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Abstract. We consider work fluctuation relations (FRs) for generic types
of dynamics generating anomalous diffusion: Lévy flights, long-correlated
Gaussian processes and time-fractional kinetics. By combining Langevin and
kinetic approaches we calculate the probability distributions of mechanical
and thermodynamical work in two paradigmatic nonequilibrium situations,
respectively: a particle subject to a constant force and a particle in a harmonic
potential dragged by a constant force. We check the transient FR for two models
exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist,
and for two other models displaying subdiffusion, where there is a fluctuation-
dissipation relation. In the two former cases the conventional transient FR is not
recovered, whereas in the latter two it holds either exactly or in the long-time
limit.
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2.1. A system exhibiting Lévy flights . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. A system driven by long-correlated internal Gaussian noise . . . . . . . . . 4
2.3. A system driven by long-correlated external Gaussian noise . . . . . . . . . 5
2.4. A system described by a time-fractional kinetic equation . . . . . . . . . . 6

3. Class B. Systems coupled to a harmonic oscillator 7
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1. Introduction

Fluctuation relations (FRs) denote large-deviation symmetry properties in probability
density functions (PDFs) of nonequilibrium statistical physical observables. One
subset of them, fluctuation theorems, grew out of generalizations of the second law
of thermodynamics to thermostated systems [1]–[3]. Another subset, work relations,
generalize a thermodynamic equilibrium relation between work and free energy to
nonequilibrium situations [4]. These two fundamental classes were generalized by other
FRs from which they can partially be derived as special cases [5]–[7]. FRs hold for a great
variety of systems thus featuring one of the rare statistical physical principles that is valid
very far from equilibrium [8, 9]. Many of these relations have been verified in experiments
on nanosystems [10, 11].

Anomalous dynamics refers to processes that do not obey the laws of conventional
statistical physics [12, 13]. Paradigmatic examples are diffusion processes where the long-
time mean square displacement does not grow linearly in time, 〈x2(t)〉 ∝ tμ with μ = 1 for
Brownian motion, but either subdiffusively with μ < 1 or superdiffusively with μ > 1. Such
anomalous transport phenomena have recently been observed in a wide variety of complex
systems [14]. This raises the question of to what extent FRs are valid for anomalous
dynamics. Results for generalized Langevin equations [15]–[19], Lévy flights [20] and
continuous-time random walks [21] showed both validity and violations of different FRs.

In this letter we propose to classify FRs for anomalous dynamics by distinguishing
between four generic types of anomalous diffusion: we consider a particle exhibiting
one-dimensional anomalous diffusion generated by a random force that, firstly, obeys
anomalous statistics (Lévy flights) or, secondly, normal statistics but with anomalous
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memory properties (non-Markovian long-correlated Gaussian noise). In the latter case
we consider noise that is internal or external depending on the existence of a fluctuation-
dissipation theorem. Also, we consider the case described by a time-fractional kinetic
equation where anomalous diffusion is stipulated by long power law asymptotics of the
PDF for the random waiting time intervals between instant successive jumps [13].

In all cases, a regular external force given by a potential U(x, X(t)) acts on the
particle at position x, where X is an external control parameter that varies according
to a fixed protocol X(t). Following [22], we study our four models in two different
nonequilibrium situations: for class A the particle is driven by a constant external force,
for class B the particle is confined to a moving harmonic potential. We restrict ourselves to
overdamped motion, where the particle acceleration is negligible. Furthermore, in order to
be consistent, we choose the simplest nonequilibrium initial condition x(t = 0) = x0 = 0
for all four cases, since there is no Boltzmann equilibrium for the systems exhibiting Lévy
flights and for those driven by an external Gaussian noise.

2. Class A. Systems under a constant force

In this section we consider models driven by a constant external force, U = −F0x. We
are interested in the mechanical work PDFp(WM, t), where the mechanical work WM is
given by WM = −

∫
dx ∂U/∂x = F0x. Note that for class A systems WM is identical

to the heat. Thus, the PDF p(WM, t) is simply related to the x PDF, f(x, t), by
p(WM, t) = F−1

0 f(WM/F0, t).

