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Abstract
Low-dimensional periodic arrays of scatterers with a moving point particle
are ideal models for studying deterministic diffusion. For such systems the
diffusion coefficient is typically an irregular function under variation of a
control parameter. Here we propose a systematic scheme of how to approximate
deterministic diffusion coefficients of this kind in terms of correlated random
walks. We apply this approach to two simple examples which are a one-
dimensional map on the line and the periodic Lorentz gas. Starting from
suitable Green–Kubo formulae we evaluate hierarchies of approximations
for their parameter-dependent diffusion coefficients. These approximations
converge exactly yielding a straightforward interpretation of the structure of
these irregular diffusion coefficients in terms of dynamical correlations.

PACS numbers: 05.45.Ac, 05.60.Cd, 05.10.−a, 05.45.Pq, 02.50.Ga

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Deterministic diffusion is a prominent topic in the theory of chaotic dynamical systems and
in non-equilibrium statistical mechanics [1, 2]. To achieve a proper understanding of the
mechanism of deterministic diffusion with respect to microscopic chaos in the equations of
motion, a number of simple model systems was proposed and analysed. An interesting finding
was that, for a simple one-dimensional chaotic map on the line generalizing random walk
diffusion in terms of including dynamical correlations, the diffusion coefficient is a fractal
function of a control parameter [3–5]. Diffusion coefficients exhibiting similar irregularities
are also known for more complicated systems such as sawtooth maps [6], standard maps
[7] and Harper maps [8], the latter two models being closely related to physical systems
such as the kicked rotor, or a particle moving in a periodic potential under the influence of
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electric and magnetic fields. More recently, related irregularities in the diffusion coefficient
were discovered in Hamiltonian billiards such as the periodic Lorentz gas [9], and for a
particle moving on a corrugated floor under the influence of an external field [10]. That this
phenomenon is not specific to diffusion coefficients is suggested by results on other transport
coefficients such as chemical reaction rates in multibaker maps [11], electrical conductivities
in the driven periodic Lorentz gas [12], and magnetoresistances in antidot lattices [13] which,
again, exhibit strongly irregular behaviour under parameter variation.

In this paper we wish to contribute to the further analysis and understanding of irregular
transport coefficients in simple model systems. We use certain forms of the Green–Kubo
formula as starting points for expansions of the diffusion coefficient in terms of correlated
random walks. In section 2 we exemplify this approach for the piecewise linear map on the
line studied in [3–5]. In section 3 we apply a suitably adapted version of it to diffusion in
the periodic Lorentz gas. In both cases our approximations converge quickly to the precise
diffusion coefficient as obtained from other numerical methods. We argue that for both models
this approximation scheme provides a physical explanation for the irregular structure of these
diffusion coefficients in terms of dynamical correlations, or memory effects. In section 4
we summarize our results and relate them to previous work on irregular and fractal transport
coefficients.

2. Deterministic diffusion in one-dimensional maps on the line

Probably the simplest models exhibiting deterministic diffusion are one-dimensional maps
defined by the equation of motion

xn+1 = Ma(xn) (1)

where a ∈ R is a control parameter and xn is the position of a point particle at discrete time n.
Ma(x) is continued periodically beyond the interval [0, 1) onto the real line by a lift of degree 1,
Ma(x + 1) = Ma(x) + 1. We assume that Ma(x) is anti-symmetric with respect to x = 0,
Ma(x) = −Ma(−x). Let

ma(x) := Ma(x) mod 1 (2)

be the reduced map related to Ma(x). This map governs the dynamics on the unit interval
according to xn = mn

a(x). Let ρn(x) be the probability density on the unit interval of an
ensemble of moving particles starting at initial conditions x ≡ x0. This density evolves
according to the Frobenius–Perron continuity equation

ρn+1(x) =
∫ 1

0
dy ρn(y)δ(x − ma(y)). (3)

Here we are interested in the deterministic diffusion coefficient defined by the Einstein formula

D(a) = lim
n→∞

〈
(xn − x0)

2
〉/

(2n) (4)

with xn governed by Ma(x), where the brackets denote an average over the initial values x0

with respect to the invariant probability density on the unit interval, 〈· · ·〉 := ∫ 1
0 dx ρ∗(x) · · ·.

