW processes have been 
considered [24, 49], essentially in the light of mathematical completeness it is rather clear that 
equation (2) represents the simplest and physically most reasonable interpretation of the con-
tinuation of a LW trajectory, which can capture the basic physical requirement of possessing 
a finite propagation velocity and continuous trajectories. However, the continuous representa-
tion (2) renders the position process X(t) no longer a Markov process, because in the time-
continuous statistical description of these trajectories the local information on the direction of 
motion becomes essential [7].

Therefore the local state of a LW process at time t is defined by the vector-valued state 
variable (X(t), S(t), τ(t)), where X(t), S(t) and τ(t) are the stochastic processes corresponding 
to the particle position, the direction of motion and the transitional age of the particle, respec-
tively. The process S attains values ±1, depending on whether the particle is moving towards 
positive x-values (S(t) = +1) or negative ones (S(t) = −1). The transitional age is defined as 
the time elapsed from the latest transition in the velocity direction. Remarkably, this formal-
ism allows to consider generic statistics for the transition times, which we call T(τ), and not 
only purely exponential distributions.

By considering the triplet (x, s, τ) a LW process is brought back to the Markovian realm. 
Indeed, its conditional probability density function p(x, s, τ , t | x0, s0, τ0, t0), with t  >  t0, satisfies 
a Chapman–Kolmogorov equation out of which the corresponding Fokker–Planck equation for 
its probability density function p(x, s, τ , t) can be derived. Since the velocity direction s attains 
the values ±1, p(x, s, τ , t) can be split into two partial densities p±(x, t; τ) = p(x,±1, τ , t), 
which corresponds to the system of partial probability density functions adopted by Fedotov 
[35] in order to describe, in the most general way, the statistical evolution of one-dimensional 
LWs. The application of the Chapman–Kolmogorov equation in this case leads to a system of 
hyperbolic evolution equations for the partial probability densities [35, 36]

∂p±(x, t; τ)
∂t

= ∓b
∂p±(x, t; τ)

∂x
− ∂p±(x, t; τ)

∂τ
− λ(τ) p±(x, t; τ) ,� (3)

where λ(τ) is the transition rate at age τ , i.e. λ(τ) dt is the probability that a LW particle with 
age τ  will perform a switching in the direction of motion in the time interval (t, t + dt). The 
transition rate λ(τ) is related to the transition time probability density T(τ) by

T(τ) = λ(τ) e−Λ(τ) , Λ(τ) =

∫ τ

0
λ(τ ′) dτ ′ .� (4)

The effect of the transitions regarding the parametrization with respect to τ  of the particle 
ensemble are accounted for by the boundary condition at τ = 0. This is formulated such that 
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all the particles, which at any time t and position x performed a transition in the direction of 
the velocity, return to a vanishingly small transitional age with reversed velocity direction, i.e.

p±(x, t; 0) =
∫ ∞

0
λ(τ) p∓(x, t; τ) dτ .� (5)

Equations (4) and (5) represent the partial density approach to the statistical characterization 
of LWs first developed in [35]. We show below that this formalism paves the way to a sig-
nificant improvement in the understanding of the properties of LWs by motivating a shift of 
paradigm with surprising consequences on the theory of LWs.

At first sight, it may appear that this description is significantly more complex than the 
coarse approach based exclusively on the overall density function

P(x, t) =
∑
α=±

∫ ∞

0
pα(x, t; τ) dτ� (6)

that can be expressed in terms of integer or fractional-order operators with retardation effects 
in P [31–34]. As a point of fact the partial density approach and the coarse description serve 
two different purposes. The pair (s, τ) as internal variables of a LW process provides a com-
plete description of its internal degrees of freedom. This brings back the concept of ‘prep­
aration’, which is further discussed below. Conversely, a coarse model for the overall density 
P(x, t) should be viewed as a long-term model accounting for the qualitative scaling properties 
of the dynamics, once the internal dynamics of a LW involving the redistribution amongst the 
two velocity directions and amongst the transitional ages has reached an equilibrium condi-
tion (at least in those cases where an equilibrium exists). However, as shown in the next sec-
tion, even in the case of the partial wave formulation it is possible to derive a simple linear 
integral equation of convolutional type involving solely an auxiliary function h(x, t) of two 
variables, exactly as for the overall coarse model, out of which all the properties regarding the 
space-time evolution of the LW can be obtained.

There is another major merit of the partial density formulation, as it provides a formal uni-
fication of several classes of stochastic processes possessing finite propagation velocity within 
a unique hyperbolic description of their statistical properties. This is the case of Poisson–
Kac (PK) processes for which λ(τ) = λ = constant, thus implying a Markovian transition 
amongst the ages described by an exponential density function T(τ) = λ e−λ τ . From equa-

tions (3) and (5) and by setting P̂±(x, t) =
∫∞

0 p±(x, t, τ) dτ , the partial densities P̂±(x, t), 
uniquely parametrized with respect to the local velocity direction, satisfy the equations

∂P̂±(x, t)
∂t

= ∓b
∂P̂±(x, t)

∂x
∓ λ

[
P̂+(x, t)− P̂−(x, t)

]
� (7)

out of which a single equation for the overall density can be derived if required (in this case 
of Cattaneo type [41]). In the case of PK processes the transitional age formalism can be 
defined, but information on the age distribution is completely irrelevant in the statistical evo
lution of the process, as the only internal parameter that counts is the local direction of motion 
s(t) = ±1.

This formal equivalence is however extremely useful, as concepts and methods developed 
for PK processes can be fruitfully transferred to the analysis of LWs. For example, it has been 
shown in [62] that problems arise when studying PK processes in bounded domains (e.g. an 
interval in one dimension), associated with the proper setting of the boundary condition in 
order to fulfil the requirement of positivity of the resulting probability distributions. This is 
also the case of the maximum flux condition found in [63, 64], which yields a straightforward 
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explanation within the partial density representation [65]. We will exploit this analogy in sec-
tion 6 when discussing the first passage time problem for LWs.

3.  Preparation and aging of Lévy walks

Consider again the CTRW description of a LW at discrete time instants corresponding to the 
points in time at which transitions in the direction of motion occur. In this framework it is 
implicitly assumed that the initial time t  =  0 yields the instant at which all the particles have 
just performed a transition and that the initial directions of motion are distributed amongst 
s = ±1 in an equiprobable way. Viewed with respect to the partial density formalism this rep-
resents indeed a very peculiar case of initial condition. As discussed above, the couple (s, τ) 
describes the internal degrees of freedom of a LW process, and consequently the initial state 
of the system should be defined also with respect to these variables in order to completely 
characterize the process.