2.1. A system exhibiting Lévy flights

Our starting point is the Langevin equation for an overdamped Lévy particle moving in
a constant field under white Lévy noise,

dx

dt
=

F0

mγ
+ ξ(t), (2.1)

where F0 is a constant force, m the mass, γ the friction coefficient, and ξ(t) holds for white

Lévy noise. That is, the time integral over Δt, L(Δt) =
∫ t+Δt

t
dt′ ξ(t′), is the α-stable

Lévy process whose PDF pα(x, Δt) has the characteristic function (CF) p̂α(k, Δt) [23],

p̂α(k, Δt) = F{pα(x, Δt)} ≡
∫ ∞

−∞
dx eikxpα(x, Δt) = exp[−Dα|k|αΔt], (2.2)

where α ∈ [0, 2] is the Lévy index, and Dα has the meaning of the noise intensity. In
this paper we restrict ourselves to the case of symmetric Lévy noise; the generalization
to asymmetric noise will be given elsewhere. It is well known that in the absence of an
external potential the Lévy particle exhibits superdiffusive motion, in the sense that the
fractional moments of the order μ, 0 < μ < α, give superdiffusive scaling, 〈|x|μ〉2/μ ∝ t2/α,
that is the ‘effective second moment’ grows faster than t if α < 2. The PDF f(x, t) obeys
the space-fractional Fokker–Planck equation [13]

∂f

∂t
= − ∂

∂x

(
F0

mγ
f

)

+ Dα

∂αf

∂|x|α , (2.3)
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where the Riesz fractional derivative on the right-hand side is understood via its Fourier
transform as F{∂αf/∂|x|α} = −|k|αF{f} = −|k|αf̂(k, t). Equation (2.3) is easily solved

in Fourier space, giving, for the CF p̂(k, t) of the work PDF, p̂(k, t) = f̂(kF0, t),

p̂(k, t) = exp [(iρk − σα|k|α) t] , ρ = F 2
0 /(mγ), σα = F α

0 Dα. (2.4)

Using the CF equation (2.4), it can easily be seen that p(WM, t) can be rewritten as

p(WM, t) =
1

σt1/α
Lα

(
WM − ρt

σt1/α

)

, (2.5)

where Lα(x) is the Lévy stable PDF whose CF is given by L̂α(k) = exp(−|k|α). It is
convenient to introduce the scaled value of the work wM = WM/(ρt) [20]. We then look
at the fraction defining the transient FR

gt(wM) ≡ p(WM, t)

p(−WM, t)
= Lα

(
wM − 1

(σ/ρ) t1/α−1

) /

Lα

(
−wM − 1

(σ/ρ) t1/α−1

)

. (2.6)

Only when the particle is subjected to a Gaussian noise, α = 2, do we have a conventional
transient FR,

gt(wM) = exp(AwMt), (2.7)

where A = F 2
0 /(kBTmγ), and we use the Einstein relation, Dα=2 = kBT/(mγ), with T the

temperature of the heat bath and kB the Boltzmann constant. For arbitrary Lévy noise
with 0 < α < 2 we use the asymptotics of the Lévy stable PDF, Lα(ξ) ≈ C/|ξ|1+α, C =
π−1 sin(πα/2)Γ(1 + α) [23], which gives

lim
wM→±∞

gt(wM) = 1. (2.8)

This means that asymptotically large positive and negative fluctuations of work are
equally probable for Lévy flights. This was established for the first time in the different
nonequilibrium situation of a case B system in [20].

2.2. A system driven by long-correlated internal Gaussian noise

Let us now consider non-Markovian processes with long-time memory characterized by
a memory function exhibiting slow power law decay in time. The starting point is the
overdamped Langevin equation (compare with equation (2.1)),

∫ t

0

dt′ ẋ(t′)K(t − t′) =
F0

mγ
+ ξ(t), (2.9)

where the dot above x denotes the time derivative. The autocorrelation function of
the Gaussian noise is connected with the friction kernel by the fluctuation-dissipation
relation of the second kind [24] 〈ξ(t)ξ(t′)〉 = (kBT/mγ)K(t − t′), which implies that we
treat ξ(t) as an internal noise. To model long-time memory, a natural choice for the

friction kernel is K(t) = τβ−1
β t−β/Γ(1 − β), t ≥ 0, 0 < β < 1. Here, by including the

factor 1/Γ(1 − β), we may use the limit t−β/Γ(1 − β) → 2δ(t), β → 1−, to obtain
〈ξ(t)ξ(t′)〉 = 2kBTδ(t − t′)/(mγ), thus recovering the case of overdamped (ordinary)
Brownian motion. Equation (2.9) is easily solved in Laplace space, x̃(s) =

