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Abstract. – We examine characteristic properties of deterministic and stochastic diffusion
in low-dimensional chaotic dynamical systems. As an example, we consider a periodic array of
scatterers defined by a simple chaotic map on the line. Adding different types of time-dependent
noise to this model we compute the diffusion coefficient from simulations. We find that there
is a crossover from deterministic to stochastic diffusion under variation of the perturbation
strength related to different asymptotic laws for the diffusion coefficient. Typical signatures of
this scenario are suppression and enhancement of normal diffusion. Our results are explained
by a simple theoretical approximation.

Understanding diffusion in noisy maps, that is, in time-discrete dynamical systems where
the deterministic equations of motion are perturbed by noise, figures as a prominent problem
in the recent literature. The most simple example of such models are one-dimensional chaotic
maps on the line. In seminal contributions by Geisel and Nierwetberg [1], and by Reimann
et al. [2], scaling laws have been derived for the diffusion coefficient yielding suppression and
enhancement of diffusion with respect to the variation the of the noise strength. Related
results have been obtained in refs. [3,4]. However, all these results apply only to the onset of
diffusion where the scaling laws are reminiscent of a dynamical phase transition, and not much
appears to be known far away from this transition point. In such more general situations,
only perturbations by a non-zero average bias have been studied [5]. Related models are
deterministic Langevin equations, in which the interplay between deterministic and stochastic
chaos has been analyzed [6], however, without focusing on diffusion coefficients. Non-diffusive
noisy maps have furthermore been investigated by refinements of cycle expansion methods [7].

Deterministic diffusion refers to the asymptotically linear growth of the mean square dis-
placement in a purely deterministic, typically chaotic dynamical system [1, 2, 4, 8, 9], whereas
by stochastic diffusion we denote the respective behavior of the same quantity in a system
driven by uncorrelated random noise. In this work we study the transition scenario from
deterministic to stochastic diffusion in the most simple type of chaotic dynamical systems,
which are piecewise linear maps on the line. Particularly, we are searching for signatures of
deterministic and stochastic dynamics in the diffusion coefficient as a function of the strength
of time-dependent stochastic noise. In this aspect our work appears to be related to the recent
dispute on a possible distinction between chaotic and stochastic diffusion in experiments [10],
where some of the theoretical models studied are very similar to the one introduced below.
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We define our system as follows: The unperturbed map is given by the equation of motion

xn+1 = Ma(xn) , (1)

where a ∈ � is a control parameter and xn is the position of a point particle at discrete time
n. Ma(x) is continued periodically beyond the interval [−1/2, 1/2) onto the real line by a lift
of degree one, Ma(x+1) = Ma(x)+1. We assume that Ma(x) is anti-symmetric with respect
to x = 0, Ma(x) = −Ma(−x). The map we study as an example is defined by Ma(x) = ax,
where the uniform slope a serves as a control parameter. The Lyapunov exponent of this map
is given by λ = ln a implying that for a > 1 the dynamics is chaotic. We now apply two types
of annealed disorder [11] to this map, i) noisy slopes [2, 4]: we add the random variable ∆an,
n ∈ �, to all slopes a making them time dependent in form of

Ma+∆an
(x) = (a + ∆an)x , (2)

or ii) noisy shifts [1–3]: we add the random variable ∆bn, n ∈ �, as a time-dependent uniform
bias yielding

Ma,∆b(x) = ax + ∆bn . (3)

In both cases we assume that the random variable ∆n ∈ {∆an,∆bn} is independent and
identically distributed according to a distribution χd(∆n), where d ∈ {da, db} is again a
control parameter. We consider two different types of such distributions, namely random
variables distributed uniformly over an interval of size [−d, d] [3, 4],

χd(∆n) =
1
2d

Θ(d + ∆n)Θ(d − ∆n) , (4)

and dichotomous or δ-distributed random variables [2, 4],

χd(∆n) =
1
2
(δ(d − ∆n) + δ(d + ∆n)) . (5)

Since |∆n| ≤ d, we denote d as the perturbation strength. As an example, we sketch in fig. 1
our model for noisy slopes. We now define the diffusion coefficient as

