MTH4100 Calculus I
 Lecture notes for Week 4

Thomas' Calculus, Sections 2.4 to 2.6

Rainer Klages
School of Mathematical Sciences
Queen Mary University of London
Autumn 2009

One-sided limits and limits at infinity

To have a limit L as $x \rightarrow c$, a function f must be defined on both sides of c (two-sided limit). If f fails to have a limit as $x \rightarrow c$, it may still have a one-sided limit if the approach is only from the right (right-hand limit) or from the left (left-hand limit).

We write

$$
\lim _{x \rightarrow c^{+}} f(x)=L \text { or } \lim _{x \rightarrow c^{-}} f(x)=M \text {. }
$$

The symbol $x \rightarrow c^{+}$means that we only consider values of x greater than c. The symbol $x \rightarrow c^{-}$means that we only consider values of x less than c.
example:

- $\lim _{x \rightarrow 0^{+}} f(x)=1$
- $\lim _{x \rightarrow 0^{-}} f(x)=-1$
- $\lim _{x \rightarrow 0} f(x)$ does not exist

THEOREM 6

A function $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$
\lim _{x \rightarrow c} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L .
$$

Limit laws and theorems for limits of polynomials and rational functions all hold for onesided limits.
example:

c	$\lim _{x \rightarrow c^{-}} f(x)$	$\lim _{x \rightarrow c^{+}} f(x)$	$\lim _{x \rightarrow c} f(x)$
0	n.a.	1	n.a.
1	0	1	n.a.
2	1	1	1
3	2	2	2
4	1	n.a.	n.a.

Limits involving $\frac{\sin \theta}{\theta}$:

NOT TO SCALE

Theorem 1

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad(\theta \text { in radians })
$$

Proof: Show equality of left-hand and right-hand limits at $x=0$ by using the 'Sandwich Theorem' (Thomas' Calculus p.105ff).
example:
Compute

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=\quad\left[\sin ^{2}(h / 2)=(1-\cos h) / 2\right] \\
= & \lim _{h \rightarrow 0} \frac{-2 \sin ^{2}(h / 2)}{h} \\
= & \lim _{h \rightarrow 0}-\frac{\sin (h / 2)}{h / 2} \sin (h / 2) \quad[\theta=h / 2] \\
= & \lim _{\theta \rightarrow 0}-\frac{\sin \theta}{\theta} \sin \theta \quad[\text { limit laws }] \\
= & -1 \cdot 0=0
\end{aligned}
$$

Special case of a limit:

$$
x \text { approaching positive/negative infinity }
$$

example:

similar to one-sided limit
Definition 1 (informal) 1. We say that $f(x)$ has the limit L as x approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the positive direction, $f(x)$ gets arbitrarily close to L.
2. We say that $f(x)$ has the limit L as x approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the negative direction, $f(x)$ gets arbitrarily close to L.
examples:

$$
\lim _{x \rightarrow \pm \infty} k=k \quad \text { and } \quad \lim _{x \rightarrow \pm \infty} \frac{1}{x}=0
$$

Simply replace $x \rightarrow c$ by $x \rightarrow \pm \infty$ in the previous limit laws theorem:
Theorem 2 (Limit laws as x approaches infinity) If L, M and k are real numbers and $\lim _{x \rightarrow \pm \infty} f(x)=L$ and $\lim _{x \rightarrow \pm \infty} g(x)=M$, then

1. Sum Rule: $\lim _{x \rightarrow \pm \infty}(f(x)+g(x))=L+M$
2. Difference Rule: $\lim _{x \rightarrow \pm \infty}(f(x)-g(x))=L-M$
3. Product Rule: $\lim _{x \rightarrow \pm \infty}(f(x) \cdot g(x))=L \cdot M$
4. Constant Multiple Rule: $\lim _{x \rightarrow \pm \infty}(k \cdot f(x))=k \cdot L$
5. Quotient Rule: $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
6. Power Rule: If s and r are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow \pm \infty}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)
example:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(5+\frac{1}{x}\right)= \\
= & \lim _{x \rightarrow \infty} 5+\lim _{x \rightarrow \infty} \frac{1}{x} \\
= & 5
\end{aligned}
$$

This leads us to horizontal asymptotes.
example:

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

The graph approaches the line $y=0$ asymptotically: The line is an asymptote of the graph.

DEFINITION Horizontal Asymptote

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

example:

Calculate the horizontal asymptote for rationals: pull out the highest power of x.

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}+8 x-3}{3 x^{2}+2}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(5+8 / x-3 / x^{2}\right)}{x^{2}\left(3+2 / x^{2}\right)}=\frac{5}{3}
$$

The graph has the line $y=5 / 3$ as a horizontal asymptote on both the left and the right, because

$$
\lim _{x \rightarrow \pm \infty} f(x)=\frac{5}{3}
$$

What happens if the degree of the polynomial in the numerator is one greater than that in the denominator? Do polynomial division:
example:

$$
f(x)=\frac{2 x^{2}-3}{7 x+4}=\frac{2}{7} x-\frac{8}{49}-\frac{115}{49(7 x+4)}
$$

with

$$
\lim _{x \rightarrow \pm \infty} \frac{-115}{49(7 x+4)}=0
$$

If for a rational function $f(x)=p(x) / q(x)$ the degree of $p(x)$ is one greater than the degree of $q(x)$, polynomial division gives

$$
f(x)=a x+b+r(x) \quad \text { with } \lim _{x \rightarrow \pm \infty} r(x)=0
$$

$y=a x+b$ is called an oblique (slanted) asymptote.
For the above example

$$
y=\frac{2}{7} x-\frac{8}{49}
$$

is the oblique asymptote of $f(x)$.