This observation leads to the concept of preparation of an ensemble of LW particles/fluc-
tuations, which can be viewed as the specification of the initial state of the ensemble with 
respect to the internal parameters (s, τ). In symbols, the preparation of a LW process is just the 
pair ({π0

α,φ0
α(τ)}α=±). On the one hand, π0

α are the probabilities associated with the initial 
distribution of the directions of motion, which thus satisfies the evident properties π0

α � 0, 
π0
+ + π0

− = 1. On the other hand, φ0
α(τ) are density functions accounting for the distribution 

with respect to the transitional age of the two subpopulations of particles, which thus satis-
fies φα(τ) � 0, 

∫∞
0 φα(τ) dτ = 1, α = ±. Consequently, assuming that all the particles are 

initially located at x  =  0, the initial condition specifying the solutions of the hyperbolic equa-
tions (3) and (5) takes the form

p±(x, 0; τ) = p0
±(x, τ) = π0

± φ0
±(τ) δ(x) .� (8)

The hyperbolic formulation of LW dynamics permits to consider generic expressions for 
the initial age-distribution of a LW ensemble. For instance, the CTRW preparation of a LW 
ensemble is just π0

± = 1/2, φ0
±(τ) = δ(τ) corresponding to an equiprobable and impulsive 

initial distribution with all the particles possessing vanishing transitional age.
In this perspective the concept of aging introduced for CTRWs and extended to LWs  

[51–55] follows naturally as a particular preparation of the system. An aged LW system pos-
sessing aging time ta is an ensemble of LW particles that has evolved for a time interval ta 
starting from the CTRW preparation. Because the dynamical evolution of the particle ensem-
ble under consideration preserves symmetries the directions of motion are equiprobable, the 
age densities φ±(τ) coincide with each other, and they are equal to

φ±(τ) = π̂(ta, τ) ,� (9)

where π̂(t, τ) ≡
∫∞
−∞ p±(x, t; τ)dx  is the solution of the age-dynamics

∂π̂(t, τ)
∂t

= −∂π̂(t, τ)
∂τ

− λ(τ) π̂(t, τ)� (10)

equipped with the boundary and initial conditions

π̂(t, 0) =
∫ ∞

0
λ(τ) π̂(t, τ) dτ , π̂(0, τ) = δ(τ) .� (11)

However, this concept of preparation is broader than aging. It is intrinsically associated 
with the age representation of LWs and finds an immediate interpretation in those cases where 
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a LW represents a model for complex fluctuations in condensed and soft matter physics. 
Examples are glasses or polymeric solutions, where memory effects strongly influence the 
transport and relaxation properties of the system. In this case the two parameters velocity b(Θ) 
and transition rate λ(τ ,Θ) characterizing a LW can depend on the physical temperature Θ. 
Assume for simplicity that the LW is transitionally ergodic in the range of temperatures con-
sidered, which means that the age dynamics (10) admits, for constant Θ0, an invariant density, 
π̂∗(τ ;Θ0) = A e−Λ(τ ;Θ0), where Λ(τ ;Θ0) is defined by equation (4) with λ(τ) replaced by 
λ(τ ;Θ0), and A is a normalization constant. Next, suppose that at t  =  0+ the system temper
ature is changed abruptly, setting it to Θ �= Θ0. In this scenario the dynamics of the system at 
temperature Θ is significantly influenced by the previous preparation, which corresponds to 
the equilibrium conditions at the initial temperature Θ0.

The latter observation suggests a further generalization of LW dynamics. The preparation 
and the aging effects are a manifestation of the initial condition on the structure of the inter-
nal degrees of freedom that influence the short to intermediate time scales or the properties 
in bounded systems (see section 5), as it impacts on the complex transition mechanism of 
LWs, which in general is characterized by long-range memory effects. Another generaliza-
tion borrowed from condensed matter physics and material science may involve the fact that 
LW fluctuations in complex materials (glasses) may be subjected to a progressive wearing as 
a function of time that modifies the mobility properties, resulting in a progressive decrease 
of the effective velocity b. Therefore, we define a wearing Lévy walk (WLW) as a LW whose 
trajectories are given by equations (1) and (2) for which the velocity b is no longer constant 
but depends on the number of transitional events experienced, i.e. on the operational time n 
entering equation (1), i.e.

b = b0β(n) , β(n + 1) � β(n), n = 0, 1, . . . .� (12)

Related models have been discussed in [22, 23] and very recently in [56, 57]. If the wearing 
process is sufficiently slow, it may occur that the system still maintains some level of fluctua-
tion even in the long run, characterized by qualitatively different properties with respect to the 
case where the wearing dynamics is absent. In order to give an example of this phenomenon 
let b0  =  1 [a.u.] and the transition rate λ(τ) defined in equation (3)

λ(τ) =
ξ

1 + τ
[a.u.] ,� (13)

which according to equation  (4) yields the transition time probability density 
T(τ) = ξ/(1 + τ)ξ+1. For ξ � 1 the system is not transitionally ergodic, since no equilib-
rium age distribution exists. Indicating with R2(t) the mean square displacement at time t, 
R2(t) = 〈x2(t)〉 − 〈x(t)〉2, R2(t) ∼ t2. For ξ > 1 the LW is transitionally ergodic, and the 
equilibrium age density exists and is given by π̂equil(τ) = A e−Λ(τ), where A is a normaliza-
tion constant. For 1 < ξ < 2 it is characterized by anomalous diffusive behavior providing 
a superdiffusive scaling of R2(t) ∼ t3−ξ while R2(t) ∼ t  for ξ > 2 [35]. If a slow wearing 
mechanism is added, by assuming for the function β(n) a logarithmic behavior

β(n) =
1

1 + log(1 + n)� (14)

the transport properties change in a qualitative way. Figure 1 depicts the scaling of R2(t) as 
a function of time t for the WLW at the two different values of ξ = 0.5, 1.5. Simulations 
have been performed using an ensemble of 107 particles. While for small time we observe 
the expected ballistic scaling, in both cases a long-term power-law scaling is observed, 
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R2(t) ∼ tγ , with an exponent different from the case without wearing: γ = 1.84 ± 0.02 
at ξ = 0.5, whereas instead the classical LW would predict γ = 2, and γ = 1.28 ± 0.03 at 
ξ = 1.5, with γ = 1.5 instead in the absence of wearing.