D(a, d) = lim
n→∞

1
2n

(〈x2
n〉ρ0 − 〈xn〉2ρ0

) , (6)

with

〈xk
n〉ρ0 =

∫
dx

∫
d(∆0)d(∆1) . . . d(∆n−1)ρ0(x)χ(∆0)χ(∆1) . . . χ(∆n−1)xk

n , (7)

where ρ0(x) denotes the initial distribution of an ensemble of moving particles, x0 ≡ x, k ∈ �,
and ∆j , j ∈ {1, . . . , n − 1}, is the random variable. D(a, d) has been computed by iterating
eqs. (2),(3) numerically for an ensemble of moving particles. Because of self-averaging [11],
it suffices to generate single series of random variables from eqs. (4),(5) instead of evaluating
all the integrals in eq. (7). To obtain better numerical convergence for noisy shifts the first
moment squared in eq. (6) was subtracted, while eqs. (4),(5) imply that the long-time average
over the random variable ∆n does not yield any bias. In refs. [8, 9] it was shown that the
unperturbed map, eq. (1), exhibits normal diffusion if a > 2, and the same was found by adding
a bias b [12]. Correspondingly, for the types of perturbations defined above diffusion should
always be normal if (a−da) > 2, as was confirmed in simulations. Hence, the central question
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Fig. 1 – Diffusion coefficient D(a, da) for the piecewise linear map shown in the figure. The slope a is
perturbed by the uniform noise of maximum strength da of eq. (4). The bold black line depicts numer-
ically exact results for the unperturbed diffusion coefficient at da = 0. Computer simulation results
for da �= 0 are marked with symbols, the corresponding lines are obtained from the approximation,
eq. (8). The parameter values are: da = 0.1 (circles), da = 0.4 (squares), da = 1.0 (diamonds).

is what happens to the parameter-dependent diffusion coefficient D(a, d) under variation of
the two control parameters a and d in case of the above two types of noise.

For da = 0 it was shown that D(a, 0) is a fractal function of the slope a as a control
parameter [8, 9], see fig. 1. Included are results from computer simulations for uniformly
distributed noisy slopes at different values of the perturbation strength da [13]. As expected,
the irregular structure gradually disappears by increasing da. Qualitatively the same result is
obtained by applying noisy shifts [14]. Figure 1 may be compared to the corresponding result
for quenched slopes, fig. 1 in ref. [15]. Apart from numerical uncertainties, there are clear
differences in the critical behavior close to the onset of diffusion. However, for small enough
perturbation strength and large enough a the results look qualitatively similar indicating that,
in this limit, quenched and annealed diffusion may be treated on the same footing.

This statement is corroborated by a trivial approximation for the perturbed diffusion co-
efficient, which we motivate starting from dichotomous noisy slopes. Naive reasoning suggests
that, at arbitrary fixed parameters a and da, the perturbed diffusion coefficient D(a, da) can be
approximated by simply averaging over the unperturbed diffusion coefficient D(a, 0) at respec-
tive values of the slopes a−da and a+da yielding Dapp(a, da) = (D(a−da, 0)+D(a+da, 0))/2.
It is straightforward to extend this heuristic argument to any other type of uncorrelated noise
yielding the generalized expression

Dapp(p,d) =
∫

d(∆) χd(∆)D(p + ∆, 0) . (8)

Here p is a vector of control parameters such as p = {a, b} in case of the map above, d
is the corresponding vector of perturbation strengths, and ∆ is the vector of perturbations
such as ∆ = {∆a,∆b} for noisy shifts and slopes. Further generalizations of this equation,
for example, to arbitrary moments as defined in eq. (7), are straightforward. Applying this
formula to the case of quenched slopes discussed in ref. [15] reproduces the diffusion coefficient
approximation eq. (6) therein. The corresponding approximations for uniform noisy slopes
are depicted in fig. 1 as lines. They show that even for da = 1 the agreement between theory
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Fig. 2 – Diffusion coefficient D(a, da) as a function of the perturbation strength da at slope a = 7 for
noisy slopes distributed according to: (a) dichotomous noise, eq. (5), (b) uniform noise, eq. (4). The
circles represent results from computer simulations, the bold lines are obtained from the approxima-
tion, eq. (8), the dashed lines represent the stochastic limit for the diffusion coefficient, eq. (13).

and simulations is excellent. This confirms that, in the limit described above, quenched and
annealed disorder generating normal diffusion can indeed approximately be treated in the
same way.