Equation (4) can be transformed onto the Green–Kubo formula for maps [1, 4, 14, 15],

Dn(a) =
n∑

k=0

ck〈j (x0)j (xk)〉 (5)

with D(a) ≡ limn→∞ Dn(a) and

ck =
{ 1

2 k = 0
1 k � 1.

(6)
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Figure 1. Diffusion coefficient D(a) for the one-dimensional map shown in the upper left part
of (a), where a is the slope of the map. The dots are obtained from the method of [3–5], the
different lines correspond to different levels of approximations based on the Green–Kubo formula
equation (5). In (a) the approximations were computed from equation (11) assuming a constant
invariant density, and in (b) they are from equation (12) which includes the exact invariant density.
Any error bars are smaller than visible. All quantities here and in the following figures are without
units.

The jump velocity

j (xn) := [xn+1] − [xn] (7)

[x] being the largest integer less than x, takes only integer values and denotes how many unit
intervals a particle has traversed after one iteration starting at xn. The map we study as an
example is defined by

Ma(x) =
{
ax 0 < x � 1

2
ax + 1 − a 1

2 < x � 1
(8)

where the uniform slope a > 2 serves as a control parameter. The value for Ma(0) follows
from Ma(1) by translational invariance. The Lyapunov exponent of this map is given by
λ(a) = ln a implying that the dynamics is chaotic. A sketch of this map is shown in figure 1(a).
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Figure 1 furthermore depicts the parameter-dependent diffusion coefficient of this map in the
regime of 2 � a � 4 as calculated in [3–5] by means of a numerical implementation of
analytical methods. In these references numerical evidence that the irregularities on a fine
scale are reminiscent of an underlying fractal structure was provided.

To analyse this fractal diffusion coefficient, equation (5) forms a suitable starting point
because it distinguishes between two crucial contributions of the dynamics to the diffusion
process, which are (1) the motion of the particle on the unit interval xn mod 1 generating
the invariant density ρ∗

a (x), and (2) the integer jumps from one unit interval to another as
related to j (xn). In fact, in [4, 11] it was shown that both parts are independent sources of
fractality for the diffusion coefficient. However, in these references equation (5) was only
discussed in the limit of infinite time. In this paper we suggest looking at the contributions
of the single terms in this expansion, and analyse how the Green–Kubo formula approaches
the exact diffusion coefficient step by step. We do this by systematically building up the
hierarchies of approximate diffusion coefficients. These approximations should be defined
such that the different dynamical contributions to the diffusion process are properly filtered
out. Another issue is how to evaluate the single terms of the Green–Kubo expansion on
an analytical basis. In this section we show how to do this for the one-dimensional model
introduced above, in the next section we apply the same idea to billiards such as the periodic
Lorentz gas.

We start by looking at the first term in equation (5). For a < 4 the absolute value of
the jump velocity j (xn) is either 0 or 1. Assuming that ρ∗

a (x) � 1 for a → 2 and cutting
off all higher order terms in equation (5), the first term leads to the well-known random walk
approximation of the diffusion coefficient [4, 14, 16–18]

D0(a) = 1

2

∫ 1

0
dx j 2(x) (9)

which in case of map (8) reads

D0(a) = (a − 2)/(2a). (10)

This solution is asymptotically correct in the limit of a → 2. More generally speaking, the
reduction of the Green–Kubo formula to the first term only is an exact solution for arbitrary
parameter values only if all higher order contributions from the velocity autocorrelation
function C(n) := 〈j (x0)j (xn)〉 are strictly zero. This is only true for systems of Bernoulli type
[14]. Conversely, the series expansion in the form of equation (5) systematically gives access
to higher order corrections by including higher order correlations, or memory effects. This
leads us to the definition of two hierarchies of correlated random walk diffusion coefficients:

(1) Again, we make the approximation that ρ∗
a (x) � 1. We then define

D1
n(a) :=

n∑
k=0

ck

∫ 1

0
dx j (x)j (xk) n > 0 (11)

with D1
0(a) ≡ D0(a) given by equation (9). Obviously, this series cannot converge to the

exact D(a).
(2) By using the exact invariant density in the averages of equation (5) we define

