

MTH4100 Calculus I

Lecture notes for Week 4

Thomas' Calculus, Sections 2.4 to 2.6

Rainer Klages

School of Mathematical Sciences Queen Mary University of London

Autumn 2009

One-sided limits and limits at infinity

To have a *limit* L as $x \to c$, a function f must be defined on both sides of c (two-sided limit). If f fails to have a limit as $x \to c$, it may still have a **one-sided limit** if the approach is only from the right (*right-hand limit*) or from the left (*left-hand limit*).

$$\lim_{x \to c^+} f(x) = L \text{ or } \lim_{x \to c^-} f(x) = M.$$

The symbol $x \to c^+$ means that we only consider values of x greater than c. The symbol $x \to c^-$ means that we only consider values of x less than c.

example:

We write

- $\lim_{x\to 0^+} f(x) = 1$
- $\lim_{x \to 0^-} f(x) = -1$
- $\lim_{x\to 0} f(x)$ does not exist

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

 $\lim_{x\to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x\to c^-} f(x) = L \quad \text{and} \quad \lim_{x\to c^+} f(x) = L.$

Limit laws and theorems for limits of polynomials and rational functions all hold for onesided limits. example:

Theorem 1

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad (\theta \text{ in radians})$$

Proof: Show equality of left-hand and right-hand limits at x = 0 by using the 'Sandwich Theorem' (Thomas' Calculus p.105ff).

Compute

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = [\sin^2(h/2) = (1 - \cos h)/2]$$
$$= \lim_{h \to 0} \frac{-2\sin^2(h/2)}{h}$$
$$= \lim_{h \to 0} -\frac{\sin(h/2)}{h/2} \sin(h/2) \quad [\theta = h/2]$$
$$= \lim_{\theta \to 0} -\frac{\sin \theta}{\theta} \sin \theta \quad [\text{limit laws}]$$
$$= -1 \cdot 0 = 0$$

Special case of a limit:

example:

similar to one-sided limit

Definition 1 (informal) 1. We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L.

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

examples:

$$\lim_{x \to \pm \infty} k = k \quad \text{and} \quad \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

Simply replace $x \to c$ by $x \to \pm \infty$ in the previous limit laws theorem:

Theorem 2 (Limit laws as x **approaches infinity)** If L, M and k are real numbers and $\lim_{x\to\pm\infty} f(x) = L$ and $\lim_{x\to\pm\infty} g(x) = M$, then

- 1. Sum Rule: $\lim_{x\to\pm\infty} (f(x) + g(x)) = L + M$
- 2. Difference Rule: $\lim_{x\to\pm\infty} (f(x) g(x)) = L M$
- 3. Product Rule: $\lim_{x\to\pm\infty} (f(x) \cdot g(x)) = L \cdot M$
- 4. Constant Multiple Rule: $\lim_{x\to\pm\infty} (k \cdot f(x)) = k \cdot L$
- 5. Quotient Rule: $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M} \; , \; M \neq 0$
- 6. Power Rule: If s and r are integers with no common factor and $s \neq 0$, then $\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

example:

$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \qquad \text{[sum rule]}$$
$$= \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x} \qquad \text{[known results]}$$
$$= 5$$

This leads us to **horizontal asymptotes**.

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

The graph approaches the line y = 0 asymptotically: The line is an asymptote of the graph.

DEFINITION Horizontal Asymptote A line y = b is a horizontal asymptote of the graph of a function y = f(x) if either

 $\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$

example:

Calculate the horizontal asymptote for rationals: pull out the highest power of x.

The graph has the line y = 5/3 as a **horizontal asymptote** on both the left and the right, because

$$\lim_{x \to \pm \infty} f(x) = \frac{5}{3}$$

What happens if the degree of the polynomial in the numerator is one greater than that in the denominator? Do polynomial division:

$$f(x) = \frac{2x^2 - 3}{7x + 4} = \frac{2}{7}x - \frac{8}{49} - \frac{115}{49(7x + 4)}$$

with

$$\lim_{x \to \pm \infty} \frac{-115}{49(7x+4)} = 0$$

If for a rational function f(x) = p(x)/q(x) the degree of p(x) is one greater than the degree of q(x), polynomial division gives

$$f(x) = ax + b + r(x)$$
 with $\lim_{x \to \pm \infty} r(x) = 0$

y = ax + b is called an **oblique (slanted) asymptote**.

For the above example

example:

$$y = \frac{2}{7}x - \frac{8}{49}$$

is the oblique asymptote of f(x).