One-sided infinite limits
example:

$f(x)=\frac{1}{x}$ has no limit as $x \rightarrow 0^{+}$. However, it is convenient to still say that $f(x)$ approaches ∞ as $x \rightarrow 0^{+}$. We write

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

Similarly,

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

note: $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ really means that the limit does not exist, because $1 / x$ becomes arbitrarily large and positive as $x \rightarrow 0^{+}$!

Two-sided infinite limits
example: What is the behaviour of $f(x)=\frac{1}{x^{2}}$ near $x=0$?

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

as the values of $1 / x^{2}$ are positive and become arbitrarily large as $x \rightarrow 0$.
Definition 2 (informal) 1. We say that $f(x)$ approaches infinity as x approaches x_{0} and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if, as $x \rightarrow x_{0}$, the values of f grow without bound, eventually reaching and surpassing every positive real number.
2. We say that $f(x)$ approaches negative infinity as x approaches x_{0} and write

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

if, as $x \rightarrow x_{0}$, the values of f become arbitrarily large and negative.

Vertical asymptotes

example:

Recall that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. This means that the graph approaches the line $x=0$ asymptotically: The line is an asymptote of the graph.

DEFINITION Vertical Asymptote

A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty .
$$

Summary: asymptotes for $y=1 / x$

Further asymptotic behavior

example: Find the horizontal and vertical asymptotes of

$$
f(x)=-\frac{8}{x^{2}-4}
$$

Check for the behaviour as $x \rightarrow \pm \infty$ and as $x \rightarrow \pm 2$ (why?):

- $\lim _{x \rightarrow \pm \infty} f(x)=0$, approached from below.
- $\lim _{x \rightarrow-2^{-}} f(x)=-\infty, \lim _{x \rightarrow-2^{+}} f(x)=\infty$
- $\lim _{x \rightarrow 2^{-}} f(x)=\infty, \lim _{x \rightarrow 2^{+}} f(x)=-\infty$ (because $f(x)$ is even)

Asymptotes are (why?) $y=0, x=-2, x=2$.

The graph approaches the x-axis from only one side: Asymptotes do not have to be twosided!
example: Find the asymptotes of

$$
f(x)=\frac{x^{2}-3}{2 x-4}
$$

- Rewrite by polynomial division:

$$
f(x)=\frac{x}{2}+1+\frac{1}{2 x-4}
$$

- Asymptotes are $y=\frac{x}{2}+1, \quad x=2$.

We say that $x / 2+1$ dominates when x is large and that $1 /(2 x-4)$ dominates when x is near 2 .

Continuity

Definition 3 (informal) Any function whose graph can be sketched over its domain in one continuous motion, i.e. without lifting the pen, is an example of a continuous function. example:

This function is continuous on $[0,4]$ except at $x=1, x=2$ and $x=4$. More precisely, we need to define continuity at interior and at end points.
example:

DEFINITION Continuous at a Point

Interior point: A function $y=f(x)$ is continuous at an interior point c of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Endpoint: A function $y=f(x)$ is continuous at a left endpoint a or is continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b), \text { respectively } .
$$

For any $x=c$ in the domain of f one defines:

- right-continuous: $\lim _{x \rightarrow c^{+}} f(x)=f(c)$
- left-continuous: $\lim _{x \rightarrow c^{-}} f(x)=f(c)$

A function f is continuous at an interior point $x=c$ if and only if it is both rightcontinuous and left-continuous at c.

Remark 1 (Continuity Test) A function $f(x)$ is continuous at an interior point of its domain $x=c$ if and only if it meets the following three conditions:

1. $f(c)$ exists.
2. f has a limit as x approaches c.
3. The limit equals the function value.

Note the difference to a function merely having a limit!

If a function f is not continuous at a point c, we say that f is discontinuous at c. Note that c need not be in the domain of f !
examples: Continuity and discontinuity at $c=0$.

(a)
continuous

(b)

(c)

(d)
jump discontinuity

(e)
infinite discontinuity
(f)
oscillating discontinuity

- A function is continuous on an interval if and only if it is continuous at every point of the interval.
- A continuous function is a function that is continuous at every point of its domain. example:

- $y=\frac{1}{x}$ is a continuous function: It is continuous at every point of its domain.
- It has nevertheless a discontinuity at $x=0$: No contradiction, because it is not defined there.

Previous limit laws straightforwardly imply:

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples: $\quad k \cdot f$, for any number k
5. Quotients: $\quad f / g$ provided $g(c) \neq 0$
6. Powers:
$f^{r / s}$, provided it is defined on an open interval containing c, where r and s are integers
example: $f(x)=x$ and constant functions are continuous \Rightarrow polynomials and rational functions are also continuous

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

example: Show that $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ is everywhere continuous.

- Note that $y=\sin x$ (and $y=\cos x$) are everywhere continuous.
- $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous (why?).
- $g(x)=|x|$ is continuous (why?).
- Therefore $y=g \circ f$ is continuous.