∫ ∞
0

dt x(t)e−st,
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giving after the inverse Laplace transformation

x(t) =
F0τ

1−β
β

mγ

tβ

Γ(1 + β)
+

∫ t

0

dt′ ξ(t′)H(t − t′), (2.10)

where H(t) = (t/τ)β−1/Γ(β). The x PDF is Gaussian, and thus the work PDF is also
Gaussian, with mean and variance given by

〈WM〉 = F0〈x(t)〉 =
F 2

0 τ 1−β
β

mγ

tβ

Γ(1 + β)
, σ2

W = F 2
0 〈(x(t) − 〈x(t)〉)2〉 =

2τ 1−β
β F 2

0

Γ(1 + β)

kBT

mγ
tβ.

(2.11)

From the second formula of (2.11) it follows that the particle exhibits subdiffusion. Thus,
from equation (2.11) we conclude that the subdiffusion dynamics caused by long-correlated
Gaussian noise under the fluctuation-dissipation theorem of the second kind leads to a
conventional transient FR,

p(WM, t)/p(−WM, t) = exp{WM/(kBT )}. (2.12)

2.3. A system driven by long-correlated external Gaussian noise

The starting point is again the Langevin equation (2.1); however, we now assume that
ξ(t) is a stationary Gaussian process with zero mean, 〈ξ(t)〉 = 0, and autocorrelation
function

〈ξ(t)ξ(t′)〉 =
Cβ

Γ(1 − β)γ2
|t − t′|−β, 0 < β < 1, (2.13)

where Cβ is a constant. Here the noise ξ(t) is treated as an external noise, since unlike
section 2.2 the fluctuation-dissipation theorem of the second kind is not valid in this
system. As β → 1 and C1 = γkBT/m, we obtain 〈ξ(t)ξ(t′)〉 = 2kBTδ(t − t′)/(mγ), and
equation (2.1) together with equation (2.13) boils down to the Langevin description of an
overdamped Brownian particle.

The work PDF is easily constructed as a Gaussian function with mean 〈WM(t)〉 =
F 2

0 t/(mγ) and variance σ2
W = 2Cβt2−βF 2

0 /(γ2Γ(3 − β)). We note that the mean square
displacement grows as t2−β, that is, the system exhibits superdiffusion, in contrast to the
internal noise case. Here it is convenient to introduce the mean production of heat per
unit time, μW = 〈WM〉/t = F 2

0 /(mγ), and the scaled value of work, wM = WM/〈WM〉.
The transient FR for the heat then takes the form

gt(w) = p(WM, t)/p(−WM, t) = exp(A(β)wMtβ), (2.14)

where A(β) = Γ(3 − β)γ μW/(mCβ). Equation (2.14) tells us that the superdiffusion
dynamics caused by external long-correlated Gaussian noise leads to a ‘non-conventional’
transient FR of stretched exponential type. To our knowledge, this is the first time that
a FR has been derived that still reproduces the exponential form of conventional FRs by
containing an explicit time dependence with a fractional power of time. As β → 1 and
C1 = γkBT/m we arrive at the conventional transient FR for a Brownian particle. Similar
results have been obtained for a random walk model with memory-dependent transition
rates by applying functional integration techniques [25].
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2.4. A system described by a time-fractional kinetic equation

The starting point is a set of coupled Langevin equations for the motion of a
particle [26, 27]

dx(u)

du
=

F0

mγ
+ ξ(u),

dt(u)

du
= τ(u), (2.15)

where the random walk x(t) is parametrized by the variable u. The random process ξ(u)
is a white Gaussian noise, 〈ξ(u)〉 = 0, 〈ξ(u)ξ(u′)〉 = 2kBTδ(u − u′)/(mγ), and τ(u) is
a white Lévy stable noise, which takes positive values only and obeys a totally skewed
alpha-stable Lévy distribution with 0 < α < 1. It was demonstrated [26, 27] that such
a subordinated Langevin description is equivalent to the time-fractional Fokker–Planck
equation