A more detailed analysis of WLWs falls outside the scope of this article and will be 
addressed in forthcoming works. What is important to notice here is that once the age struc-
ture and formalism of LWs is assumed, generalizations and extensions of the internal age 
parametrization follow systematically and can be exploited for adapting the LW paradigm to 
the complexity of physical phenomenology.

4.  Integral representation of the solutions

Here we show that the partial density formalism expressed by equations (3) and (5) provides 
the same level of analytical complexity than any other model based on the formulation of an 
evolution equation for the overall probability density P(x, t). The approach followed is similar 
to a corresponding analysis developed in [35], where a single evolution equation for P(x, t) 
was finally obtained by enforcing an initial preparation of CTRW-type. Below, starting from 
the hyperbolic formulation for any initial preparation, we derive a single integral equation for 
an auxiliary function, which depends solely on a spatial and temporal variable.

Consider the propagation of a LW on the real line, defined statistically by equations (3) 
and (5) and equipped with the initial conditions p±(x, 0; τ) = p0

±(x, τ). Assume the following 
initial symmetry

p0
+(x, τ) = p0

−(−x, τ) ∀x ∈ R, τ � 0 ,� (15)

which is the symmetry characterizing the CTRW preparation or the initial setting of a LW with 
aging (see section 3). This symmetry involves solely the initial distribution of velocity direc-
tions and not the initial age distribution, which remains generic.

In this case, due to the symmetric propagation towards positive/negative x values of the 
forward (p+(x, t; τ)) and backward (p−(x, t; τ)) densities, one has

Figure 1.  The mean square displacement R2(t) versus time t for the Wearing LW 
defined by equations  (12)–(14). Dots are the results of stochastic simulations, lines 
represent the LW long-term scaling R2(t) ∼ tγ . Line (a) and (�) refer to ξ = 0.5 for 
which γ = 1.84, line (b) and (°) to ξ = 1.5 for which γ = 1.28.
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p−(x, t; τ) = p+(−x, t, τ) .� (16)

Consequently, in the analysis of the process it is sufficient to consider solely the forward den-
sity p(x, t; τ) = p+(x, y; τ), whose evolution equation becomes nonlocal in space according to

∂p(x, t; τ)
∂t

= −b
∂p(x, t; τ)

∂x
− ∂p(x, t; τ)

∂τ
− λ(τ) p(x, t; τ)

p(x, t; 0) =
∫ ∞

0
λ(τ) p(−x, t; τ) dτ

p(x, 0, τ) = p0(x, τ) = p0
+(x, τ) .

�

(17)

Observe that the nonlocality in equation (17), is not a physical property but rather a math-
ematical superstructure introduced in order to enforce the symmetries and to get rid of the 
backward density wave. Obviously, the overall density P(x, t) is given by

P(x, t) =
∫ ∞

0
[ p(x, t; τ) + p(−x, t; τ)] dτ .� (18)

Consider then the transformation

p(x, t; τ) = e−Λ(τ) q(x, t; τ) .� (19)
From equation (17), the equation for q(x, t; τ) becomes

∂q(x, t; τ)
∂t

= −b
∂q(x, t; τ)

∂x
− ∂q(x, t; τ)

∂τ
� (20)

equipped with the boundary and initial conditions

q(x, t; 0) =
∫ ∞

0
T(τ) q(−x, t, τ) dτ ,

q(x, 0; τ) = q0(x, τ) = eΛ(τ) p0(x, τ) ,
�

(21)

where T(τ) and Λ(τ) are defined by equation (4). Equation (20) is a first-order constant coef-
ficient equation casted in a conservation form that can be solved with the method of character-
ics: its solution attains the form

q(x, t; τ) = φ(x − b t, t − τ) .� (22)

By considering the boundary condition at τ = 0, it follows that for τ � t q(x, t; τ) consists 
solely of the propagation of the initial condition both in space and age. Conversely, for τ < t 
the solution can be formally expressed by introducing an auxiliary function h(x, t). Thus, 
equation (22) can be written as

q(x, t; τ) =
{

q0(x − b t, τ − t) τ � t
h(x − b τ , t − τ) τ < t.

� (23)

Substituting equation (23) into the boundary condition (21), the equation for h(x, t) follows

h(x, t) =
∫ t

0
T(τ) h(−x − b τ , t − τ) dτ

+

∫ ∞

t
T(τ) q0(−x − b t, τ − t) dτ ,

�
(24)
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which holds for t  >  0. The latter equation can be obtained in terms of the initial condition 
p0(x, τ) to

h(x, t) =
∫ t

0
T(τ) h(−x − b τ , t − τ) dτ

+

∫ ∞

t
T(τ) eΛ(τ−t) p0(−x − b t, τ − t) dτ

�
(25)

and the density p(x, t; τ) is thus given by

p(x, t; τ) =
{

e−Λ(τ) eΛ(τ−t) p0(x − b t, τ − t) τ � t
e−Λ(τ) h(x − b τ , t − τ) τ < t .

� (26)

Since h(x − b τ , t − τ) is defined stictly for t > τ , it can always be set to h(x, t) = 0 for any x, 
t � 0. Equation (25) can be expressed equivalently as

h(x, t) =
∫ t

0
T(t − τ) h(−x − b t + b τ , τ) dτ ,+G0(t)� (27)

where the forcing term G0(t) is a linear functional of the initial condition p0(x, τ) corre
sponding to the second integral on the rhs of equation (25). If the symmetry condition (16) is 
removed it is still possible to derive an integral representation of the solutions involving two 
auxiliary functions h±(x, t). This is addressed in section 6 in connection with the analysis of 
the first passage time problem. Several observations follow from the above derivation:

	 •	�By applying the method of characteristics it is possible to compress all the physical infor-
mation about the spatial-temporal propagation of a LW into a single function h(x, t) of the 
two arguments x ∈ R and t � 0, analogously to the evolution equation associated with 
the overall density function P(x, t) involving, for some λ(τ), fractional derivatives.