Dρ
n (a) :=

n∑
k=0

ck

∫ 1

0
dx ρ∗

a (x)j (x)j (xk) n > 0 (12)

here with D
ρ

0 (a) = 1
2

∫ 1
0 dx ρ∗

a (x)j 2(x), which of course must converge exactly. The
approximations D1

n(a) and D
ρ
n (a) may be understood as time-dependent diffusion
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coefficients according to the Green–Kubo formula (5). According to their definitions,
D1

n(a) enables us to look at the contributions coming from j (xn) only, whereas D
ρ
n (a)

assesses the importance of contributions resulting from ρ∗
a (x). The rates of convergence

of both approximations give an estimate of how important higher order correlations are
in the different parameter regions of the diffusion coefficient D(a).

Similar to equation (10), equation (11) can easily be calculated analytically to first order
reading

D1
1(a) =




(a − 2)/(2a) 2 < a � 1 +
√

3 and 2 +
√

2 < a � 4

3/2 − 3/a − 2/a2 1 +
√

3 < a � 3

−1/2 + 3/a − 2/a2 3 < a � 2 +
√

2.

(13)

Further corrections up to order n = 3 were obtained from computer simulations, that is, an
ensemble of point particles was iterated numerically according to equation (1). All results
are contained in figure 1 showing that this hierarchy of correlated random walks generates
a self-affine structure which resembles, to some extent, one of the well-known Koch curves.
Figure 1(a) illustrates that this structure forms an important ingredient of the exact diffusion
coefficient D(a) thus explaining basic features of its fractality. Indeed, a suitable generalization
of this approach in the limit of time to infinity leads to the formulation of D(a) in terms of
fractal generalized Takagi functions [4, 11].

Figure 1(b) depicts the results for the series of D
ρ
n (a) up to order n = 2 as obtained from

computer simulations. This figure illustrates that there exists a second source for an irregular
structure related to the integration over the invariant density, as was explained above. In the
Green–Kubo formula (5) both contributions are intimately coupled with each other via the
integration over phase space.

We now perform a more detailed analysis to reveal the precise origin of the hierarchy of
peaks in figure 1. For this purpose we redefine equation (11) as

D1
n(a) =

∫ 1

0
dx j (x)Jn(x) − 1

2

∫ 1

0
dx j 2(x) n > 0 (14)

where we have introduced the jump velocity function

Jn(x) :=
n∑

k=0

j (xk) (15)

again with x ≡ x0. From equation (7) it follows that Jn(x) = [xn+1], that is, this function
gives the integer value of the displacement of a particle starting at some initial position x. In
figure 2 we depict some representative results for J1(x) under variation of the control
parameter a. Because of the symmetry of the map we restrict our considerations to
0 < x < 0.5. Equation (14) tells us that the product of this function with j (x) determines
the diffusion coefficient D(a). The shaded bar in figure 2 marks the subinterval in which
j (x) = 1, whereas j (x) = 0 otherwise, thus an integration over J1(x) on this subinterval
yields the respective part of the diffusion coefficient. One can now relate the four diagrams
(a) to (d ) in figure 2 to the functional form of D1

1(a) in figure 1(a), thus understanding where
the large peak in D1

1(a) for 2.732 < a < 3.414 comes from: for a < 2.732, J1(x) does not
change its structure and the interval where particles escape to other unit intervals increases
monotonically, therefore D(a) increases smoothly. However, starting from a = 2.732 particles
can jump for the first time to next nearest neighbours within two time steps, as is visible in J1(x)

taking values of 2 for x close to 0.5. Consequently, the slope of D(a) increases drastically
leading to the first large peak around a = 3. Precisely at a = 3, backscattering sets in meaning
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Figure 2. Jump velocity function J1(x) as defined by equation (15) which gives the integer value
of the displacement of a particle starting at some initial position x. Shown are results for different
values of the slope a: (a) a = 2.7, (b) a = 3.0, (c) a = 3.3, (d ) a = 3.8. The shaded bar marks
the subinterval where the jump velocity j (xn) defined in equation (7) is equal to one.