∂f

∂t
= D1−α

t

[

− ∂

∂x

F0

mγα
+ Kα

∂2

∂x2

]

f(x, t), f(x, t = 0) = δ(x), (2.16)

which is used to model a variety of subdiffusion phenomena; see, e.g., [13] for detailed
discussions. In this equation γα and Kα are generalized friction and diffusion constants,
respectively, obeying the (generalized) Einstein relation Kα = kBT/(mγα), and D1−α

t is
the Riemann–Liouville fractional derivative on the right semi-axis, which, for a ‘sufficiently
well-behaved’ function φ(t) is defined as Dμ

t φ = Γ−1(1− μ)(d/dt)
∫ t

0
dτ(t − τ)−μφ(τ), 0 ≤

μ < 1, with Laplace transform sμφ̃(s). From equation (2.16) the equations for the
first and the second moments can easily be obtained and then solved using the Laplace
transformation. The mean square displacement in the absence of any external force is
given by 〈x2(t)〉0 = 2Kαtα/Γ(1 + β) demonstrating subdiffusive behavior. We note also
that the (second) Einstein relation is recovered, 〈x(t)〉F0 = F0〈x2(t)〉0/(2kBT ), which
connects the first moment in the presence of a constant force F0 with the second moment in
the absence of this force [13]. Both Einstein relations are fluctuation-dissipation relations
of the first kind for this system [24].

Applying the Laplace transform to equation (2.16), and solving the equation in the

Laplace space separately for x > 0 and x < 0, we get, with f̃(x, s) → 0 at x → ±∞,

f̃(x, s) =
sα−1

√
V 2

0 + 4Kαsα
exp

(
V0x

2Kα
− |x|

√
V 2

0 + 4Kαsα

2Kα

)

, (2.17)

where V0 = F0/mγ. Note that at α = 1 equation (2.17) gives the Laplace transform of
the Gaussian distribution. In the general case of 0 < α < 1 we have, for the ratio of the
Laplace transforms for the work PDFs,

p̃(WM, s)

p̃(−WM, s)
=

f̃ (WM/F0, s)

f̃ (−WM/F0, s)
= exp

(
WM

kBT

)

. (2.18)

Transferring p̃(−WM, s) from the left-hand side to the right-hand side of
equation (2.18) and then making an inverse Laplace transformation, we arrive at the
FR in the time domain. Thus, we conclude that, like for the case with long-correlated
internal Gaussian noise, subdiffusive dynamics modeled by a time-fractional Fokker–
Planck equation obeying a fluctuation-dissipation relation leads to a conventional transient
FR.
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3. Class B. Systems coupled to a harmonic oscillator

In this section we consider a particle confined by a harmonic potential that is dragged
by a constant velocity, U = (κ/2)(x − X(t))2, where X(t) = v∗t, v∗ = const. We are
interested in the PDF of thermodynamical work WT given by

WT(t) =

∫
dX ∂U/∂X =

∫ t

0

dt′(dX(t′)/dt′)∂U/∂X = −κv∗

∫ t

0

dt′(x − v∗t
′). (3.1)

3.1. A system exhibiting Lévy flights

The starting point is the coupled Langevin equations written in the comoving coordinate
frame, y = x − v∗t,

dy

dt
= −v∗ −

1

τ∗
y + ξ(t),

dWT

dt
= −κv∗y(t), (3.2)

where ξ(t) is a white Lévy noise as in section 2.1, τ∗ = mγ/κ is the relaxation time. For
this case the CF of the work PDF was calculated in [20] by using a functional integration
technique. We propose here a different approach based on the generalized space-fractional
kinetic equation for the joint PDF φ(y, WT, t) (or φ(x, WT, t)). The kinetic equation for
this PDF can be constructed almost immediately from noticing that, with the proper
change of variables, equation (3.2) defines the Langevin equations for the underdamped
Lévy particle, for which y and W have the meaning of velocity and coordinate, respectively.
The corresponding kinetic equation is known in the theory of Lévy flights as a velocity-
fractional Klein–Kramers equation [28]. Thus, we have

∂

∂t
φ(y, WT, t) − v∗

∂φ

∂y
=

1

τ∗

∂

∂y
(yφ) + Dα

∂αφ

∂|y|α + κv∗y
∂φ

∂WT
. (3.3)

Equation (3.3) is subject to the initial condition φ(y, WT, t = 0) = δ(y)δ(WT). We
note that at α = 2 equation (3.3) corresponds to the equation for the PDF φ(y, WT, t) of
a driven Brownian particle [29].