	 •	�Equation (25) is exact and holds for any initial preparation of the system and any func-
tional form of λ(τ).

	 •	�The memory effects of the age dynamics characterizing a LW can be clearly appreciated 
by the convolutional nature of the first term entering equation  (27), which is a linear 
Volterra integral equation whose kernel is the transition time density T(τ). Due to the 
simultaneous propagation both in space and along the ages, this convolution involves both 
arguments of the function h(x, t).

The representation (25) is amenable to a simple numerical integration. For simplicity set b  =  1 
[a.u.] and use an impulsive initial condition, p0(x, τ) = δ(x) δ(τ). For this particular case, the 
prefactor of p0(x − b t, τ − t) in equation (26) simplifies as e−Λ(t). Assuming equal step size 

for x, t and τ , i.e. ∆x = ∆t = ∆τ, and defining the grid approximation ĥ[m, n] = h(xm, tn), 
m = . . . ,−1, 0, 1, . . ., n = 0, 1, . . ., where xm = m∆x, tn = n∆t, the simplest discretization 
of equation (27) provides the solution algorithm

ĥ[m, n] =
n−1∑
i=0

T̂[n − i] ĥ[−m − n + i, i] ∆τ + T̂[n] δ̂[m + n] ,� (28)

where T̂[k] = T(τk), τk = k∆τ , and δ̂[h + k] is the numerical approximation for a Dirac delta 
function, δ̂[k] = 0 for k �= 0, δ[0] = 1/∆x. For any n, ĥ[m, n] is different from zero solely for 
|m| � n. The overall density function P̂[m, n] = P(xm, tn) at time instant tn is thus written as 
P̂[m, n] = π̂[m, n] + π̂[−m, n], where
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π̂[m, n] =
n−1∑
i=0

Λ̂[i] ĥ[m − i, n − i] ∆τ + Λ̂[n] δ̂[m − n]� (29)

and Λ̂[k] = exp(−Λ(τk)). To give a numerical example, figure 2 depicts the evolution of the 
h-function of the LW model defined by equation (13) at two different values of the parameter ξ 
by applying equation (28) with ∆x = 10−3. The corresponding overall density profiles P(x, t), 
derived from the h-function via equation (29) and normalized to unity, are depicted in fig-
ure 3 by comparing them with stochastic simulations of the corresponding problem, obtained 
using an ensemble of Np = 108 particles. The markedly different behaviour for these two 
values of ξ corresponds to the fact that for ξ < 1 the LW is not transitionally ergodic i.e. no 
transitional age equilibrium distribution exists, while it does for ξ > 1, where the transitional 
age equilibrium distribution is given by π̂equil(τ) = A e−Λ(τ) with normalization constant A. 
In the present case π̂equil(τ) = (ξ − 1)/(1 + τ)ξ, ξ > 1. This manifests itself in the different 
convexity of the distribution between the ballistic peaks, see [24] for plots of these different 
distributions.

5.  Problems in bounded domains: relaxation and diffusional release dynamics

The influence of the internal preparation of a LW ensemble controls the short to intermediate 
scale properties and the statistical behavior in bounded systems. Let us address these issues 
with some examples.

5.1.  Relaxational dynamics

Consider the evolution of LW fluctuations in a bounded closed domain, which in the one-
dimensional case can be represented by the interval [0, L]. The system of hyperbolic equa-
tions (3), defined for x ∈ (0, L), is thus equipped with reflective boundary conditions at the 
endpoints

p+(0, t; τ) = p−(0, t; τ)
p−(L, t; τ) = p+(L, t; τ)
� (30)

for any t  >  0, τ > 0 corresponding to the total reflection of the incoming wave at the boundar-
ies where it inverts its direction of propagation: at x  =  0 the incoming wave is p −(0, t; x), at 
x  =  L it is p+(L, t; τ). Independently of the transitionally ergodic nature of the age dynam-
ics, the spatial distribution becomes asymptotically uniform, i.e. the overall density function 
P(x, t) approaches the uniform density P*(x)  =  1/L, x ∈ (0, L) for x ∈ (0, L) corresponding to 
the equilibrium distribution, at least restricted to the spatial dynamics.

Let f (x) be any thermodynamic function associated with the LW fluctuations and f
∗
 its 

equilibrium value with respect to the long-term limit density P*(x), i.e. f
∗
=

∫ L
0 f (x)P∗(x) dx. 

The relaxation function Rf (t) referred to the observable f (x) is therefore the absolute value of 
the difference of the average value of f (x) at time t and its (long-term) equilibrium value f

∗
,

Rf (t) = |〈 f (x)〉(t)− f
∗| =

∣∣∣∣
∫ L

0
f (x)P(x, t) dx − 1

L

∫ L

0
f (x) dx

∣∣∣∣ .� (31)

The reflective conditions (30) do not alter the age structure of the LW process so that the analy-
sis developed in the previous section, at least regarding the age dynamics, can be qualitatively 
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applied to the present case. Suppose that the LW system is prepared in a CTRW-way with an 
impulsive initial age distribution δ(τ). Consequently, during the relaxation process of the spatial 
distribution P(x, t) towards P*(x), the spatial perturbation decaying in the slowest way is just the 
impulsive contribution associated with the sub-ensemble of fluctuations that never experienced 
an internal transition, which propagates back and forth at constant speed within the system due to 
the collisions with the endpoints and relaxing as a function of time as e−Λ(t), see equation (26)). 
It follows from this observation that the relaxation function of a generic thermodynamic variable 
f (x) for a CTRW-prepared LW ensemble should obey the long-term scaling

Rf (t) ∼ e−Λ(t) .� (32)

Equation (32) suggests that by modulating the functional form of the transition rates λ(τ) it 
is possible to predict from LW dynamics a great variety of relaxation phenomena observed in 
physical phenomenology. Specifically, consider for λ(τ) the model

Figure 2.  Function h(x, t) versus x obtained from the numerical solution of the Volterra 
integral equation  for the LW defined by the transition rate equation  (13). Panel (a) 
refers to ξ = 0.5, panel (b) to ξ = 1.5. The arrows indicate increasing time instants 
t = 2, 4, 6, 8, 10.
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λ(τ) =
aβ

(1 + τ)1−β� (33)

with 0 < β < 1 and a  >  0. Since β > 0, limτ→∞ τ λ(τ) = ∞, 
T(τ) = aβ (1 + τ)−1+β exp[1 − a (1 + τ)β ], and the associated LW process is normal diffu-
sive by possessing the whole hierarchy of moments 〈τ n〉. The Central Limit Theorem applies, 
and its qualitative propagation along R  is, in the long-term limit, qualitatively identical to the 
classical mathematical Brownian motion, whose overall probability density P(x, t) satisfies 
the parabolic diffusion equation.