that particles starting around x = 0.5 jump back to the original unit interval within two time
steps, as is reminiscent in J1(x) in the form of the region J1(x) = 0 for x close to 0.5. This
leads to the negative slope in D(a) above a = 3. Finally, particles starting around x = 0.5
jump to the nearest neighbour unit intervals by staying there during the second time step
instead of jumping back. This yields again a monotonically increasing D(a) for a > 3.414.
Any higher order peak for D1

n(a), n > 1, follows from analogous arguments. Thus, the
source of this type of fractality in the diffusion coefficient is clearly identified in terms of
the topological instability of the function J1(x) under variation of the control parameter a.
Indeed, this argument not only quantifies two previous heuristic interpretations of the structure
of D(a) as outlined in [3–5], it also explains why, on a very fine scale, there are still deviations
between these results and the precise location of the extrema in D(a), cf the ‘overhang’ at
a = 3 as an example. The obvious reason is that contributions from the invariant density
slightly modifying this structure are not taken into account.

Looking at the quantities Jn(x) furthermore helps us to learn about the rates of convergence
of the approximations D1

n(a) to D(a) at fixed values of a, as is illustrated in figures 3(a)–
(d ). Here we have numerically calculated Jn(x) at a = 3.8 for n = 0, 1, 2, 3. Again,
the shaded bar indicates the region where j (x) = 1 enabling Jn(x) to contribute to the
value of the diffusion coefficient according to equation (14). In fact, Jn(x) may also be
interpreted as the scattering function of an ensemble of particles starting from the unit
interval, since it sensitively measures the final position to which a particle moves within
n time steps under variation of its initial position x. One can clearly see that, with larger
n, Jn(x) develops more and more discontinuities eventually leading to a highly singular and
irregular function of x. Integration over further and further refinements of Jn(x) determines the
convergence of the series of D1

n(a) to a fixed value D1
∞(a), cf figure 1(a). To obtain quantitative
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Figure 3. Jump velocity function Jn(x) as defined by equation (15) at the fixed parameter value
a = 3.8 for different numbers of time steps (a) n = 0, (b) n = 1, (c) n = 2, (d ) n = 3. Again, the
shaded bar marks the subinterval where the jump velocity j (xn) defined in equation (7) is equal to 1.

values for the associated rates of convergence with respect to parameter variation is an open
question.

We remark that a suitable integration over the functions Jn(x) leads to the definition
of fractal so-called generalized Takagi functions, which can be calculated in terms of de
Rham-type functional recursion relations [4, 11]. In a way, the integration over jump velocity
functions such as the one shown in figure 3(d ) is similar to the integration over Cantor set
structures leading to Devil’s staircase-type functions [19]. Our results presented so far thus
bridge the gap between understanding the coarse functional behaviour of D(a) on the basis of
simple random walk approximations only, and analysing its full fractal structure in terms of
Takagi-like fractal forms, in combination with an integration over a complicated non-uniform
invariant density. We now show that essentially the same line of argument can be successfully
applied to more physical dynamical systems such as particle billiards.

3. Deterministic diffusion in billiards

The class of two-dimensional billiards we want to discuss here is described as follows: a point
particle undergoes elastic collisions with obstacles of the same size and shape whose centres
are fixed on a triangular lattice. There is no external field, thus the equations of motion are
defined by the Hamiltonian H = mv2/2 supplemented by geometric boundary conditions
as induced by the scatterers. A standard example is the periodic Lorentz gas for which the
scatterers consist of hard disks of radius R, see figure 4 [1, 2]. In the following we choose
m = 1, v = 1, R = 1, and as a control parameter we introduce the smallest inter-disk distance
w such that the lattice spacing of the disks is 2 + w. w is related to the number density
n of the disks by n(w) = 2/[

√
3(2 + w)2]. At close packing w = 0 the moving particle

is trapped in a single triangular region formed between three disks, see figure 4, part (1).
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Figure 4. Geometry of the periodic Lorentz gas with the gap size w as control parameter. The
hatched area related to (1) marks a so-called trapping region, the arrow gives the lattice vector
connecting the centre of this trap to the next one above. In (2) three lattice vectors are introduced
and labelled with the symbols l, r, z. They indicate the positions where particles move along the
hexagonal lattice of Wigner–Seitz cells, starting from the trap z, within two time steps of length τ .
(3) depicts the situation after three time steps τ with different lattice vectors associated with symbol
sequences of length 2.