To solve equation (3.3) we make a double Fourier transformation, φ̂(k, q, t) =∫ ∞
−∞ dy

∫ ∞
−∞ dWT exp(iky + iqWT)φ(y, WT, t), and solve the equation for the CF φ̂(k, q, t)

by the method of characteristics. We present here a simpler CF of the work PDF,

ln p̂(q, t) = ln φ̂(k = 0, q, t) = iqA − |q|αB(α), (3.4)

where

A = v2
∗τ

2
∗κ

(
t

τ∗
− 1 + e−t/τ∗

)

, Bα = Dαvα
∗ (mγ)α

∫ t

0

dt′
(
1 − e−(t−t′)/τ∗

)α

. (3.5)

The result given by equations (3.4) and (3.5) is identical to that reported in [20]. As a
consequence, for the work PDF of the Lévy flights we have the same relation as was derived
previously for the heat PDF in the case of a constant force, equation (2.10), which means
that asymptotically large positive and negative fluctuations of thermodynamic work are
equally probable for Lévy flights.
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3.2. A system driven by long-correlated internal Gaussian noise

The starting Langevin equation in the comoving coordinate frame has the form

− y

τ∗
−

∫ t

0

dt′ ẏ(t′)K(t − t′) − v∗

∫ t

0

dt′ K(t′) + ξ(t) = 0, (3.6)

where K(t) is related to 〈ξ(t)ξ(t′)〉 via the fluctuation-dissipation relation of the second
kind; see section 2.2. Similar problems have been studied in [17, 18]: in [17] an
underdamped oscillator driven by internal fractional Gaussian noise was considered; [18]
analyzes an overdamped oscillator but with equilibrium initial condition.

Equation (3.6) is easily solved in Laplace space. Taking into account the
Laplace transformation,

∫ ∞
0

dt e−sttb−1Ea,b(−cta) = sa−b/(sa + c), where Ea,b(z) =∑∞
k=0 zk/Γ(ak + b) is a Mittag–Leffler function in two parameters, whose exhaustive list

of properties can be found, for example, in [30], equation (3.6) gives (recall that y(0) = 0)

WT(t) = −κv∗

∫ t

0

dt′H1(t − t′)ξ(t′) + κv2
∗H2(t), (3.7)

where

H1(t) = τ∗
[
1 − Eβ,1

(
−ctβ

)]
, H2(t) = t2Eβ,3

(
−ctβ

)
, (3.8)

and c = τ 1−β
β /τ∗. Using the relation Ḣ2(t) =

∫ t

0
dt′ H1(t

′)K(t − t′), which can be easily
checked in Laplace space, we get the work PDF, which is Gaussian with mean and variance
given, respectively, by

〈WT〉 = κv2
∗H2(t), σ2

WT
= 2κ2v2

∗
kBT

mγ

∫ t

0

dτH1(τ)Ḣ2(τ). (3.9)

Using first the formulae for the derivative and integral of the Mittag–Leffler func-
tion (see [30], equations (1.83) and (1.99), respectively), and second the asymptotics
Ea,b(z) ≈ −z−1/Γ(b − a) (see [30], equation (1.143)), we get asymptotically at t → ∞ the
conventional FR, p(WT, t)/p(−WT, t) = exp{WT/(kBT )}. We note that in contrast to the
case for a constant force, section 2.2, the conventional fluctuation relation holds here in
the asymptotic limit of long times only.

3.3. A system driven by long-correlated external Gaussian noise

The starting point is again the Langevin equation in the comoving coordinate frame,
equation (3.2), where we assume that ξ(t) is a stationary Gaussian process with zero
mean, 〈ξ(t)〉 = 0, with a pair correlation function given by equation (2.13). Solving the
first equation of equation (3.2) with the initial condition y(0) = 0, we get

y(t) = −v∗τ∗
(
1 − e−t/τ∗

)
+

∫ t

0

dt′ ξ(t′) exp

(

−t − t′

τ∗

)

. (3.10)

Using the second equation from equation (3.2), we get an expression for the work WT and
then construct the work PDF as the Gaussian function with the mean 〈WT〉 given by the
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term A in equation (3.5) and the variance

σ2
WT

=
m2v2

∗Cβ t2−β

Γ(3 − β)

{

2 − e−t/τ∗
(
2 − e−t/τ∗

)
M

(

2 − β, 3 − β;
t

τ∗

)

− e−t/τ∗M (1, 3 − β, t/τ∗)

}

, (3.11)

where M(a, b, z) is a Kummer function. At β = 1 and C1 = γkBT/m equation (3.11) yields
the result for the Brownian motion with nonequilibrium initial condition x(0) = 0. After
the relaxation stage, t � τ∗, we have for the mean and variance of the work, respectively,