Since Λ(t) = a
[
(1 + t)β − 1

]
, equation (32) indicates that the relaxational decay of any 

thermodynamic function f (x) is of the form

Rf (t) ∼ e−a(1+t)β ,� (34)

Figure 3.  Overall density P(x, t) versus x derived for the h-function depicted in figure 2. 
Panel (a) refers to ξ = 0.5, panel (b) to ξ = 1.5. The arrows indicate increasing time 
instants t = 2, 4, 6, 8, 10. Symbols represent the results of corresponding stochastic 
simulations of the process.
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hence there is a stretched exponential decay. This decay, usually referred to as the Kohlrausch 
relaxation, is a common feature observed in many complex systems [58, 59]. Several interpre-
tations have been proposed for this anomalous behavior [66, 67], but to the best of our knowl-
edge this is the first attempt to connect it to a LW structure of the underlying fluctuations.

Equation (34) is also interesting from another thermodynamic perspective. It shows that 
even LW fluctuations possessing normal diffusive behavior may display highly non-trivial 
properties, deviating from the corresponding predictions of the associated long-term transport 
model. In the case of the LW process defined by equation (33), the associated transport model, 
i.e. the classical hydrodynamic limit of this model, is just the parabolic diffusion equation for 
which the relaxation function of a generic f (x) should decay exponentially as a function 
of time, Rf (t) ∼ e−µ2 t, where µ2 > 0 is the second eigenvalue of the Laplacian operator 
equipped with homogeneous von Neumann conditions at the boundary. The failure of the 
classical hydrodynamic limit in predicting finer dynamic properties for classes of normal dif-
fusive LWs stems from the fact that the hydrodynamic limit captures some properties of the 
LW dynamics, specifically the scaling of the mean square displacement, but not the entire 
complexity involved with a LW, which would be obtained by considering the whole moment 
hierarchy.

An example of this phenomenon is depicted in figure 4 panel (a), where the model equa-
tion (33) is used with L  =  1, b  =  1 [a.u.]. The relaxation data have been derived from sto-
chastic simulations of the system using 5 × 107 particles initially located at x  =  xc  =  1/2 
with age τ = 0 and equiprobable velocity directions. Statistically, this means that 
p0
±(x, τ) = δ(x − xc) δ(τ)/2. As a thermodynamic test function we consider a quadratic func-

tion of x, f (x) = 6 x (1 − x), so that f
∗
= 1. Figure 4 panel (a) shows the time evolution of the 

logarithm of Rf (t) with reversed sign for β = 0.3, a  =  1, displaying the complex oscillations 
associated with the back-and-forth propagation of the impulsive mode due to the reflective 
boundary conditions and corresponding to the subpopulation of particles that did not experi-
ence any inner transition. The behavior of − logRf (t) is highly nonlinear and bounded from 
below and the top by c1 (1 + t)β < Rf (t) < c2(1 + t)β, where c1 < c2 are constant, which is 
consistent with equation (34). Taking these properties into account, if the relaxation dynam-
ics is sampled at times tn = t0 + b L n, n = 1, 2, . . . where t0 is any initial instant of time, a 
regular and monotonic behavior in the relaxation dynamics should be observed. This property 
is depicted in figure 4 panel (b) for two different LW systems.

5.2.  Solute release kinetics

Significant differences controlled by the system preparation occur in other typical transport 
experiments involving bounded systems. Let us consider the release dynamic of a solute from 
a complex polymeric matrix with a transport property that obeys a LW model. Assume that 
x  =  L corresponds to an impermeable boundary to solute transport and that x  =  0 is the exit 
boundary from which the solute is released into the environment. Moreover, assume that the 
external environment is perfectly mixed and arbitrarily large so that the solute concentration 
outside the release system, and at the exit boundary of it, can be considered vanishingly small. 
This transport problem is conceptually identical to a first passage time problem in which x  =  0 
corresponds to the target exit point [17, 68, 69]. In the release experiment, indicating with 
Psurv(t) the fraction of solute particles still within the release system at time t and with J0(t) 
the particle flux exiting from x  =  0, mass balance dictates
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Psurv(t) = 1 −
∫ t

0
J0(t′) dt′ .� (35)

The flux J0(t) in the release experiment corresponds exactly to the first passage time density 
function fθ1(θ1) when t = θ1, i.e.

fθ1(θ1) = − dPsurv(t)
dt

∣∣∣∣
t=θ1

.� (36)

Figure 4.  The relaxation function − logRf (t) versus t for the relaxational dynamics 
in a closed system discussed in the main text using LWs defined by equation  (33) 
with β = 0.3, a  =  1. Panel (a) shows oscillations in Rf (t) as a function of time as 
explained in the text while the two curves (a) and (b) represent the envelope functions 
− logRf (t) = c(1 + t)β for two values of the prefactor c. Panel (b) depicts the scaling 
of − logRf (t) once sampled at multiples of the end-to-end transit time L/b  =  1 for 
ξ = 0.3, a  =  1 (symbols (�) and curve (a)), and for ξ = 0.7, a  =  0.3 (symbols (•) and 
curve (b)). Symbols are the results of stochastic simulations, lines the scaling curve 
derived from equation (34), − logRf (t) ∼ (1 + t)β + c, where c is a constant.
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Consider the LW defined by equation (13) with b  =  1 and L  =  1. Figure 5 depicts the behavior 
of Psurv(t) versus t at short and intermediate time scales for the two values of ξ = 1.05, 1.5 
corresponding to anomalous but transitionally ergodic LW fluctuations, and for two initial 
preparations of the system in which the solute (i.e. the LW particles) are localized initially 
at x  =  xc  =  1/2 with equiprobable directions of motions and age distributions corresponding 
either to the CTRW preparation, i.e. p±(x, 0, τ) = δ(x − xc)δ(τ)/2, or to the equilibrium age 
distribution, i.e. p±(x, 0, τ) = δ(x − xc)e−Λ(τ)/2. These data have been obtained from sto-
chastic simulations starting from an initial ensemble of 108 solute particles.