For 0 < w < w∞ = 4/
√

3 − 2 = 0.3094, the particle can move across the entire lattice,
but it cannot move collision-free for an infinite time. For w > w∞ the particle can move
ballistic-like in the form of arbitrarily far jumps between two collisions.

The diffusion coefficient for this particle billiard can be defined by the two-dimensional
equivalent of the Einstein formula (4) reading

D(w) = lim
t→∞〈(x(t) − x(0))2〉/(4t) (16)

where, again, the average is taken over the equilibrium distribution of particles with position
coordinates x(t). It can be proved that in the regime of 0 < w < w∞ the parameter-dependent
diffusion coefficient D(w) exists [20]. The full parameter-dependence of this function was
discussed particularly in [9] showing that, on a fine scale, D(w) is an irregular function of
the parameter w similar to the diffusion coefficient of the one-dimensional map D(a) as
discussed above. Whether D(w) is indeed fractal, or maybe C1 but not C2 in contrast to
the one-dimensional map discussed above, is currently an open question. The main issue
we want to focus on in this section is quantitative approximations for the full parameter
dependence of D(w), and to check for the importance of memory effects. A first simple
analytical approximation for the diffusion coefficient was derived by Machta and Zwanzig in
[21]. This solution was based on the assumption that diffusion can be treated as a Markovian
hopping process between the triangular trapping regions indicated in figure 4. For random
walks on two-dimensional isotropic lattices the diffusion coefficient then reads D = �2/(4τ ),
where � = (2 + w)/

√
3 is the smallest distance between two centres of the traps, and τ−1 is

the average rate at which a particle leaves a trap. This rate can be calculated by the fraction
of phase space volume available for leaving the trap divided by the total phase space volume
of the trap thus leading to the Machta–Zwanzig random walk approximation of the diffusion
coefficient

DMZ(w) = w(2 + w)2

π[
√

3(2 + w)2 − 2π]
. (17)
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Figure 5. Diffusion coefficient D(w) for the periodic Lorentz gas as a function of the gap size
w as a control parameter. The computer simulation results for D(w) are from [8], error bars
are much smaller than the size of the symbols. The other lines correspond to different levels of
approximation (19), the last approximation (again with symbols) is from equation (23).

Indeed, this approximation is precisely the billiard analogue to the one-dimensional random
walk diffusion coefficient for maps (9), (10). Similarly, this approximation is asymptotically
exact only for w → 0, as is shown in comparison to computer simulation results in figure 5
[9, 21].

In [9], equation (17) was systematically improved by including higher order correlations.
Two basic approaches were presented both starting from the idea of Machta and Zwanzig
of looking at diffusion in the Lorentz gas as a hopping process on a hexagonal lattice of
‘traps’ with frequency τ−1. This picture was quantified by introducing a simple symbolic
dynamics for a particle moving from trap to trap as indicated in figure 4. Let us follow a
long trajectory of a particle starting with velocity v parallel to the y-axis, cf (1) in figure 4.
For each visited trap we label the entrance through which the particle entered with z, the
exit to the left of this entrance with l, and the one to the right with r, see (2) in figure 4.
Thus, a trajectory in the Lorentz gas is mapped onto words composed of the alphabet {z, l, r}.
One can now associate transition probabilities with these symbol sequences reading, for a time
interval of 2τ , p(z), p(l), p(r). p(z) corresponds to the probability of backscattering, whereas
p(l) = p(r) = (1 − p(z))/2 indicates forward scattering. For a time interval of 3τ , we have
nine symbol sequences each consisting of two symbols leading to the probabilities p(zz),
p(zl), p(zr), p(lz), p(ll), p(lr), p(rz), p(rl), p(rr). Besides this hierarchy of conditional
probabilities defined on a symbolic dynamics there is a different type of probability that a
particle leaving a trap jumps without any collision directly to the next nearest neighbour
trap. As was shown in [9], equation (17) can be corrected by analytically including all
these probabilities. Alternatively, lattice gas computer simulations were performed by using
the probabilities as associated with the symbol sequences. The heuristic corrections of
equation (17) led to a satisfactory explanation of the overall behaviour of D(w) on a coarse
scale, however, the convergence was not exact. The lattice gas simulations, on the other
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hand, were converging exactly, however, here a proper analytical expression for the diffusion
coefficient approximations in terms of the associated probabilities was not available.