 $f(x) = \frac{1}{x}$ has no limit as $x \to 0^+$. However, it is convenient to still say that f(x) approaches ∞ as $x \to 0^+$. We write

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

Similarly,

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

note: $\lim_{x\to 0^+} \frac{1}{x} = \infty$ really means that the limit does not exist, because 1/x becomes arbitrarily large and positive as $x \to 0^+$!

Two-sided infinite limits

example: What is the behaviour of $f(x) = \frac{1}{x^2}$ near x = 0?

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

as the values of $1/x^2$ are positive and become arbitrarily large as $x \to 0$.

Definition 2 (informal) 1. We say that f(x) approaches infinity as x approaches x_0 and write

$$\lim_{x \to x_0} f(x) = \infty$$

if, as $x \to x_0$, the values of f grow without bound, eventually reaching and surpassing every positive real number.

2. We say that f(x) approaches negative infinity as x approaches x_0 and write

$$\lim_{x \to x_0} f(x) = -\infty$$

if, as $x \to x_0$, the values of f become arbitrarily large and negative.

Vertical asymptotes

example:

Recall that $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$. This means that the graph approaches the line x = 0 asymptotically: The line is an asymptote of the graph.

Summary: asymptotes for y = 1/x

Further asymptotic behavior

example: Find the horizontal and vertical asymptotes of

$$f(x) = -\frac{8}{x^2 - 4}$$

Check for the behaviour as $x \to \pm \infty$ and as $x \to \pm 2$ (why?):

- $\lim_{x \to \pm \infty} f(x) = 0$, approached from *below*.
- $\lim_{x \to -2^{-}} f(x) = -\infty$, $\lim_{x \to -2^{+}} f(x) = \infty$
- $\lim_{x \to 2^-} f(x) = \infty$, $\lim_{x \to 2^+} f(x) = -\infty$ (because f(x) is even)

Asymptotes are (why?) y = 0, x = -2, x = 2.

The graph approaches the *x*-axis from **only one side**: Asymptotes do not have to be two-sided!

example: Find the asymptotes of

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

• Rewrite by **polynomial division**:

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$

We say that x/2 + 1 dominates when x is large and that 1/(2x - 4) dominates when x is near 2.

Continuity

Definition 3 (informal) Any function whose graph can be sketched over its domain in one continuous motion, *i.e.* without lifting the pen, is an example of a continuous function.

This function is continuous on [0, 4] except at x = 1, x = 2 and x = 4. More precisely, we need to define continuity at *interior* and at *end points*.

example:

For any x = c in the domain of f one defines:

- right-continuous: $\lim_{x \to c^+} f(x) = f(c)$
- left-continuous: $\lim_{x \to c^-} f(x) = f(c)$

A function f is continuous at an interior point x = c if and only if it is both rightcontinuous and left-continuous at c.

Remark 1 (Continuity Test) A function f(x) is continuous at an interior point of its domain x = c if and only if it meets the following three conditions:

- 1. f(c) exists.
- 2. f has a limit as x approaches c.
- 3. The limit equals the function value.

Note the difference to a function merely having a limit!

If a function f is not continuous at a point c, we say that f is **discontinuous** at c. Note that c need not be in the domain of f!

examples: Continuity and discontinuity at c = 0.

- A function is **continuous on an interval** if and only if it is continuous at every point of the interval.
- A continuous function is a function that is continuous at every point of its domain.

- $y = \frac{1}{x}$ is a continuous function: It is continuous at every point of its domain.
- It has nevertheless a **discontinuity** at x = 0: No contradiction, because it is not defined there.

Previous limit laws straightforwardly imply:

THEOREM 9 Propertie	s of Continuous Functions
If the functions f and g are are continuous at $x = c$.	continuous at $x = c$, then the following combinations
1. Sums:	f + g
2. Differences:	f - g
3. Products:	$f \cdot g$
4. Constant multiples:	$k \cdot f$, for any number k
5. Quotients:	f/g provided $g(c) \neq 0$
6. Powers:	$f^{r/s}$, provided it is defined on an open interval containing c, where r and s are integers

example: f(x) = x and constant functions are continuous \Rightarrow polynomials and rational functions are also continuous

THEOREM 10 Composite of Continuous Functions If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

example: Show that $y = \left| \frac{x \sin x}{x^2 + 2} \right|$ is everywhere continuous.

- Note that $y = \sin x$ (and $y = \cos x$) are everywhere continuous.
- $f(x) = \frac{x \sin x}{x^2 + 2}$ is continuous (why?).
- g(x) = |x| is continuous (why?).
- Therefore $y = g \circ f$ is continuous.