One can see that the age preparation of the system deeply modifies the release proper-
ties: the difference in Psurv(t) can be of about two orders of magnitude at ξ = 1.05 for the 
two preparations at time scales when a significant portion of solute is still present within the 
system starting from the equilibrium preparation (curve (a) in figure 5 panel (b)). Note also 
the step structure in the decay of all curves, which is due to the two propagating fronts of 
the particle densities and their interplay with the reflecting wall at L, akin to the oscillatory 
dynamics shown in figure 4. In detail, the first step corresponds to the initial solution propagat-
ing directly towards the exit point x  =  0. Conversely, the second step is generated by the initial 
solution propagating in the opposite direction, which is first reflected at the boundary x  =  L 
and only later reaches the exit point. Recombination dynamics amongst the two partial prob-
ability waves prevents the occurrence of further jumps for longer times, and thus a smooth 
decaying profile sets up. While these effects, controlled by the initial conditions in age, are 
quantitatively relevant for transport problems, in the next section we address the peculiarity of 
the first passage time problem in the presence of LW fluctuations in the light of another inter-
nal parameter, namely the initial velocity direction, which plays a leading role as it emerges 
from the hyperbolic modelling.

6.  Integral formulation of the first passage time statistics of Lévy walks

Let us finally analyze the first passage time problem in the light of the hyperbolic formulation 
of the statistical properties of LWs. Owing to the analogy between LWs and Poisson–Kac 
processes, it is convenient to tackle this problem starting from the latter. While the main step 
characterizing the formulation of the hyperbolic transport equations  and of the associated 
boundary conditions is analogous in the two cases, LWs may display some anomalies in the 
long-tail decay of the first passage time statistics with an exponent differing from the Sparre-
Andersen value of  −3/2 [70], which cannot occur in the classical Poisson–Kac case defined 
by equation (7).

6.1.  Poisson–Kac processes

Let us therefore first consider an ensemble of LW particles with λ(τ) = λ = constant, initially 
localized at x  =  x0  >  0 and evolving on the positive semiaxis, and let x  =  0 be the position 
of the target exit point. Once a particle passes through x  =  0 it is removed from the system, 
and its first passage time is evaluated. If x(t) is the continuous trajectory of the particle, the 
first passage time t* is defined as the first time instant for which x(t∗ − ε)x(t∗ + ε) < 0 for 
any small ε > 0, provided that x(t) > 0 for t  <  t*. This case, corresponding to a Poisson–
Kac ensemble, is statistically described by the hyperbolic system of equations for the partial 
densities P̂±(x, t) defined for x ∈ (0,∞) and t  >  0. At infinity regularity conditions apply, 
namely limx→∞ xk P̂±(x, t) = 0 for any t  >  0 and any k = 0, 1, . . .. Regarding the condition 
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at the exit point, the above definition of ‘first passage’ implies the removal of any particle that 
passes through x  =  0 at any time t from subsequent analysis. This process involves exclusively 
P̂+(x, t) at x  =  0, which should necessarily be vanishing, i.e.

P̂+(0, t) = 0 .� (37)

Conversely, P̂−(x, t) can attain in principle any non-negative value at x  =  0. The exiting flux 
at x  =  0 is just J0(t) = b P̂−(0, t) and, consequently, the first passage time density function 
fθ1(θ1) is readily obtained from the solution of equation (7) as

fθ1(θ1) = b P̂−(0, t)|t=θ1 .� (38)

Given the initial conditions

P̂±(x, 0) = π0
± δ(x − x0) ,� (39)

Figure 5.  The survival probability density Psurv(t) versus t in a release experiment in 
the presence of LW particles whose motion is defined by equation (13). Panel (a) refers 
to ξ = 1.5, panel (b) to ξ = 1.05. Lines (a) correspond to the equilibrium preparation, 
lines (b) to the CTRW preparation when initially all the particles possess vanishing 
transitional age.
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π± � 0, π0
+ + π0

− = 1, the problem expressed by Equation (7) and equipped with the bound-
ary condition (37), the regularity condition at infinity, and the initial condition (39) can be 
solved easily using Laplace transforms. The analytic expression for the first passage time 
statistics for PK processes has been recently discussed by Rossetto [71] starting from the 
Siegert formula [72]. In order to mark explicitly the dependence on the initial position x0, it 
is convenient to indicate the first passage time density as fθ1(θ1; x0). Although the article by 
Rossetto displays some typos in some basic equations, the results are correct and consequently 
the analysis is not repeated here. What is of relevance in the present analysis are some qualita-
tive observations on the nature of the first passage time problem of Poisson–Kac processes. 
Specifically:

	 •	�This problem is intrinsically vector-valued, in the meaning that two first passage time 

probability densities f (±)
θ1

(θ1; x0) should be defined accounting for the initial preparation 

of the system with respect to the initial velocity orientation: f (+)
θ1

(θ1; x0) is the solution 

of the problem (38) for π0
+ = 1, and f (−)

θ1
(θ1; x0) for π0

+ = 0. Owing to linearity, the 

solution for generic initial conditions (39) is simply

fθ1(θ1; x0) = π0
+ f (+)

θ1
(θ1; x0) + π0

− f (−)
θ1

(θ1; x0) .� (40)

		 The density f (−)
θ1

(θ1; x0) admits the Laplace transform

L[ f (−)
θ1

, s] = exp[−(x0/b)
√

s
√

s + λ] ,� (41)

		 whose inverse transform is given by

f (−)
θ1

(θ1; x0) = e−x0 λ/b δ(t − x0/b)

+
x0 λ

b
e−λ t

I1

(
λ
√

t2 − (x0/b)2
)

√
t2 − (x0/b)2

η(t − x0/b) ,
�

(42)

		 where I1(ξ) is the modified Bessel function of the first kind of order 1 with argument ξ 
and η(ξ) the Heaviside step function, η(y) = 1 for y   >  0, η(y) = 0 for y   <  0.