〈WT〉 = mv2
∗γt, σ2

WT
=

2

Γ(3 − β)
m2v2

∗Cβt2−β. (3.12)

Like in section 2, we introduce a mean production of work ν per unit time at t � τ∗,
〈WT〉/t ≡ ν = γmv2

∗ = const, as well as a scaled value of work w, wT = WT/〈WT〉, WT =
νwTt. With that we get the transient FR in the form

p(WT, t)/p(−WT, t) = exp
(
B(β)wTtβ

)
, (3.13)

where B(β) = Γ(3 − β)γ2v2
∗/Cβ. This agrees with the FR for the heat, equation (2.14).

The conventional FR is recovered in the limit of β = 1.

3.4. A system described by a time-fractional kinetic equation

Like in section 2.4, the starting point is the coupled Langevin equations written in a
comoving frame as

dy(u)

du
= −v∗ −

κ

mγ
y(u) + ξ(u),

dt(u)

du
= τ(u),

dWT

dt
= −κv∗y(t), (3.14)

where we have added the equation for the work WT. Now, we are able to construct
a generalized fractional kinetic equation governing the joint PDF for the work and
coordinate. Indeed, introducing wT = −WT/(κv∗) = WT/(κV∗), V∗ = −v∗, we observe
that the system (3.14) is equivalent to that considered by Friedrich and co-workers in
connection with fractional kinetic equations including inertial effects [31], if w and y are
regarded, respectively, as the coordinate and velocity of the inertial particle. This set
of Langevin equations is equivalent to the fractional Kramers–Fokker–Planck equation
proposed in [32]. In our notation
(

∂

∂t
+ y

∂

∂wT
+ V∗

∂

∂y

)

φ(wT, y, t) =

(
κ

mγα

∂

∂y
y + Kα

∂2

∂y2

)

D1−α
t φ(wT, y, t), (3.15)

where γα and Kα are generalized friction and diffusion constants, respectively, as in
section 2.4, and D1−α

t is a fractional substantial derivative defined as

D1−α
t φ(wT, y, t) =

(
∂

∂t
+ y

∂

∂wT
+ V∗

∂

∂y

)
1

Γ(α)

∫ t

0

dt′

(t − t′)1−α

× exp

[

− (t − t′)

(

y
∂

∂wT
+ V∗

∂

∂y

)]

φ(wT, y, t′). (3.16)

The solution can be obtained by following the method developed in [33]. After getting
the solution of this equation it is possible to check the FR for the work PDF φ(WT, t), as
will be discussed in detail in a long paper.
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4. Conclusions

We have shown that for two superdiffusive systems without fluctuation-dissipation
relation, one subject to white Lévy stable noise and the other one to long-correlated
external Gaussian noise, the conventional transient FR does not hold. Namely, by applying
two methods, a Langevin approach and one based on a space-fractional kinetic equation,
we have found that for stochastic systems driven by Lévy noise the asymptotically large
positive and negative fluctuations of work are equally probable, which generalizes previous
studies in [20] of the thermodynamic work fluctuation theorem for Lévy flights. For the
systems driven by long-correlated external Gaussian noise we found a new, unconventional
FR characterized by a stretched exponential type of behavior in time. On the other hand,
for two subdiffusive systems with a fluctuation-dissipation relation, one subject to long-
correlated internal Gaussian noise and the other one modeled by a time-fractional kinetic
equation, the conventional transient FR is recovered. To our knowledge, this is the first
time that the transient FR has been verified for time-fractional kinetics. Our studies of
these four generic types of anomalous dynamics suggest an intimate connection between
fluctuation-dissipation relations and FRs for the case of anomalous diffusion.

We expect our results to have important applications to experiments: Recently it has
been shown that migrating biological cells exhibit anomalous dynamics similar to that
under the influence of correlated Gaussian noise [34]. This suggests checking whether
cells migrating under chemical concentration gradients obey anomalous FRs. A second
type of experiment would involve dragging a particle through a highly viscous gel instead
of through water [10], or measuring the fluctuations of a driven pendulum in gel [35].
Thirdly, one may check for anomalous FRs for granular gases exhibiting subdiffusion
dynamics [36]. On the theoretical side, our approach paves the way to systematically
checking the remaining varieties of conventional FRs [5]–[7] for anomalous generalizations.
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