In analogy with the procedure as outlined for the one-dimensional map, that is, starting
from a suitable Green–Kubo formula, we will now define a third approximation scheme that
we expect to be generally applicable to diffusion in particle billiards. Compared to the two
existing approaches mentioned above the advantage of the new method is two-fold, namely
(1) that by using the set of symbolic probabilities the respective Green–Kubo formula can
be evaluated according to an analytical scheme, and (2) that the resulting approximations
converge exactly to the computer simulation results.

In the appendix we prove that, starting from the Einstein formula (16), quite in analogy
with the one-dimensional case a Green–Kubo formula can be derived that is defined for an
ensemble of particles moving on the hexagonal lattice of traps depicted in figure 4. The result
reads

D(w) = 1

2τ

∞∑
k=0

ck〈j(x0) · j(xk)〉 (18)

again with ck as defined in equation (6). Here j(xk) defines jumps at the k th time step in
terms of the lattice vectors �αβγ ... associated with the respective symbol sequence of the full
trajectory on the hexagonal lattice, cf figure 4. Let us start with j(x0) = �/τ, � := (0, �)∗. The
next jumps are then defined by j(x1) = �α/τ, α ∈ {l, r, z}, and so on. The averages indicated
in equation (18) by the brackets are calculated by weighting the respective scalar products
of lattice vectors with the corresponding conditional probabilities p(αβγ · · ·). Note that
equation (18) is the honeycomb lattice analogue to the Green–Kubo formula derived by
Gaspard for the Poincaré–Birkhoff map of the periodic Lorentz gas [2, 22]. The Poincaré–
Birkhoff version is very efficient for numerical computations; however, according to its
construction it fails to reproduce the Machta–Zwanzig approximation (17). Consequently,
it does not appear to be very suitable for diffusion coefficient approximations of low order.
More details will be discussed elsewhere [23]. We remark that, in terms of using a symbolic
dynamics, there is also some link between equation (18) and respective diffusion coefficient
formulae obtained from periodic orbit theory [24, 25].

We now demonstrate how equation (18) can be used for systematic improvements of the
diffusion coefficient on the lattice of traps by including dynamical correlations: as in the case
of one-dimensional maps we start by looking at the first term in equation (18) and cut off
all higher order contributions. Obviously, the first term is again the random walk expression
for the diffusion coefficient on the hexagonal lattice of traps that, by including the respective
solution for the jump frequency τ−1, boils down to equation (17). For calculating higher order
corrections we now define the hierarchy of approximations

Dn(w) = l2

4τ
+

1

2τ

∑
αβγ ...

p(αβγ · · ·)� · �(αβγ · · ·) n > 0 (19)

with D0(w) given by equation (17). To our knowledge there is no method yet available to
analytically calculate the conditional probabilities p(αβγ · · ·). Our following evaluations are
therefore based on the data presented in [9] as obtained from computer simulations. In terms of
the formal probabilities it is now easy to calculate the solution for the first order approximation
at time step 2τ as

D1(w) = D0(w) + D0(w)(1 − 3p(z)). (20)

For a comparison of this formula with the simulation data D(w), see figure 5. We remark that
the corresponding solution in [9] as obtained from a heuristical correction of equation (17)
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reads D1,MZ(w) = D0(w)3(1 − p(z))/2. Indeed, one can show that the new formula
(20) is closer to D(w) for large w, whereas for small w the previous approximation is
somewhat better. It is straightforward to calculate the two approximations of next higher order
as

D2(w) = D1(w) + D0(w) (2p(zz) + 4p(lr) − 2p(ll) − 4p(lz)) (21)

and as

D3(w) = D2(w) + D0(w)[p(llr) + p(llz) + p(lrl) + p(lrr) + p(lzl) + p(lzz) + p(rll)