	 •	�Even if initially the particles are located at x0  =  0, i.e. just at the exit point, its first pas-
sage time density is not necessarily a Dirac delta δ(θ1) provided that π0

+ �= 0. Specifically 

it can be shown that the first passage time distribution f (+)
θ1

(θ1; 0) is given by

f (+)
θ1

(θ1; 0) = λ e−λt I1(λ t)
λ t

� (43)

		 for which f (+)
θ1

(θ1; x0) follows as

f (+)
θ1

(θ1; x0) =

∫ θ1

0
f (−)
θ1

(θ1 − τ ; x0) f (+)(τ ; 0) dτ� (44)

		 admitting a straightforward physical interpretation: the first passage time density from 
x0 starting from an initial velocity outwardly oriented with respect the exit point (i.e. 

f (+)
θ1

(θ1; x0)) is the convolution of the probability density of the time needed to reverse 
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the orientation (i.e. f (+)(τ ; 0)) times the first passage time density from x0 starting from 

inwardly oriented initial velocities ( f (−)
θ1

(θ1 − τ ; x0)).

This setting of the first passage time problem characterizes all the stochastic processes pos-
sessing finite propagation velocity including LWs.

There is another qualitative issue that distinguishes processes possessing finite propaga-
tion velocity from their Wiener-driven counterparts. This is associated with the possibility of 
defining the first passage time problem from an equivalent transport problem over the real line 
using the method of images by locating a suitable initial condition at the image point  −x0 of x0 
with respect to the exit point. Indeed, as observed in [50] this method does not apply for Lévy 
flights and for anomalously diffusive LWs. As a matter of fact, the method of images fails also 
for Poisson–Kac processes, and its failure is not related to the eventual diffusional anomaly of 
the process but rather to the boundedness of the propagation velocity, which is reflected in the 
symmetry properties of the associated Green functions for the free-space propagation.

To show this, consider the propagation of equation (7) over the real line with an image 
condition at the image point  −x0,

P̂±(x, 0) = π0
± δ(x − x0) + π0,′

± δ(x + x0) ,� (45)

where π0,′
±  are unknown real values to be determined by enforcing the boundary condition 

(37). The solution of this problem can be obtained by using the closed-form expression for the 
matrix-valued Green function reported in [62]. Indicating with (Gα,β(x, t))α,β=± the entries 
of the Green function matrix for an initial condition centered at x  =  0, the formal solution of 
the image method reads

P̂±(x, t) = G+,+(x − x0, t)π0
+ + G+,−(x − x0, t)π0

−

+ G+,+(x + x0, t)π0,′
+ + G+,−(x + x0, t)π0,′

− .
� (46)

At x  =  0 the forwardly propagating density is

P̂+(0, t) =
[
G+,+(−x0, t)π0

+ + G+,+(x0, t)π0,′
+

]

+
[
G+,−(−x0, t)π0

+ + G+,−(x0, t)π0,′
−

]
.

�
(47)

Owing to the directed propagation of the Poisson–Kac density waves, the entries G+,±(x, t) 
are not symmetric functions of their spatial argument (as can be checked from their explicit 
analytical expression reported in [62]). Consequently, one cannot find constants π0,′

±  such that 
the equations π0,′

± = −G+,±(−x0, t)π0
±/G+,±(x0, t) are identically fulfilled for any t  >  0.

6.2.  Lévy walks

In the case of LWs, the first passage time problem within the hyperbolic formulation reduces 
to the solution of equation (3) for the partial densities defined in x ∈ (0,∞) and equipped with 
the boundary condition for the incoming (entering) density wave

p+(0, t, τ)|x=0 = 0� (48)

identical to the corresponding condition (37) for Poisson–Kac processes. Indicating with 
Psurv(t) the fraction of particles remaining in the domain [0,∞) at time t, its derivative returns 
the probability of the first passage times with reverse sign. Enforcing the transformations
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p±(x, t; τ) = e−Λ(τ) q±(x, t; τ)� (49)

the auxiliary functions q±(x, t; τ) satisfy a conservative hyperbolic scheme

∂q±(x, t; τ)
∂t

= ∓b
∂q±(x, t; τ)

∂x
− ∂q±(x, t; τ)

∂τ
� (50)

equipped with the boundary conditions

q±(x, t; 0) =
∫ ∞

0
T(τ) q∓(x, t; τ) dτ� (51)

and with the initial conditions q±(x, 0; τ) = eΛ(τ) p0
±(x, τ) = q0

±(x, τ).
From equation (50) it follows that the functional dependence of the auxiliary functions on 

their arguments should necessarily be of the form

q±(x, t; τ) = φ±(x ∓ b t, t − τ) .� (52)

To q−(x, t; τ) the same representation used in section 4 applies, namely

q−(x, t; τ) =
{

q0
−(x + b t, τ − t) τ � t

h−(x + b τ , t − τ) τ < t .
� (53)

Conversely, the structure of q+ (x,t) should account for the boundary condition at x  =  0. This 
can be achieved by setting

q+(x, t; τ) =




q0
+(x − b t, τ − t) τ � t , x < b t

h+(x − b τ , t − τ) τ < t , τ < x/b
0 otherwise .

� (54)

The latter representation ensures that no particle that left the positive region (x  >  0) will re-
enter it, which is the fundamental constraint in order to define correctly the first passage time 
statistics.

Substituting these expressions into the boundary conditions (51), the integral equations for 
the auxiliary functions h±(x, t) follow. For h+ (x, t) one derives

h+(x, t) =
∫ t

0
T(t − τ) h−(x + b t − b τ , τ) dτ

+

∫ ∞

t
T(τ) eΛ(τ−t) p0

−(x + b τ , τ − t) dτ .
�

(55)

For h−(x,t) equation (54) provides

h−(x, t) =
∫ t

0
T(τ) h+(x − b τ , t − τ) η(x − b τ) dτ

+ η(x − b t)
∫ ∞

t
T(τ) eΛ(τ−t) p0

+(x − b t, τ − t) dτ ,
�

(56)

where η(·) is the Heaviside step function. Alternatively, the first integral on the rhs of  
equation (56) can be expressed as

∫ min{t,x/b}

0
T(τ) h+(x − b τ , t − τ) dτ .
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The quantity 1 − Psurv(t) represents the distribution function for the first passage times 
and the corresponding density follows from differentiation, see equation  (36). Psurv(t) can 
be readily obtained from the solution of the above integral equations, since by definition 
Psurv(t) =

∫∞
0 dx

∫∞
0 [ p+(x, t; τ) + p−(x, t; τ)] dτ .