Let us now look at the diffusion coefficient for a given value of a as a function of da.
Figure 1 shows that approximately at integer slopes the fractal diffusion coefficient D(a, 0)
exhibits local extrema. Since eq. (8) represents an average over the unperturbed solution
in a local environment [a − da, a + da], it predicts local suppression and enhancement of
diffusion at odd and even integer slopes, respectively, under variation of the perturbation
strength da. This has already been conjectured in ref. [9] and has been verified in ref. [15] for
quenched slopes. We first check this hypothesis for noisy slopes around the local maximum of
D(a, 0) at a = 7 distributed according to eqs. (4),(5). Figures 2 (a), (b) depict again results
obtained from computer simulations in comparison to eq. (8). As predicted, in both cases
there is suppression of diffusion for small enough da. For dichotomous noise the perturbed
diffusion coefficient increases on a coarse scale by exhibiting multiple, fractal-like suppression
and enhancement on finer scales. For uniform perturbations there is a pronounced crossover
from suppression to enhancement on a coarse scale, by again exhibiting oscillations on a fine
scale. In both cases the agreement between simple theory and simulations is excellent for
small enough da, whereas systematic deviations particularly in case of dichotomous noise are
visible for larger da. Note that if a − ∆an < 2, particles are getting trapped within a box
at a respective time step n, and that for a − ∆an < 1, the map is non-chaotic. In the first
case simulations and simple reasoning suggest that the perturbed map still exhibits normal
diffusion. However, as soon as a − da < 1, numerical results indicate that there is no normal
diffusion anymore [14]. This appears to be due to the contracting behavior of the non-chaotic
map resulting in localization of particles. The oscillatory behavior of the diffusion coefficient
in fig. 2 (a) just below this transition point is not yet understood.

Employing eq. (8) we now analyze noisy shifts. The unperturbed two-parameter diffusion
coefficient D(a, b, 0) has been calculated numerically exactly for the map under consideration
in ref. [12]. Results for the perturbed diffusion coefficient D(a, db) ≡ D(a, 0, db) are presented
in fig. 3 (a) for dichotomous noise and in (b) for uniform perturbations, both starting from
D(a, 0) at a = 6. In both cases the perturbed diffusion coefficient exhibits strong enhancement
of diffusion for da → 0 due to the fact that the unperturbed diffusion coefficient at a = 6
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Fig. 3 – Diffusion coefficient D(a, db) as a function of the perturbation strength db at slope a = 6 for
noisy shifts distributed according to: (a) dichotomous noise, eq. (5), (b) uniform noise, eq. (4). The
circles represent results from computer simulations, the bold lines are obtained from the approxima-
tion, eq. (8), the dashed line represents the stochastic limit for the diffusion coefficient, eq. (12).

is approximately identical with a local maximum in the (a, b) parameter plane [12]. For
dichotmous perturbations it suffices to show results for 0 < db < 0.5 only. Translation
and reflection symmetry of the map imply that this function is mirrored in the interval from
0.5 < db < 1, and that the full sequence in 0 < db < 1 is periodically repeated for higher values
of db. As in the corresponding case of noisy slopes, the perturbed diffusion coefficient increases
on a coarse scale by exhibiting multiple fractal-like suppression and enhancement on a fine
scale. In case of uniform perturbations there is a pronounced crossover to an approximately
constant diffusion coefficient for larger db.

Before calculating the stochastic limit of the diffusion coefficient, we provide an analytical
justification for the heuristic approximation, eq. (8). For the sake of simplicity, we demon-
strate it only for noisy slopes, ∆n ≡ ∆an. Noisy shifts as well as quenched disorder can be
treated along the same lines [14]. Let us start from the definition of the diffusion coefficient,
eq. (6), where 〈xn〉 = 0. Let ∆an be uniformly distributed in [−da, da], ∆a0 ≡ ∆a. In case
of da → 0 all random variables are bounded by ∆an = ∆a + ε, −2da ≤ ε ≤ 2da. We now put
this expression into the perturbed equation of motion, eqs. (2),(3), as contained in eq. (6),
which we write as xn+1,a+∆an

= Ma+∆an
(xn). As a first step, we now take the limit ε → 0

resulting in the expression for the mean square displacement

〈x2
n〉 =

∫
dx

∫
d(∆a)d(∆a1) . . . d(∆an−1)ρ0(x)χ(∆a)χ(∆a1) . . . χ(∆an−1)x2

n,a+∆an−1

=
∫

dx

∫
d(∆a)ρ0(x)χ(∆a)x2

n,a+∆a (ε → 0) . (9)