+ p(rlr) + p(rrl) + p(rrz) + p(rzr) + p(rzz) + p(zll) + p(zlz) + p(zrr)

+ p(zrz) + p(zzl) + p(zzr) − 2(p(lll) + p(lrz) + p(lzr) + p(rlz) + p(rrr)

+ p(rzl) + p(zlr) + p(zrl) + p(zzz))]. (22)

All results are shown in figure 5 demonstrating that the series of approximations defined by
equation (19) converges quickly and everywhere to the simulation results. Our new scheme
thus eliminates the deficiency of the semi-analytical approximation proposed in [9] that was
based on heuristically correcting the Machta–Zwanzig approximation (17). By comparing this
new scheme with the lattice gas simulations of the same reference, on the other hand, it turns
out that the rate of convergence of the lattice gas approach is still a bit better. In any case, all
these three methods unambiguously demonstrate that for achieving a complete understanding
of the density-dependent diffusion coefficient in the periodic Lorentz gas it is unavoidable to
take higher order correlations, or the impact of memory effects, properly into account.

We finally remark that a very good low-order approximation for the diffusion coefficient
can already be obtained by combining equation (20) with the probability of collisionless
flights pcf(w) mentioned above, that is, by taking into account the possibility of next nearest
neighbour jumps. The correction of D0(w) as given by equation (17) according to collisionless
flights only was already calculated in [9] and reads D0,cf(w) = D0(w)(1 + 2pcf(w)). Adding
now the second term of equation (20) to this expression by just following the Green–Kubo
scheme yields

D1,cf(w) = D0(w)(2 + 2pcf(w) − 3p(z)). (23)

This solution is also depicted in figure 5 and shows that this approximation indeed significantly
improves equation (20) for large w yielding a function that is qualitatively and quantitatively
very close to D(w). We know of no better approximation for D(w) based on information
such as p(z) and pcf(w) only. The successful application of equation (23) suggests that
collisionless flights form an important mechanism to understand the full diffusive dynamics
of this billiard. However, somewhat surprisingly they are not explicitly contained neither in
the Green–Kubo expansion (19) nor in the lattice gas simulations of [9]. In both cases exact
convergence is achieved by following the hierarchy of symbol sequence probabilities only in
which collisionless flights are not apparent.

4. Summary and conclusions

In this paper we suggested a general scheme of how to understand the structure of parameter-
dependent deterministic diffusion coefficients in simple model systems. The important point
was to find suitable Green–Kubo formulae to start with. We used the fact that the class
of models we studied here was defined on periodic lattices, and respectively we discretized
the dynamics of the moving particles according to these lattices. As two different examples
we analysed a simple one-dimensional map on the line as well as the periodic Lorentz gas.
In both cases we recovered the respective well-known random walk formulae for the diffusion
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coefficient as zero-order approximations in our Green–Kubo approach. We then calculated
higher order terms according to Green–Kubo thus systematically including higher order
correlations. As much as possible this analysis was performed analytically, alternatively
in combination with data obtained from computer simulations. Our results provided clear
evidence that a proper understanding of the parameter-dependent diffusion coefficients in
both models can only be achieved by taking strong memory effects into account. In this
respect our research appears to be somewhat related to the findings of long-time tails in the
velocity autocorrelation function of simple model systems such as Lorentz gases, and to the
existence of non-analyticities in the density expansion of transport coefficients, which are
both consequences of strong correlations in the dynamics of the moving particles; see [26]
for a nice review from the side of kinetic theory and [2, 9] for a possible connection to
the specific questions discussed here. In the case of the one-dimensional map our approach
enables a detailed understanding of the dynamical mechanism generating the most pronounced
irregularities in the fractal diffusion coefficient. In the case of the periodic Lorentz gas this
scheme straightforwardly generalizes the Machta–Zwanzig random walk formula in terms of
systematic higher order approximations that converge exactly to the simulation results. We
may emphasize again at this point that, although the diffusion coefficient for the periodic
Lorentz gas as presented in figure 5 appears to be rather smooth, magnifications of this curve
unambiguously reveal the existence of irregularities on fine scales [9].