The system of equations (55) and (56) has been solved numerically for a LW with b  =  1 [a.u.] 
with the transition rate function expressed by equation (13) using ∆x = ∆t = ∆τ = 10−2. As 
an initial preparation, consider the case p±(x, τ) = π0

± δ(x − x0) δ(τ), with x0  =  1, and differ-
ent settings of the probabilistic weights π0

± > 0, π0
+ + π0

− = 1, controlling the distribution of 
the initial velocity directions. Figure 6 depicts the behaviour of Psurv(t) versus t obtained from 
the numerical solution of the integral Volterra equations for ξ = 0.5 and different initial veloc-
ity direction distributions, compared with the corresponding data obtained from the stochastic 
simulations of the first passage time problem using an ensemble of 108 particles. Scaling 
theory provides for the first passage time density fθ1(θ1) ∼ θ−ζ

1 , θ1 � x0/b. For ξ > 1 we 
obtain the exponent ζ = 3/2 corresponding to the Sparre-Andersen result while for ξ < 1 we 
get ζ = 1 + ξ/2 [73, 74]. In terms of the survival fraction Psurv(t) this means

Psurv(t) ∼
{

t−ξ/2 0 < ξ < 1
t−1/2 ξ > 1 .

� (57)

The integration of the system of equations for h±(x, t) closely matches the stochastic data and 
correctly predicts the anomalous Sparre-Andersen exponent.

However, one should be cautious with the numerical integration of equations  (55) and 
(56), as the accuracy may depend significantly on the step size chosen. This phenomenon is 
depicted in figure 7 at ξ = 1.5 in which a step size of at least ∆t = 10−3 is required for an 
acceptable prediction of the stochastic simulation data. This opens up the interesting problem 
of defining novel numerical algorithms for the efficient integration of the integral Volterra 
equations arising from LW theory, a problem that is shared by any model expressed in terms 
of the fractional derivatives of the overall distribution function P(x, t).

7.  Concluding remarks

The hyperbolic formulation of LWs, parametrized with respect to the velocity direction and 
the transitional age, permits to completely describe their statistical properties in a simple for-
mal setting, which makes it possible to address a variety of different phenomenologies within 
a unified framework. The concept of ensemble preparation is a direct consequence of this 
formulation accounting for the more general case of initial conditions involving the internal 
degrees of freedom characterizing LWs. In this framework, the concept of aging emerges as a 
particular system preparation.

However, to conceptually simple theoretical settings do not necessarily correspond com-
putationally simple ways of determining the respective system properties. Nevertheless, in 
the case of the hyperbolic formulation of the statistical properties of LWs, the extra degree of 
freedom represented by the transitional age τ , which comes in addition to the two variables 
of space coordinate x and time t in the partial densities p±(x, t; τ), can be embedded within 
the temporal parametrization. This means that the evolution of the system can be completely 
described by means of two auxiliary function h±(x, t) depending exclusively on a space x 
and a temporal coordinate t, satisfying a system of Volterra integral equations in which the 
convolutional nature of the dynamics accounts for the memory effects associated with the 
age. In general, as for Poisson–Kac processes the parametrization with respect to the velocity 
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direction, which corresponds to the inclusion of a system of two partial densities p±(x, t; τ) 
(or two auxiliary functions h±(x, t)) in the statistical analysis cannot be eliminated if the most 
general initial preparations are considered in which unbalanced subpopulations of particles 
initially moving in the two opposite directions may occur.

If symmetric conditions for the initial population of the forward and backward moving par-
ticles are assumed, only a single auxiliary function, say h(x,t)  =  h+ (x,t) is needed in the free-
space propagation, as for any model involving the overall density function P(x, t), allowing an 
arbitrary initial age preparation of the system. The equation for h(x, t) becomes nonlocal, and 
the nonlocality reflects the reduction of the model to a single propagating field. This presents 
some similarities with the problem of nonlocality and hidden variables in quantum mechanics, 
where the notion of hidden variables is not solely related to the existence of a ‘hidden proba-
bilitistic structure’ [75] but eventually to the inclusion of neglected propagating fields [76].

The importance of correctly accounting for the initial preparation of the system emerges 
clearly either in the short/intermediate term dynamics or in problems defined in bounded 
domains. Even diffusionally regular LWs displaying a linear scaling in the mean square dis-
placement may show interesting anomalous relaxation properties, such as the occurrence of a 
stretched exponential decay. This example suggests a broader application of LW fluctuations 
in material science and polymer physics as a model of complex fluctuations (viscoelasticity, 
nonlinear viscoelasticity, etc).

The analysis of the first passage time statistics embedded within the hyperbolic formalism 
opens up several interesting pathways for further investigation. The difficulty with formulat-
ing a correct method of images for the first passage time problem involving LWs is not related 
to their anomalous behavior but is intrinsically rooted in the finite propagation velocity of 
these fluctuation models. The mathematical setting of this problem in terms of partial densi-
ties requires that the partial density associated with an incoming wave from the surrounding 
environment should vanish at the target exit boundary in order not to reinject particles into the 
domain that have already been passed through it. The same problem arises in other classes of 

Figure 6.  The survival probability Psurv(t) versus t for the LW defined by equation (13), 
ξ = 0.5, with b  =  1, x0  =  1, for different values of π0

+. Solid lines (a)–(c) are the results 
of the numerical integration of equations  (55) and (56) with ∆t = 10−2 , symbols 
the results of stochastic simulations. Line (a) and (�) refers to π0

+ = 0, line (b) and 
(°) to π0

+ = 0.5, line (c) and (�) to π0
+ = 1. The solid line (d) represents the scaling 

Psurv(t) ∼ t−ξ/2 .
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dynamics possessing finite propagation velocity such as Poisson–Kac processes. The manipu-
lation of the partial density equations, enforcing the method of characteristics, permits to 
reduce the transport problem to the evaluation of two auxiliary functions h±(x, t) of the spatial 
coordinate x and the temporal one t, as in the case of the free-space propagation.

The hyperbolic formulation of LWs is particularly suited for modelling more complex situ-
ations, which account for the occurrence of interparticle interactions, exclusion effects, etc, 
that in a mean-field modeling can be described by allowing the velocity b and the transition 
rate λ(τ) to depend on the partial wave densities. This extension has been initiated in [77, 78] 
for LWs and in [79] for Poisson–Kac processes.
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