As a second step, we exchange the time limit contained in eq. (6) with the integration over
d(∆a) yielding

Dapp(a, da) = lim
n→∞

〈x2
n〉

2n

=
∫

d(∆a)χda(∆a) lim
n→∞

∫
dxρ0(x)

x2
n,a+∆a

2n

=
∫

d(∆a)χda(∆a)D(a + ∆a, 0) , (10)
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where we have used that the unperturbed diffusion coefficient was defined as

D(a, 0) = lim
n→∞

∫
dxρ0(x)x2

n,a . (11)

We have thus verified our previous approximation, eq. (8), for noisy slopes in the limit of
small perturbation strength. A similar derivation can be carried out for noisy shifts arriving
again at eq. (8) in case of very small perturbation strength. For quenched shifts it is known
that a normal diffusion coefficient does not exist [16], thus any approximation by eq. (8) must
fail. Indeed, it turns out that in this case taking the limit ε → 0 fundamentally changes the
properties of the dynamical system and is thus no valid operation [14].

Finally, we calculate the parameter-dependent stochastic diffusion coefficient related to
the map with noisy slopes. Starting from the definition, eq. (11), the complete loss of memory
in the unperturbed map is modeled by [9, 17] i) replacing the distance xn a particle travels
by n times the distance a particle travels at any single time step, n∆x = n(Ma(x) − x), and
ii) neglecting any memory effects in the probability density on the unit interval by assuming
ρ0(x) = 1. Then eq. (11) yields

Drw(a) =
(a − 1)2

24
. (12)

As was shown in refs. [9, 17], this equation correctly describes the asymptotic parameter
dependence of the deterministic diffusion coefficient for a → ∞ thus explaining the increase
of D(a, 0) in fig. 1 on a coarse scale. On this basis, the corresponding result for noisy slopes is
easily calculated by using eq. (12) as the functional form for D(a+∆a, 0) in the approximation
eq. (10) reading

Drw(a, da) = Drw(a, 0) + ∆a2/c , (13)

where c = 24 for dichotomous noise, eq. (5), and c = 72 for uniform noise, eq. (4). Equation
(13) thus confirms the common sense expectation that noise should typically enhance diffusion
and represents the stochastic limit of the diffusion coefficient. This equation is depicted in fig. 2
(a), (b) in form of dashed lines. In case of dichotomous noise the correlations are obviously
large enough such that, even for large perturbation strength da, there is no transition to the
stochastic limit, whereas in case of uniform noisy slopes the diffusion coefficient approaches
the stochastic solution asymptotically in da, thus verifying the existence of a transition from
deterministic to stochastic diffusion. That such a distinct transition behavior exists in these
models was already conjectured in ref. [9]. Analogous calculations for noisy shifts yield eq. (12)
for all values of db reflecting the fact that, for large enough a, the stochastic diffusion coefficient
should not depend on the bias. This result is shown in fig. 3 (b) and again confirms an
asymptotic approach of the diffusion coefficient to the stochastic limit under variation of db.
Based on the known result of the existence of a fractal diffusion coefficient for the unperturbed
D(a, b, 0), we conjecture that the typical transition scenario in this type of systems consists of
(multiple) suppression and enhancement of diffusion. We finally note that eqs. (12),(13) are
closely related to the approximation outlined in ref. [1], and to the simple heuristic argument
given by Reimann [2] by which he explains the suppression of deterministic diffusion by noise
in the climbing sine map near a crisis; more details will be discussed elsewhere [14].

We conclude with a few remarks: 1) It would be interesting to study the problem of
noisy maps with non-zero average bias along the same lines. Reference [12] shows that the
unperturbed map does not exhibit a linear response for b → 0, thus we conjecture that adding
noise generates a transition to Ohm’s law. 2) Whether there is a close connection between
the mechanism of noise suppression outlined in ref. [18] and the phenomena discussed here, is
currently an open question. 3) Our approach could be applied as well to more complex models
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such as the standard map, particle billiards, or inertia ratchets, where irregular transport
coefficients have already been reported and studied under the impact of noise [19]. 4) In
physical experiments on classical diffusive transport in low-dimensional periodic arrays of
scatterers such as antidot lattices [20], a control parameter like the temperature may mimic the
strength of random perturbations. Our results suggest that measuring respective parameter-
dependent transport coefficients in such systems may reveal analogous transition scenarios as
the ones described in our paper.
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