For one-dimensional maps the infinite time limit of this approach, though not the
intermediate level as quantitatively discussed here, was already worked out in [4, 11] leading
to the definition of the diffusion coefficient in terms of fractal so-called generalized Takagi
functions. For the periodic Lorentz gas an analogous generalization would be desirable as
well. We furthermore remark that the approximation scheme as presented in this paper was
already successfully applied (1) to the one-dimensional climbing sine map, where there is a
complicated transition scenario between normal and anomalous diffusion [27], and (2) to the
so-called flower shape billiard, where the hard discs of the Lorentz gas are replaced by obstacles
of flower shape [28]. In both cases the resulting parameter-dependent diffusion coefficients,
as far as they exist, are much more complicated functions than in the corresponding models
discussed above, yet our scheme yields systematic explanations of the structure of these
functions in terms of strong dynamical correlations. We thus expect that using Green–Kubo
formulae this way provides a general access road to understanding deterministic diffusion in
low-dimensional periodic arrays of scatterers, possibly also in view of experimental results on
systems such as antidot lattices, ratchets and Josephson junctions.
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Appendix A. Green–Kubo formula on the hexagonal lattice

In this appendix we derive equation (18) that yields the diffusion coefficient D(w) for the
periodic Lorentz gas via a generalization of the Machta–Zwanzig picture. That is, we look at
diffusion as a higher order Markov process on a hexagonal lattice of traps with lattice spacing
� where particles hop with frequency τ−1 from trap to trap, cf figure 4. The time t is suitably
rewritten in terms of the escape time τ = (π/6w)(

√
3/2(2 + w)2 − π) [21] as t = nτ, n ∈ N .
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Let xn be the position of the moving particle at time step n. We then write xn ≡ Xn + x̃n,
where Xn denotes the position of the trap on the hexagonal lattice in which the particle is
situated at time step n. This vector can be expressed by a suitable combination of lattice
vectors. For example, one may choose a sum of �αβγ ... as introduced in section 3, see figure 4;
a more precise definition is not necessary here. Correspondingly, x̃n is the distance from the
nearest trap centre to the actual position of the particle in the Wigner–Seitz cell.

The Einstein formula (16) then reads

D(w) = lim
n→∞

〈
(Xn + ∆x̃n)

2
〉/

(4nτ) (A1)

where ∆x̃n := x̃n − x̃0. Multiplying the nominator we get〈
X2

n + 2Xn ·∆x̃n + ∆x̃2
n

〉
. (A2)

According to its definition the last term is bounded, ∆x̃2
n < const. To the second term we

apply the Hölder inequality [29] yielding

|〈Xn ·∆x̃n〉| �
√〈|Xn|2

〉√〈|∆x̃n|2
〉
< const

√〈|Xn|2
〉
. (A3)

Consequently, in the limit of infinite time only the first term in equation (A2) contributes to
the positive diffusion coefficient D(w) of equation (A1) leading to

D(w) = lim
n→∞

〈
X2

n

〉 /
(4nτ). (A4)

Starting from this Einstein formula on the hexagonal lattice it is now straightforward to derive
equation (18). X2

n = X2
n + Y 2

n tells us that essentially there are two one-dimensional parts,
thus we are back to the respective derivation of equation (5) in [1]. To make this precise, let
us write

Xn =
n−1∑
k=0

j (xk) (A5)

which is in analogy with equation (15). However, here j (xk) := Xk+1 −Xk is strictly speaking
no jump velocity, since it only denotes the distance a particle jumps within a time interval τ ,
whereas τ = 1 in equation (7). Multiplying out the nominator of equation (A4) in terms of
equation (A5) leads to an equation for D(w) in the form of velocity autocorrelation functions
C(k, l) := 〈j (xk) · j (xl)〉 = ∫

dx dy ρ∗(x, y)j (xk) · j (xl), where ρ∗(x, y) is the equilibrium
density of the periodic Lorentz gas. Translational invariance implies C(k, l) = C(0, l − k)

which is easily shown by substitution combined with conservation of probability according to
the Frobenius–Perron equation of the billiard. Summing up all contributions C(0, k) obtained
from the multiplication, doing the same for the componentYn, and putting both results together
yields equation (18).
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